
Commun. math. Phys. 30, 335-340(1973)
© by Springer-Verlag 1973

The Absorption of Gravitational Radiation
by a Dissipative Fluid

J. Madore

Laboratoire de Physique Theoπque, Tnstitut Henri Pomcare, Paris, France

Received December 11, 1972

Abstract. An expression is found in the eikonal approximation for the gravitational
radiation absorbed by a dissipative fluid.

1. Introduction

It is our purpose here to derive an expression for the damping of
gravitational radiation as it passes through a dissipative fluid. We shall
also calculate the entropy production in the fluid due to the passage of the
radiation and verify the thermodynamical law dS = dQ/T for a closed
system.

We shall find that in the high frequency limit, the radiation is absorbed
in a characteristic time η"1 where η is the shear viscosity. (We set c = 1,
8 π G = l . ) This confirms a result of Hawking [1] in a more general
context.

The eikonal approximation [2-4] is used. The notation is that of
Ref. [4].

2. Notation

The signature of the metric is chosen to be — 2. We suppose that in
some coordinate system the components of the metric describing the
radiation may be written as the sum of two terms: gμv = gμv + εhμv. The
components gμv of the background metric are relativity slowly varying
functions with a characteristic length L. The potential hμv of the radiation
depends explicitly on the point in space-time as well as on a phase
function ωφ. ω is a constant with the dimension of inverse length. The
derivative of hμv is given therefore by

dλhμv
where

δh
ξ d Φ h ^
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We suppose that \hμv>λ| ^L~1\hμv\. Define δ=ί/ωL. The eikonal
approximation is δ <ζ 1. We suppose also that ε <ζ δ and we neglect terms
quadratic in ε. This means in particular that we neglect the energy of the
wave. We set

"μv λ — Φχ^μv)φ = const

dxa

We define r by — — = ξ* and we set .xξ
y = δ/δr.

The energy-momentum tensor of a dissipative fluid is [5-9]

where w is the enthalpy per unit volume, p is the pressure, η, ζ are the
coefficients of shear and bulk viscosity and K is the coefficient of thermal
conductivity. ,~ ~,

πμv = 9μv-uμuv (2.2)
is the projection on the 3-space normal to the flow.

9 f)
σμv = π%

μπ
β

vu{a.β)--yπμv, θ = u*.a (2.3)

are the shear and dilatation rates.

qβ = πlTa-Tuμ;y (2.4)
is the heat now vector.

The coefficients η, ζ, K satisfy

O^η,ζ, κT<ξLw. (2.5)

The entropy flow vector is

S* = nσu*+ —f, (2.6)

where n is the particle number density and σ is the entropy per particle.
The equation of continuity, w μ T μ v

; v = 0, and the equation of particle
number conservation, (nuμ).μ = 0 yield

S%= ^r» s/+y - fί/^O. (27)

In the presence of the wave all of the quantities which describe the
fluid will be perturbed from their former value by a small amount of the
order of ε: ύμ = uμ-\-εu'μ9 w = w + ε\v\ p = p + εp',

T = T-f εT\ ή = η + εη\ ζ = ζ + εζ\ κ = κ-\-εκf.

The perturbations in η, ζ and K may be thought to be due to the presence
of radiative viscosity [10]. We shall suppose that they do not depend of
the frequency of the radiation. We shall write all perturbed quantities
in this form: τcμv = π μ v + επ^v etc.



Absorption of Gravitational Radiation 337

3. Energy Absorption

The basic equations are the Einstein field equations for the perturbed
and unperturbed metrics:

Gμv=-Tμv, Gμv=-Tμv, (3.1)

and the conservation laws in the perturbed and unperturbed metrics:

Dμfμv = 0, Γμ v ;

v = 0. (3.2)

We shall discuss the latter first. Before proceeding however, it is prefer-
able to impose a gauge condition.

Define ψλμ by h

We shall suppose in what follows that the approximate de Donder
condition holds

Dλφλμ = o(δ/L). (3.3)

Under a coordinate transformation of the form

xμ-+xμ + ε/ωfμ, (3.4)

the potential transforms as

hμv^>hμv — f{μξv)— —f(μ;v)

The gauge condition (3.3) admits the restricted set of coordinate trans-
formations given by (3.4) with fμ satisfying

2^f+ξ\λfμ = o(δ/L). (3.5)

We have from (3.3), ψλμξ
μ = o(δ).

It is also conveniant to suppose that the hypersurfaces of constant
phase are null: Ί Ί
P ξ2 = o(δ2). (3.6)

This can in fact be proven from the field Eqs. (3.1), but it would lengthen
somewhat the calculations without adding anything essentially new.

The components of the perturbed matter tensor are

where Tμv= T

τ

μv = w'MμMv + wuiμu'v) - p'gμv -phμv + ησ'μv + η'σμv + ζθ'πμv

+ ζθπ'μv + κu[μqv) + κu{μq'v) + ζ'θπμv + κ'u{μqv).

Even when we neglect terms of order δ, this expression for Tμv is rather
complicated. Using (2.5) however it may be considerably simplified.
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In the adiabatic limit the conservation Eqs. (3.2) yield

. (3.8)

Therefore , α β

u'μ =
 aβU ^ ξμ + o(δ), p\ W = o(δ/L2). (3.9)

( P) T1 \

—— p\ we have also
dp Is

Γ = o(δL). (3.10)

Placing these values for u'μ, p\ w', V in the expressions for σ'μv, θ\ q'v
in (3.7) and applying once more the conservation Eqs. (3.2) we find that,
to first order in η, ζ, K T, we have

u'μ = o(l), pf,w' = o(L-2).

Therefore, to first order in η, ζ, K T, we find the following expression for

"" „ ξμξv) + o(δ/L)

If we write the components of the perturbed Einstein tensor as

Gμv = Gμv + εG'μv, (3.12)

then the field Eqs. (3.1) imply

G'μv= -ω "η [uaξ*hμv- ξiμhv)au* + Kfξ" ξμξ)j + o(g/L)j. (3.13)

In the gauges (3.3) G'μv is given by (This follows, for example, from [4],
formulae (3.12).)

^ ^ ( ^ ) (3.14)
μ 2 μ 2 \ <5r

Using (3.6) we have therefore

0 ^Ψμv2 + ξ;λψμv = - 2ηLξ'hμv - ξ(μhv)xu* + h i ^ l . ξ A + 0{δ/L).

v uyς I ( 3 1 5 )

Taking the trace of this equation, we find the following conservation
law for h:

2 \ (3.16)

From (3.5) the remaining gauge freedom may be therefore used to put
h = 0.
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Eq. (3.15) yields then the following equation for hμv\

^ (3.17)

where z

Xμ = K«u*- 9 V KβUauβ . (3.18)

If we write explicitly the eikonal ansatz, giving hμv as the product of an
amplitude α, a (possibly complex) polarization matrix nμv and a phase
factor eίωφ:

M χ α > WΦ) = α ( χ α ) ^ v M ^ i ω ψ , (3 i9)

with nμvn
μv = 1, then neglecting terms of order δ, we have a decay law

for a:
(a2ξλ\λ=-2ηa2

Kξ* (3.20)

and a transport law for nμv:

Eq. (3.20) may be rewritten

dOL

dr
(3.22)

if we set a = e~*b with (b2 ξλ).λ = 0.
The function φ may be normalized such that at any particular point

in the fluid wα ξ
a = 1 ω is then the frequency of the wave at that point.

We may therefore say that the radiation is absorbed in a characteristic
time η 1.

The vector Xμ does not seem to have any obvious physical meaning.
We remark however that it is uniquely defined by the requirement that
the right-hand side of Eq. (3.17) be normal to uμ.

4. Entropy Production

Designate by / the mean value of a function / taken over a volume
whose dimensions are large with respect to 1/ω but small with respect
to L. The average value of a function which depends linearly on the
small perturbations due to the passage of the radiation, will vanish.

From formula (2.7) a straightforward calculation yields therefore to
first order in η,ζ,κT

DaS
a — Sα.α = -((uaξ

Cί)2a2 + o(δ)). (4.1)
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The average energy-momentum tensor of the wave is [2]

(ξμξv + o(δ)). (4.2)

From (3.20)

We have therefore, neglecting terms of order <5,

D α S * - S % = - ^ - p ^ . (4.4)

The quantity — uμτ
μv.v is the average rate of energy transfer per unit

volume from the radiation to the fluid. Since the fluid does no work, this
represents the rate of increase in the heat content per unit volume dQ
of the fluid. The left-hand side of (4.4) in the entropy per unit volume dS
supplied to the fluid by the radiation per unit time. (4.4) is therefore a
particular case of the Carnot-Clausius relation dS = dQ/T.

The ratio of 5J* - 5α

; α to Sα.α is of the order of magnitude of (ε/δ)2

which we have supposed to be much less than one. The amount of
entropy produced in the fluid by the radiation is negligeable compared
with the amount of entropy produced by ordinary dissipative effects.
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