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Abstract. The discrete series of the conformal group SU(2, 2) is realized on a Hubert
space of holomorphic functions over a bounded domain or the field theoretic tube domain.
The boundary values of these functions form Hubert spaces of distributions. For the
realization over the tube domain the boundary distributions transform like classical
spinorial fields with a continuous mass spectrum extending from zero to infinity The reduc-
tion of these field realizations of the whole discrete series into unitary irreducible representa-
tions of the inhomogeneous Lorentz group is explicitly given.

1. Summary and Notations

We are looking for classical fields ΦJx), x a vector of Minkowski
space, such that for any element g of the conformal group SU(2y 2)

(TgΦ)y (x) = Σ S^βig, x) Φβ(g~1 x) Π)
β

where g acts on the coordinates x in the familiar fashion (see Eqs. (57b),
(60 b), (62 b)). We want Tg to satisfy the group law

TgιTg2 = Tgιg2. (2)

Due to (2) the finite dimensional matrix S must satisfy

β

for any pair g1, g2 of elements of the conformal group that leave the
point x = 0 unchanged. These group elements form the stabilizer sub-
group for x = 0. For convenience of notation we identify the conformal
group with the group SU(2, 2). Then the stabilizer consists of the
product of

a) the homogeneous Lorentz group SL(2, C);
b) the subgroup of dilations D\
c) the group of special conformal transformations that has the

structure of an abelian translation group in four real dimensions;
d) two elements of the centre Z 4 of S (7(2, 2) that are not yet contained

in SL(2, C).
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The stabilizer has the structure

G = Z 4 ®{(5L(2,C)/Z 2 ®D)xT 4 }

where ® denotes the direct and x the semidirect product.
If in turn a matrix representation of the stabilizer G is given, then the

general matrix S(g, x) can be reconstructed by the theory of induced
representations [1]. In the field representations we are going to construct,
the special conformal transformations act trivially on the field at x = 0.
The matrices S(g, 0) present therefore an irreducible representation of the
direct product of 5L(2, C), Z), and Z 4 . This implies that the fields can be
given in a spinorial basis ΦAB-(x), —jι^.A^j1, —j2SB^j2, for the
representation {j1,j2) oϊ 5L(2, C). The dimension d of the field (see (58),
d= — / in the notation of Ref. [1]) is such that n = d-\-j1 + / 2 is an integer
for the discrete series. Projective representations of the conformal group
or unitary representations of the infinitesimal conformal group are
obtained if we interpolate the discrete series, that is to say, if we let n
assume non-integral values.

Graev [2] has defined the discrete series of 5(7(2, 2) and we use his
work as a starting point for our investigation. Further results have been
obtained by Yao [3]. Graev constructs the discrete series by means of
Hubert spaces of holomorphic functions over a bounded domain. To
illustrate the different realizations it is helpful to remember the discrete
series representations of 5 (7(1, 1) that are quite analogous. The realization
by holomorphic functions f(z) over the unit circle with the Hubert space
norm

2 ^ / ί z ) | 2 ί l - | z | 2 ) 2 f c - 2 | d z | (4)

was historically the first studied [4]. By a straightforward analytic
one-to-one map one obtains a realization by means of holomorphic
functions over the upper half vv-plane. These holomorphic functions
F(w) possess boundary values Φ(x) on the real axis that are assumed on the
boundary in the sense of a distribution theoretic limit and are themselves
distributions [5]. In turn we can extend these distributions Φ(x) into the
upper half plane by a Hubert transform. They are therefore in a one-to-one
relation with the holomorphic functions F(w). This yields a third realiza-
tion of the discrete series by means of Hubert spaces of distributions
Φ(x). These are the "field representations". Finally we apply a Fourier
transformation to Φ(x) and obtain a distribution Ψ(p) with support on
the positive real axis. This is a fourth realization for the discrete series
that is very comfortable for the purpose of reducing the representations.

In the case of 5(7(2,2) the situation is analogous. We start from
Graev's realization on the Hubert space of holomorphic functions over
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the bounded domain ID, the "generalized unit circle". By means of an
analytic one-to-one map we obtain holomorphic functions F(W) over
the "generalized upper half plane" that is identical with the field theoretic
tube domain T:

τ = K = xμ + />μ, x and y real!

\yeL+, that is yo> fry2] 1 / 2 J '

The boundary distributions are taken on the Shilov boundary of T,
the real Minkowski space. They are spinorial fields ΦAB(x), whose
Fourier transforms ΨAB(p) have support only over the forward light cone
L+. These fields ΨAB(p) help us to solve the problem of decomposing the
representations of the discrete series of S {7(2, 2) into irreducible represen-
tations of the inhomogeneous Lorentz group. We need only keep p on a
mass shell p2 = m2 and reduce the spinorial representation of 5L(2, C)
with respect to SU(2). It is obvious that a mass spectrum 0 < m 2 < c o
results and that this is a consequence of the analyticity of the functions
F(W) over the tube domain.

Finally we can map the Hubert space of distributions ΦAB(x) iso-
morphically on the Hubert subspace of vectors

where ΦAB(x) is a Greenberg type generalized free field operator and
|0> is the vacuum state. The Lehmann weight function for this field is a
homogeneous function of the mass [6].

2. Classical Spinorial Fields

In this section we present a recollection of formulas on spinorial fields
that we need in the sequel. If we require covariance (1) of a field with
respect to the inhomogeneous Lorentz group only, the stabilizer reduces
to the homogeneous Lorentz group. Let a denote a matrix of SL(2, C),
(/ΊJ2) a n irreducible spinorial representation of 5L(2, C). We make use
of the known rotation functions DJ

qιq2 holomorphically extended from
SI/(2)toSL(2,C):

njKn-q.-q^iy1 (6)

n

" 1 1 " 1 2 α 2 1 " 2 2



290 W Rύhl:

They are homogeneous polynomials of degree 2/ in the matrix elements
of a. A spinorial field transforms then as

(TaΦ)AO(X)= X DJΐJάiΦcDia-1 Xa-^)D%B(tf) (7)
CD

under a homogeneous Lorentz transformation. X denotes a hermitean
2x2 matrix that is obtained from the four-vector x by

Σ Wk (8)
k= 1

Similarly we define X by

X = x0E- Σ xkσk (9)
k= 1

and corresponding matrices for other four-vectors. It is obvious that (7)
simplifies if we use a matrix notation for the spinorial field. Using it we
write

χXa-1 i)DJ2(ai). (10)

This notation is throughout used in the sequel.
We assume now that Φ(x) satisfies the Klein-Gordon equation

(CL + m2)Φ(x) = 0, m 2 > 0 . (11)

A Fourier transformation

Φ(x) = (2π)~ * J d*p δ(p2 - m2)eίpxΨ(p) = &(ψ) (12)

allows us to split Φ(x) into positive and negative frequency parts

Ψ(p)=Ψ{ + )(p)+Ψ{-)(p), Ψi + )(p) = θ(p0) Ψ(p)

Φ{±)(x) = ̂ (Ψ{±))(x). (13)

From the positive frequency parts we build a Hubert space with the
scalar product

(Φ{i+)

9Φ
{

2

+>)= id*pδ(p2-m2)

• Tr l(Ψ[+)(P)Y £>Λ ί~) Ψ(2+)(P) Dh ί—

P and P are defined through p like X and X through x, see (8) and (9).
The adjoint symbol refers to the spinor matrix form of Ψ. This scalar
product is obviously invariant. One needs only take into account that
the substitution of P by a P af entails the substitution of P by (αf) ~1P a ~x,
as follows fromPP = m2 E. Finally we notice that Φ{ + )(x) is the boundary
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value of a holomorphic function in the tube domain (5), provided it
belongs to some class of distributions.

The connection of Φ(x) and Ψ(p) with irreducible unitary representa-
tions of the inhomogeneous Lorentz group is easily established by the
transformation

— \ (15)

m I I
where the square roots are defined to be positive-definite hermitean.
Then the scalar products reduce to

(Φ[+\Φ{

2

+))= $ d4 p δ(p2 - m2)Tr {Ψ{ + )(PY Ψ{ + )(P)} • (16)

Under transformations of the homogeneous Lorentz group we have

TaΨ
{ + ){P) = Djί(u)Ψ{ + )(P')DJ2(u+) (17)

with

[ (18)

The matrix u can easily be shown to be unitary. It is called Wignefs
rotation. By means of the relation

Dtιq2(ui) = (-ir-«*DLq2t-qι(u) (19)

for the functions (6) and vector coupling coefficients (following the
conventions of Edmonds [7]) we get

qq'

Inserting this into (17) it results

(Ta Ψ)J

Q(P) = X DJ

QQ,(u) ΨJ

Q.(P') (21)
Q'

Thus the spinorial fields have been decomposed into a sum of "Wigner"
fields, that correspond to irreducible unitary representations of the
inhomogeneous Lorentz group. The spin J runs from [/Ί —j2\ till71 +j2>

3. Graev's Realization of the Discrete Series

We define a linear space of functions f(Ξ1,Ξ2,Z) whose three
arguments are complex two-by-two matrices. The function / is assumed
to be a homogeneous polynomial of degree 2j1 (2/2) in the elements of
the first column of Ξ1(Ξ2). For fixed Ξ1 and Ξ2 it is a holomorphic
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function of the four elements of Z in the domain ID that is defined by the
constraint of positive definiteness

E - Z f Z > 0 . (22)

In addition we introduce a norm and a corresponding scalar product by

D

-dμ{Kι)dμ(K2)\dZ\.

In this expression the notations mean

\dZ\= Π ; 7

K1 2 are unitary matrices, dμ(K) is the normalized Haar measure on (7(2).
For the norm (23) to be finite, the functions / cannot increase

arbitrarily at the boundary of D. The increase can in fact be estimated
by the Bergman kernel as we shall show later. From the theory of Hubert
spaces of holomorphic functions [8] one knows that functions /
holomorphic in D with a finite norm (23) form a Hubert space. We denote
it by ^jίJ2(Ό). The real number n must be such that the norm (23)
exists at least for the constant functions. This yields the restriction

n>2jί+2j2 + 3.

Lateron we shall investigate the possibility of extending in n to lower
values. Finally we mention that we can define Hubert spaces of anti-
holomorphic functions over ID that carry the second branch of the
discrete series. Because of the analogous properties of both branches we
restrict our discussion to holomorphic functions. The two branches
of the discrete series are conjugate to each other.

A matrix M of S (7(2, 2) satisfies the two constraints

\ d e t M = l (25)
where

""to 7
Each matrix M can be given in a form of four two-by-two submatrices
A, B, C, D
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that have properties following from (25). For these and more details see
[9] where the case /\ =j2 = 0 has been studied extensively. Each matrix M
defines an analytic automorphism of D by

1

These automorphisms themselves form a group with the structure
SU(2, 2)/Z4. With the help of these automorphisms we define unitary
operators in j/,f j l J 2(D) by

TMf(ΞuΞ2,Z)

= det(CZ + D)~nf((A + BZr)Ξx, (CZ + D)Ξ2, Z').
(29)

The unitarity of TM can be proved by elementary algebra. These
operators TM form a unitary irreducible representation for SU(2, 2) if n
is an integer and a projective representation if n is non-integral. In fact,
det (CZ + D) is always nonzero in D. But due to the multiple
connectedness of SU(2, 2) we can find a closed path on SU(2, 2) such that
det (CZ + D) encircles zero in the complex plane. One such path is given
for example by

_(eίφ 0\ _!

In Hubert spaces of holomorphic functions the linear functional

ZΞlΞ2(f) = f(ΞuΞ2,Z), ZeT)

is bounded and can therefore be represented as a scalar product

where K, the Bergman kernel, is an element of <tf*jιJ2(D) for fixed Ξί,Ξ2,
and Z. Its covariance under the unitary transformations (29) allows us to
determine it up to a normalization constant cB

Ξ1.Ξ2,Z~1>~2 > )-CB J u Λ - l - l ) ί 3 ] ,

• D]\n(Ξ\{E - Z*Z')Ξ'2) det(£ ~ Z*Z')~n.

Both constants cB and cnjιJ2 (23) are connected by
c B c n n i = π ~ 4 ( 2 j 1 + l ) ( 2 / 2 + i ) ( n - l ) ( π — 2 / , — 2 )

If we require that for the special function

f(Ξί, S 2 , Z) = ̂ j . ^ i ) ^i2

2

j 2(^2) (33)
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the norm is one, then cB has to be chosen equal one and cnjιJ2 equals the
right hand side of (32). From Schwarz's inequality we have

\f(ΞuΞ2,Z)\^\\K3uS2Jn\\f\\n. (34)

Since (30) implies

\\KSί^z\\2

β = KSuSltZ(Ξι,Ξ2,Z) (35)

it results

u a \ \ (36)
This is the desired estimate of the increase of the functions of j/n

2ju-2(ID)
at the boundary of B.

The at most polynomial increase of / at the boundary of ID (36) tells
us that on the Shilov boundary of D (that consists of unitary matrices Z)
/ tends to a distribution boundary value in a distribution theoretic sense.
In the case j x =j2 = 0we were able to characterize the boundary values
[5] as weak derivatives (for n even)

12 dz21

' G(Z)
(37)

where G(Z) is square integrable on the Shilov boundary with respect
to the Haar measure on [7(2). The method used for the proof rested on
Fourier expansions on [7(2) [5,9]. We shall rederive an analogous
result by another method in this article.

We consider next the problem of how to construct a basis in the
representation space J/Π

2JU 2(ID) that reduces the representation of
S [7(2, 2) considered if the group is restricted to the maximal compact
subgroup. We start by noting that the polynomials

DJ

qj(Ξ) = DJ

jq(Ξτ) (38)

form a basis in the space of homogeneous polynomials of degree 2/ in
the elements of the first column of Ξ. We expand f(Ξl9Ξ2,Z) in this
basis and obtain in matrix notation

f(Ξ1,Ξ2, Z) = (D*(2[) f(Z) DHΞ2))jxJ2. (39)

Each element of the (2j1 + 1) x(2/2 + 1) matrix f(Z) is a holomorphic
function over D. Operating on f(Z) with the unitary operator TM gives

TM f(Z) = det(CZ + DYnDh(Aj( + ZBX) - f(Zr) Dh{CZ + D) (40)

with Z' as in (28). The norm assumes the form

n j i j i . 1 . 2 , ^ - J X

' Tr {/(Z)f Djl(N?) f(Z) DJ2(Nϊ)} det(£ - Z f Z)n'4 \dZ\.
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Each function holomorphic over D, in particular each matrix element of
/(Z), can be expanded in the homogeneous polynomials

m = 0, 1,2, ... 27 = 0,1,2,... -7 = g l t 2 g + 7

in a series that converges absolutely uniformly on compact subsets of ID
[5, 9]. However, it can be shown by direct computation that the functions

< , 2 S l i 2 ( S ! . S 2 ) Z) = DJlJΞl) D£h(Ξ2) (detZΓ D{iS2(Z) (43)

do not form an orthogonal set. The orthogonality can be improved if we
define new polynomials by means of vector coupling coefficients [7]

Δ^HΞγ,Ξ2,Z)

= £ (-iy>-« ' + «-«(/.s i ; ; i ,-«i lΛ.Qi)(/.s2;;2,-«2lΛ,Q2) (44)

To understand this result we consider the behaviour of these functions
(44) under transformations TM belonging to the maximal compact sub-
group of SU(2,2). An element M belongs to the maximal compact
subgroup if it has the form

(45)

with
$L _ • -5fL

uu2eSU(2). (46)

Inserting this into (29) yields

) - ] Q ι Q 2 (47)

where N = 2j + 2m. The basis elements (44) with fixed /, m, J l 5 J 2 span
therefore a basis for an irreducible unitary representation of the maximal
compact subgroup. This representation is characterized by the three
labels JV, J l 5 J2 In turn these three labels do not fix the representation
of the maximal compact subgroup uniquely. For given JV, Ju J2 we may
let7 still vary over (in integral steps) j^j^^N (for N odd) Org/rg^iV
(for iV even) and

- / 2 l ^ 7 = Jr2
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The multiplicity can easily be computed from these constraints. The
multiplicity is never bigger than one only if either j ί or j 2 vanishes.
Yao [3] calls the case j1j2 + 0 unon-degenerate" as compared with the
"degenerate" case when j1j2 = 0.

If we compute the scalar product for two elements of the basis (44)
we find as we expect

W i T ^ ^ ^ ' 1 ^ ) - ^ ^ ^ , ^ ^ , ^ ^ ^ ^ ^ (48)

In the non-degenerate case the matrix M (with respect to the subscripts)
is a certain positive definite matrix that reduces to a single number in the
degenerate case. Yao has proposed a method of diagonalizing it (the
matrix form derived from the scalar product (48) is a terribly complicated
looking object): He has defined an operator F 3 of the enveloping algebra
of Si/(2, 2) that commutes with the generators of the maximal compact
subgroup. It is a third order differential operator in our function space.
The diagonalization of this operator (or another similar one) is, however,
a hitherto unsolved problem.

4. The Tube Domain

The domain D (22) can be mapped one-to-one on the tube domain T
(5) by the Cayley transformation

W = i(E -Z)(E + ZVί = W(Z)

Z = (E-iWy1(E + iW) = Z( W). (49)

The Hubert space ^/n

2

jU2(D) is correspondingly mapped isomorphically
on a space J/Π

2

J I 7 2 ( T ) of holomorphic functions F(W) over T by
( < )

F(W) = m(W) Dh(E - / W) f(Z(W)) Dh(E - iW)

m(W) - 22{d" 1 }[det(£ - i W)Yn (50)

with the norm

f Tr{F(WΫ Dh(Ϋ) F(W) Dh(Ϋ)\
Ί (51)

where
3

W=\v0E+ V wkσk

(52)
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and 7, Ϋ are defined by means of the vector y as in (8), (9). By the mapping
(49) the Shilov boundary of ID (that consists of unitary matrices) appears
as the closure of the image of the real Minkowski space, therefore as one
of its possible compactifications.

The operators TM (40) induce analogous operators in the Hubert
space <9$lh J2(T) by means of (50)

) (53)

w h e r e W' = (RW+S)(TW+Qyι

(54)
+ Sf)

The matrices JR, 5, T, Q are defined by (see Ref. [9], Eq. (2.16))

M-1 = \

(55)

They satisfy constraints (Ref. [9], Eq. (2.17)) that we will not repeat here.
The matrices M form a group that can be looked upon as another
realization of S 17(2, 2).

We evaluate now the transformation law (53) for the following sub-
groups: the group of dilations, the inhomogeneous Lorentz group, and
the group of special conformal transformations. The subgroup of dilations
consists of the matrices

Iλ 0 \M ( ; H H ' A>0 (56)

We obtain from (53)

TMF(W) = λ~2n + 2jί + 2j2F(W) (57 a)

W' = λ~2W (57b)

so that the mass dimension d of our representation is

d = n-jι-j2. (58)

The inhomogeneous Lorentz group consists of the matrices

(a,

a-1-'

αeSL(2,C)
3

X vkσk, t;μreal. (59)
k=ί



298 W. Rϋhl:

This gives

TMF(W) = Dh{a) F(W') Dh(rf) (60a)

W' = a~ι{W-V)a^lΛ. (60 b)

Finally we have the special conformal transformations

~( -ίE °\
U ~\iΰ E)

3

U = u0E— Σ ukσk, uμ real (61)
fc=l

that lead to

TMF(W) = σ(u9 w)~n Dh{E +WU) F(W') DJ2(E +UW), (62a)

v'μ = σ(u,wΓίlwμ + w2uμ]ι

If we now go to the boundary Y->0, the holomorphic functions
approach their boundary distributions Φ(X) in a distribution theoretic
sense. These distributions Φ(X) are the field representations of the
conformal group. They transform like (57), (60), (62). At the point
W = X = 0 the transformation (62) reduces to the identity

TMF(0) = F(0). (63)

This proves that the special conformal subgroup of the stabilizer G is
represented trivially in our field representations. In the notation of Mack
and Salam [1] our representations belong to their class la.

5. Reduction into Irreducible Unitary Representations
of the Inhomogeneous Lorentz Group

We apply a Fourier-Laplace transformation

F(W) = (2πΓ2 J d4peιwpΨ(P\ wp=wμp
β (64)

(L+ the forward light cone, see (5)) that maps the Hubert space of holo-
morphic functions s$lhh{Y) on a Hubert space of distributions with
support on the forward light cone. These distributions are tempered.
We are not interested here in the transformations induced by the
operators TM on the space of distributions Ψ(P) but rather in the ex-
pression of the norm | |F | | Π (51) in terms of Ψ(P). It gives us the direct
integral decomposition of the representation.
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Inserting (64) into (51), the integration over x yields a delta function
and one integration over p is correspondingly trivial. The integral over y
is elementary and we obtain

\\F\\2

n=c J d4pΊr{Ψ(Py Djι(-d)Ψ(P)DH-&)}
L +

•(/?2Γπ + 2 j l + 2 J 2 + 2 (65)
where

*=£-/-+ Σ *4-- ( 6 6 )

The differential operators act solely on the power of p2 by definition.
The numerical constant c is

) ( / 2 + )
(67)

The next step in simplifying (65) consists in applying the formula

^

Before one can do this in the non-degenerate case (/i./2 + 0), however,
we must first reduce both differential operators in (65) by means of
vector coupling coefficients

(iiJi'J2J2\JJi+β2)K + 0C2,βι + β2(-8)ΪJj; + h ' J (69)

and apply the formula

Πp(p2)λ = 4λ(λ+l)(p2)λ-1 (70)

repeatedly. Moreover, it is useful now to perform the substitutions (15)
and (20)

\\m) ] \\mj I (71)

m = (p2f > 0
and

ψi(P)=Σ(-1)J2 + q'(lQ\Ju^J2, -q')Ψqq'(P) (72)
qq'

Under transformations of the homogeneous Lorentz group the field
ΨQ(P) transforms as in (21), and, if restricted to one mass shell p2 = m2,
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defines a unitary irreducible representation of the inhomogeneous
Lorentz group in the Wigner basis. Performing all the summations
gives finally

l ! f L 2 = f Σ μnhn{J) \ dm2(m2rd + 2

• } d*pδ(p2-m2)\ Σ \Ψί(P)\2} (73)
L+ [Q= -J J

where the spin weight function is

M £ J ,
f 7) " ( ? 4 )

h h f\ Γ(n - J -j, -h - 3) Γ(n + J -j, -j2 - 2)

with the 67-symbol as defined in Ref. [7].
In the degenerate case one can directly apply (68) to (65) and thus

obtain (73), (74) much easier. On the other hand we can simplify (74)
and (73) in this case considerably. If, say j 2 = 0, then J = J = j ι and

J1J2J

= 1 (75)

We see that the Hubert space of distributions Ψ(P) is in fact identical
with the Hubert space of measurable functions ΨQ(P) with support on L +

that are square integrable in the sense of the norm (73). Let us consider
the simplest case jx =j2 = 0. Then

Ψ(P)=Ψ(P) (76)

can be factorized

= mn~2G(p) (77)

where G(p) is square integrable on L+ in the Lebesgue sense. This means
that for even n Φ(x) can be represented as the weak derivative of the
Fourier transform of G

n-2

Φ(x) = ( - D J ~ ^(G) (x). (78)

This representation (78) of the field representation Φ(x) corresponds
to (37).
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6. Extension in n

So far n was restricted by

n > 2jx + 2/2 + 3

which guarantees that the integral (23) exists for all functions holo-
morphίc inside D, continuous on the boundary. Our aim is to relax this
constraint. We want to keep a Hubert space of holomorphic functions
but allow for a different kind of a norm that is obtained by continuation
in n. For the invariance of the norm under infinitesimal conformal
transformations it is necessary that n is real. This analytic continuation
is achieved by inserting the value for cnjίJ2 obtained from (32) with
cB=l into (74). This amounts to dividing the norm-squared of a function
by the norm-squared of a constant function over D and guarantees that
constant functions remain elements of our Hubert space during the
continuation. The measure M,υu 2(J) (74) thus becomes a meromorphic
function of n, and we can extend in n from above along the real axis until
we reach a first singularity.

We study first the degenerate case j 2 = 0

(/)

that is regular in the half plane

R e n > 2 / 1 + 1. (80)

Therefore we have a projective representation of S (7(2, 2) for any real n
satisfying (80) and proper representations for real integers satisfying (80).
This way we have obtained two additional representations of the discrete
series:

n = 2jι + 2 and n = 2j1 + 3.

For the non-degenerate case the singularity appears first in the term
J=j1 +,/2 This term involves the factor

— l - y (n - 2/Ί - 2) (n - 2/2 - 2) Γ(n) Γ(n - 2jι - 2/2 - 2)

that is regular in the half plane

R e « > 2 / 1 + 2 / 2 + 2. (81)

Again we have a projective representation for real n in this half plane and
proper representations of the discrete series for real integral n. Thus we
have obtained one further representation of the discrete series

71 = 2/! + 2 / 2 + 3.
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The existence of these representations of the discrete series was first
asserted by Yao [3]. For the dimension d (58) the corresponding con-
ditions are

It is interesting to compare (82) with the dimensions known in free
field theory. For a scalar field (/̂  =7*2 = 0) and a spinor field (jt = 1/2,

j 2 = 0 or the other way round) we have the "canonical dimension" d=l
respectively d=3/2. For the electromagnetic current (jι =j2 = 1/2)
and the energy-momentum tensor (/Ί = t / 2 = 1) we have canonical
dimension d=3, respectively d = 4. Thus the canonical dimensions in
these four cases appear just as the limiting points of the projective
representations, but do themselves not belong to them.
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