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Abstract. The properties of the scattering amplitude allow to define a function f(z)
satisfying the following conditions:

1) /(z) is hoίomorphic in a simply connected domain ,̂ which can be mapped con-
formally onto the unit disk;

2) jlm/(z)| is bounded by some constant M in Q)\
3) jRe/(z)| is known not to exceed some constant m on a certain part Γl of the boundary

Γ of ̂  /(z) is continuously extensible onto Γ.
Using these properties, constraints are derived on the real part of /(z) valid at any

point ze^uΓ.
The result is used for performing a stable extrapolation of low energy pion-pion

scattering data to any finite energy. We derive a bound on energy averaged values of the
real part of the scattering amplitude. The bound depends on m, M, on the energy variable s
and on the energy average interval s2 — s1.

Generalizations of the method are discussed.

1. Introduction

Upper and lower bounds on total and elastic cross-sections, scattering
amplitudes, phases, etc., represent an important part of our exact knowl-
edge in strong interaction physics. Since the pioneering work of Frois-
sart [1], great progress has been made during the past decade, mainly
due to the work of Martin and his collaborators. Important results have
been obtained, especially in the following respects:

1) assumptions required for obtaining some bounds have been
weakened;

2) some of the more recent bounds approach experimental curves
rather closely

3) a number of upper bounds on the averages of total cross-sections
over finite energy intervals have been derived.

Details can be found in reviews [2—9] containing further references.
The average bounds are of particular interest because arbitrary

unknown constants usually occurring in the bounds can be eliminated
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[10-12, 4-7]. Moments of the total cross-section στ(s) of the form

S2

<Γr( sι> s2) = $ w(sf) στ(sf] ds' (1.1)
51

are defined and shown to be smaller than a certain known function of
sl and s2, w(s') being a rather arbitrary (positive) weight function,
normalized over the energy range (51,s2). Bounds on averages over the
imaginary part, the absolute value, etc., of the scattering amplitude are
obtained analogously.

Our aim is to use these bounds for performing a stable extrapolation
of experimental data from, say, the low energy region to higher energies.
As an example, consider the pion-pion elastic scattering amplitude
F(s, ί), in the forward direction. F(s, 0) is analytic in the complex 5
plane with the cuts

<-oo,0> and <4μ2, oo>, (1.2)

μ being the mass of the pion. We define moments of the scattering
amplitude by

Φ(s) = -4τ S2( wι(s') Φ(sf) ds' (1.3)
w2(s) S1

J

(S)

where s^s), 52(s), w^s') and w2(s) are given functions and Φ(s') is obtained
from F(s', 0) by a double subtraction:

Φ(s) =
1

(s-b)2 F(s, 0) - F(b, 0) - (s - b) - (i, 0)
OS

(1.4)

b being assumed to be real. If the functions s1? s2, wx and w2 are suitably
chosen Φ(s) defined by (1.3) becomes the boundary value of a function
analytic in the cut energy plane and, due to optical theorem and to
boundedness of (1.1), ImΦ(s) becomes bounded by a known constant M

(1.5)

on the cuts.
Furthermore, we use the well-known consequence of the first prin-

ciples that the pion-pion forward scattering amplitude satisfies dispersion
relations in the cut s plane, i.e., it is an analytic function in the cut plane,
polynomially bounded for |s|^oo and a distribution on the cuts (the
order of the polynomial being, thanks to the Froissart bound, equal to 2).
Then ImΦ(s) is bounded by M in the whole cut plane.

This turns out to be a rather powerful stabilizing condition for
extrapolation of scattering data. We shall show that rough ("ex-
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perimentaΓ) information on Re Φ(s) in the form of the inequality

|ReΦ(s)|rgm (1.6)

in some energy interval (i.e., on some part Γ1 of the cut) implies bound-
edness of averages of the type

I S 2 ( S )

j ReΦ(s') w3(s', s) ds' (1.7)
S2(S) ~~ Sl(S) sι(s)

at all energies [the weight function w3(s', s) being determined by the
form of Wj(s') and w2(s)]. We shall find a one-parameter set {Lρ, 0 < ρ < 1}
of upper bounds on (1.7) and determine the minimal element Lρo of
this set.

The result and the method proposed are suitable even if the experi-
mental information is not very exact, because inequality (1.6) is all we
need from experiment. Elastic scattering of pions on pions is a good
example of such a situation.

In the following section, we prove a theorem specifying conditions
under which inequalities (1.5) and (1.6) imply boundedness of (1.7), and
give the explicit form of the set {Lρ} of bounds. The mathematical
approach is based on a recent paper of Vrkoc [13] containing theorems
on continuous dependence of holomorphic functions on partly given
boundary values. Our result is closely related to his Theorem 6 and
its proof, the main difference being that Vrkoc studies continuity con-
ditions for m->0, whereas we are interested in some physical (i.e., non-
vanishing) value of m and in the minimalization of LQ for m, M and
s2 — s1 fixed.

Section 3 contains an application of the theorem to forward pion-
pion scattering. Identifying the Γ1 interval with the low energy scattering
region up to 1.1 GeV, say, we show that the averaged real part is
bounded at any energy [see Eq. (3.13)]. Then, we find the minimal
value of the bound (3.20). In Section 4, relation of the result to various
extrapolation approaches is discussed.

2. Derivation of the Bound

We present the following

Theorem. Let K be the unit disk in the complex z plane, \z < 1; Γ the
boundary of K, | z | = l ; Γ1=Γί(φ0,δ) an interval on Γ, Γ^φ^, δ)
= {z: z = eιφ, \φ ~φQ\ ^δ}, φ0 e( — π, π>; M, m be two positive numbers
and ^(Γl5M, m) the class of functions /(z) satisfying the following
conditions:

(i) /(z) is holomorphic in K,
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(ii) f(z) is continuously extensible onto Γ{ and

|Re/(0|^m on Γl,

(iii) O^Im/(rO^M in K.

Denote

Then
2α ί

(2.1)

(2.2)

(2.3)

(2.4)

for every re<0, 1>, φ e ( —π, π>, αe(0,5)1, fe^(Γί9M9m\ where

1 i-e L u Λ 4 e \ n*h/l(φ) — (2.5)
α ρ π (1 + ρ) (1 — ρ)/

l(φ) = min(|φ — φ0|, 2π — |φ — φ0|) — (5 — α), (2.6)

Proof. The average function /α(z), z = reiφ, given by (2.3) is holo-
morphic in K due to condition (i). We immediately see from condition
(iii) that

0 ̂  Im/α(z) ̂  M in

M .
in

(2.7)

(2.8)

The Cauchy-Riemann conditions imply that

M

dr zαr
in K.

Condition (ii) allows to estimate the real part of /α(z) for z = reιφ,

•(1-r)

M 1-r

2α r

(2.10)

where r < r < 1. To extend this bound from \φ — φ0\ ̂  δ — α to all values
of φ — φ0,e( — π? π>, we must estimate (3Re/α)/(dφ). We proceed as
follows.

1 For simplicity, we formulate the theorem for 0 < α ̂  δ. There is no difficulty in
discussing the case α >δ (see the general discussion in Ref. [13]) but this case is not inter-
esting from the physical point of view.
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ίm/α(z) is a harmonic function in K and can be represented in terms
of the Poisson integral:

where r<R<\. This yields a bound on the derivative:

dlmfΛ(reίφ)

dr
^

2π

4M

2 - 2rR cos(φ - 0) + r2)2

(2.11)

This inequality is valid for O ί g r < . R < l , c p e ( —π, π>. Since, however,
the right-hand side is a continuous function of R in R = 1, the inequality
is valid also for R — 1.

The Cauchy-Riemann relations imply, putting R= 1 in (2.11)

4M
(2-12)

The bound on Refa(reιφ) for a general value of φ follows now
immediately. Writing

φ r Re f (rplψ}
*1f (2.13)

with |/ — φ0 |^^ — α, 5 — α ̂  |φ — φ0| gπ, we obtain from (2.10), (2.12)
and (2T3)

To make the right-hand side as small as possible we choose χ equal to
φ0 + (δ — α) or φ0 — (δ— α), according to which of these values is closer
to φ. Thus, \φ — χ\ is replaced by

λ(φ) = mm(\φ - φ0\9 2π-\φ- φ0\] -(δ-

so that

(2.14)

This estimate, however, cannot be used at r = 1 (where we actually
need it) because it becomes infinite. We find a finite bound in the following
way. We use (2.14) for r = ρ, ρ being kept fixed less than 1, and express
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Re/α(reί<p) for r>ρ as follows:

Re/α(re<>) = Re/α(ρ^>) + (r - ρ)

with ρ < r < r < 1. The right-hand side can be estimated by using (2.14)
and (2.9):

+ (r - β) "

Now the function fa(reιφ] is continuously extensible onto Γ (see
Ref. [13], Theorem 6). We can therefore put r = 1 and obtain (2.4) with
LQ(φ) defined by (2.5), (2.6). The Theorem is proved.

3. Application : Forward Pion-Pion Scattering

A. Kinematics and Conformal Mapping

The pion-pion forward scattering amplitude is analytic in the com-
plex 5 plane cut along the intervals

<-oo,0>, <V,oo>. (3.1)

We consider, for simplicity, reactions which are symmetric under the
interchange of s and u, for instance π + π° ->π+ π°. Then we can introduce,
instead of s, the variable u,

' (3 21

transforming the cuts (3.1) into a single cut <1, oo). Instead of v, we can
introduce the centre-of-mass and the laboratory momentum by using
the formulae

v = (l + 2qiJμ2γ = ί+p2 (3.3)
where

The complex υ plane cut along <1, oo> is a simply connected domain,
which can be mapped conformally onto the unit disk K, the cut being
transformed onto its circumference Γ. Denoting the transformed variable
by z, we have

and
v = v(z) = 4 z / ( l + z ) 2 . (3.5)
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On the cut, we have

v(έ*) = I/cos2 -|-

and (3.6)

As already mentioned in the Introduction, we apply the theorem
not to the amplitude itself but to an energy average of the amplitude.
Setting

g(z) = Φ(s) (3.7)

with Φ(s) given by (1.4), we define averages gΛ(z) of g(z) as in (2.3)

9Λ(r^φ)=^-φΓ9(r^dιp. (3.8)
^^ φ-Λ

For physical energies (s on the cut, i.e., r— 1), gΆ(reιφ) is an average of
the form (1.3). For simplicity, we choose the length α of the integration
interval equal to that in (2.3) so that the resulting inequality (2.4) holds
for |Regαα(rel>)|. The "double" average gaa can easily be expressed in the
form of a weighted simple average.

We shall check now whether conditions of the theorem presented in
Section 2 are satisfied by gΛ(z). Certainly, gΛ(z) is holomorphic in z in K.
Further, the pion-pion scattering amplitude is known (from indirect
measurements) in the low energy region, up to a certain laboratory
momentum p1 ? say. Thus, condition (2.1) is satisfied too. We can take
|/s^ slightly above 1 GeV, which corresponds to pl — 25 approximately.

Since the low energy region <0, p^ is transformed, by (3.5), into the
arc Γ\ which is symmetrical around the threshold momentum p = 0, we
obtain

φ0-0

<5 = 2arctgp 1 (3.9)

λ(φ) =φ—δ+a

where the angle φ = φ(p) corresponds, by (3.6), to the laboratory mo-
mentum p at which we wish to know the value of the bound (2.4). The
integration in (2.3) from φ — α to φ -f α represents by itself an integration
in p from p(φ — α) to p(φ-hα), where jp(φ±α) = tg((φ±α)/2). We can
introduce the momentum integration interval length 2Ap given by

2 sinα
(3.10a)

cosφ + cosα

„ ^(^ 4- ri/
l - z J 2 x

α-arctg^ ^^(1 + x|/i + A\\ - x2))| (3.10b)-z!2(l-x2))]
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with the abbreviated notation A = zip, x = (1 — p2)/(l + p2). For (zip)2 <^ 1,
we get

α-arctg-^^. (3.10c)

Let us check the validity of condition (iii) of the Theorem, as given
by formula (2.2). Whereas (2.2) requires the boundedness of Im/(z)
in the interior K of the circle, the unitarity bounds imply the boundedness
of lmgΛ(z) on Γ. This is by no means equivalent: example of a function
satisfying the latter but not the former requirement is given by the func-
tion v(z): as is seen from (3.5), (3.6), Imι (z) vanishes identically on Γ
but is unbounded in X, tending to infinity at z-> — 1, i.e., s-> oo. However,
the scattering amplitude is bounded by a polynomial at |s|-»oo [14, 5]
the degree of which, due to the Froissart bound, does not exceed 2. Thus,
\ga(z)\ is bounded by a constant for |s|-»oo, i.e., for z approaching —1
along any curve lying in K\jΓ. In all other points of the s cut, ga(eιφ) is the
boundary value of a function which is analytic in the cut plane. As gΛ(z)
is continuously extensible almost everywhere onto the cut, the
boundedness of \gΛ(z)\ on Γ implies boundedness of |Im#α(z)| in the whole
circle. Conditions (ii) and (iii) are satisfied.

Since all assumptions of the theorem are satisfied, it follows that
relation (2.4) with (2.5), (2.6) is valid for gΛ(z) defined by (3.8), (3.7) and (1.4).
We find now the explicit form of the bound Lρ(φ) and calculate its
minimal value.

B. Explicit Form of the Bound and its Minimal Value

The double average gαα(z) of the function g(z),

' (3.11)

can be written in the form

1

Thus, rewriting (2.4) in terms of the laboratory momentum p and the
difference zip, we obtain

_

ί l- Γgir^dψ. (3.12)

R „, ,
a
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where p and α(p) are given by (3. lOb, c) and (3.6). Relation (2.5) determines
LQ(φ\ with λ(φ) obtained by using (2.6), (3.8), (3.6) and (3.10). We get,
writing LQ(p\ λ(p) instead of LQ(φ\ λ(φ\

λ(p) = φ — δ + tt = 2 arctgp — 2 arctgp t + α(p)

Thus,

Lρ(p) = m + M (- -î - + λ(p) — 77— - r - (3.15)
\ α ρ π (l -

Equation

^φ^=0 (3.16)
dρ

giving the minimal value of Lρ(p\ has for 0 < ρ < 1 one solution, ρ = ρ0,
where

(3.17)
with

β = *λ(p)/π.

We conclude: the exact bound on the averaged real part of g(z) = Φ(s]
has the form (3.13) with Lρo(p) given by (3.15), A, α and ρ0 being given by
(3.14), (3.1 Ob) and (3.17) respectively.

To make the result more legible for physical applications, we assume
Ap, (Δp}2 to be small compared to p and 1 respectively. This allows us to
neglect β against 1 and approximate (3.17) by

This gives for Lρo(p) in (3.13)

LQO(P) = m + M l/2λ(p)/|/πα . (3.18)

Using (3.10c), (3.14) we obtain

P P ι /
(3.19)

The approximation Δp<^p simplifies the left-hand side of (3.13) too.
We obtain

i +p2 p + 2 / p L i + p2

ΪΔp p~2Δp\

\9aot( β )\-

2Δp

Qθ(P) = m

p — p'
orr*tα
a Γ C t g l + pp'

+ M i 2 M

\ 2 i a r c t ' ^P'Re^r(e ) 2

/ 1+P

o r/^» -f rr 1
' C11WL5 1

V 7Γ Δp 1 + εψi /

(3.20)
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For p close to px (but p — ρλ ^> Δp) the right-hand side becomes

π yΔp ]j 1+ppι

On the other hand, for p sufficiently large (p ^> p l > 1) we get

T
M|

Pi

So, we have obtained the bound on the averaged real part of the
amplitude in a rather transparent form. The bound becomes worse with
decreasing Δp (because the average approaches the value of the amplitude
at the point p)2 or with increasing p (because the extrapolation is per-
formed to a more distant point). It is reasonable to keep Δp/p constant
so that the "energy smearing" interval be proportional to the energy value.

4. Concluding Remarks

We have shown in the case of forward pion-pion scattering how
analyticity and unitarity of the scattering amplitude can be used for a
stable extrapolation of low energy experimental information to any finite
energy. The resulting inequality (3.20) states that the averaged real part
of the scattering amplitude is bounded by an expression which depends
on the low energy ("experimental") bound m on the real part and on an
over-all bound M on the averaged imaginary part.

Another modification of the problem of extrapolation "in the
average" was already considered in different context (see Ref. [15]). The
main difference of the present approach consists in weaker input con-
ditions (M is the bound on the averaged imaginary part only), which are
immediate consequences of first principles. We show in this way that
unitarity bounds can be used as "stabilizers" of extrapolation of experi-
mental data.

A stable extrapolation is relatively easily performed in the frame
of a physical model which provides explicit energy or angle dependences
containing some parameters to be determined. A much more ambitious
and difficult task is, however, to proceed from the fundamental principles
of S matrix theory only. As was emphasized several times (see, e.g., [16,
19-21]), analyticity alone is not sufficient to stabilize the extrapolation:
indeed, assuming only that the scattering amplitude [or, more generally,
a function /(z) defined by way of the amplitude and possessing the
required analyticity properties] does not differ, in the measured kine-

2 Note that M also may depend on Δp, because M is the bound on average of the
imaginary part. The dependence of M on zip is given by the input data of our problem,
i.e., by the unitarity bound.
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matical interval Γ\, from the experimentally measured histogram h(z)
by more than the "error" function m(z),

\ f ( z ) - h ( z ) \ < m ( z ) . z e / \ (4.1)

one has to expect any value of /(z) outside Γ^.
As an additional stabilizing condition, boundedness of the modulus

°f/(z)' l/(z)l<M(z) zeΓ 2 (4.2)

on the remaining part Γ2 of the cuts is usually postulated. This condition
has proved to be a very powerful stabilizing element and many interesting
results have been obtained thanks to it. This is because condition (4.2),
making statements about values of /(z), is an excellent complement to
the analyticity condition, which amounts to the existence of all derivatives
("smoothness") of /(z) but says nothing about values.

Being a direct consequence of axiomatic field theory, the analyticity
of the scattering amplitude in the energy plane provides a well-founded
basis for a stable extrapolation. Contrary to this, condition (4.2) has
played the role of a very useful but rather artificial supplement to analy-
ticity, necessary for obtaining acceptable results.

Due to the remarkable progress made recently both in the field of the
rigorous bounds and in developing stable extrapolation methods3 the
time is ripe for replacing conditions of the type (4.2) by some immediate
consequences of first principles.

Of course, one has to be prepared to deal with conditions which are
weaker than (4.2) and to refine appropriately the necessary mathematical
tools. The introduction of the "averaged" quantities [4-7, 10-12, 22]
satisfying rigorous bounds at all energies is a good example of this
situation. The present paper shows one way how unitarity can be used
for making the extrapolation stable.
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