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Abstract. Let Ho ^ 0 be a self-adjoint operator acting in a space L2(M, μ). It is assumed
that Hoe = 0, where e is strictly positive, and that exp( — tH0) is positivity preserving for
t ^ 0. Let V be a real function on M such that its positive part is in L2 (M, e2 μ) and its
negative part is relatively small with respect to Ho. Then H = H0 + V is essentially self-
adjoint on the intersection of the domains of Ho and V. This result is applied to Schrodinger
operators and to quantum field Hamiltonians.

I. Introduction

Let Ho^0 and V be self-adjoint operators. If V is sufficiently regular
and if the negative part of V is suitably small, then the (quadratic form)
sum H = H0 + V is a uniquely defined self-adjoint operator [6;
Chapter VI]. There need be no restriction on the size of the positive part
of V. However it does not follow that there are very many vectors in the
intersection of the domains of Ho and V. Additional conditions are needed
to ensure that H be essentially self-adjoint on the intersection of the
domains, and that is the subject of this paper.

The main results are the essential self-adjointness theorem for
operators acting in an ordered Hubert space (Theorem 4.4) and its
application to Schrodinger operators (Theorem 5.2). This application
gives a particularly simple proof of essential self-adjointness for Schro-
dinger operators without use of partial differential equation methods.
The proof of the theorem is based on a theory of contractive semigroups
and an extension of a lemma of Davies [1].

A theory of essential self-adjointness using Π space methods and
hypercontractive semigroups was developed for use in quantum field
theory [10, 12, 13, 15, 5] and was applied to Schrodinger operators by
Simon [13]. Simon treats only potentials V which are bounded below.
They are required to be locally in L2 and to satisfy a growth condition
at infinity. By using partial differential equation techniques Davies [1]
was able to deal with V which are unbounded below. The positive part

of V is required to be locally in LP for some p > —, p ^ 2 (where n is the
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dimension of the space). Thus it need not satisfy a growth condition at
infinity, but the restriction on local singularities is stronger (when n ̂  4).
In the present paper essential self-adjointness for Schrodinger operators
is proved under conditions similar to Simon's, but allowing V to be
unbounded below.

After the work on this paper was completed, the author learned
that Kato [7] has recently obtained what must be the ultimate result
of this nature. The potential V is allowed to be rather severely un-
bounded below and the positive part is required only to be locally in L2.
His proof is based on partial differential equation techniques. The present
approach retains the advantage of simplicity and generality; it is not
restricted to Schrodinger operators. In fact the abstract theorem applies
just as well to some of the quantum field Hamiltonians studied by
Glimm and Jaffe (Theorem 6.1).

II. Form Sums

In this section we set forth some basic facts about addition of self-
adjoint operators.

If A is a self-adjoint operator acting in a Hubert space Jf7, then its
domain ^(A)CJ^ is also a Hubert space with the graph norm | | / | | |
= M / | | 2 + Il/H2. Let S be a linear subspace of 9{A). Then A is said
to be essentially self-adjoint on $ if $ is dense in 2(A).

Let Ho and V be self-adjoint operators. Assume that there is a self-
adjoint operator H with @(H0)n9(V)C@(H) such that H agrees with
Ho + V on @(H0)n@(V). It is a consequence of a theorem of Trotter
[9; §8] that if H is essentially self-adjoint on 9{H0)n@{V), then

/ It \ I t \\n

exp(itΉ)/ - lim exp [i ~ Ho exp (i — V / for all / e Jf. Thus essen-

tial self-adjointness is a sufficient condition for the validity of this
perturbation formula. The interesting point is that this condition may
be satisfied even when V is not relatively bounded with respect to Ho.
Thus the Trotter formula may hold in situations where other perturbation
formulas fail. From the present point of view the importance of proving
essential self-adjointness is that it implies the validity of the Trotter
product formula.

Definition 2.1. Let Jf be a Hubert space and A be a self-adjoint
operator acting in jf. The form domain 1 = £(A)C3^ is the domain
of the operator \A\* acting in Jf, with the norm \\f\\$= \\(l + {A^f \\.
The form dual J * is the completion of Jf in the norm \\g\\g*

= H(i + μ4|Γ*0||.
Notice that 2(A)cΆ(A); the form domain of A is larger than the

domain of A.
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If ge3tf and / e i , then the inner product <#,/> of the Hubert
space Jf satisfies |<g,/>| ̂  ||g|| j * II/IU Thus there is a natural definition
(by continuity) of <#,/> for ^fei*, / e l

Definition 2.2. Let A be a self-adjoint operator acting in Jf with form
domain J. Denote also by A its extension by continuity to an operator
A: J->i2*. The form of A is the sesquilinear form o n i x i given by

If A and 5 are self-adjoint operators, we write B ̂  A if
and <£/,/> ^{Af,f} for all fel(A). In the next two propositions
we record known facts about this order relation in the form in which
we need them.

Proposition 2.3. Let A and B be self-adjoint operators with O^B^A.
Then 0^Br<,Ar for all r with 0 < r < 1.

Proof. First consider the special case when there exists a c with
0<cSB^A. Then {A + t)"1 ^ (B + ί )" 1 for all t ̂  0, so using

J GO

^ " r - — s i n ( π r ) J r r(,4 + ί)" 1 <*ί [6; Chapter V, §11] and the cor-
π 0

responding representation for B~r we see that A~r ̂ B~\ and so fΓ ̂
In the general case we have 0 g Br g (jB + ε)r ̂  (v4 -f ε)1* for every ε > 0.

Hence F ^ , 4 r

? by the monotone convergence theorem.

Proposition 2.4. Let A and B be self-adjoint operators with 0 < c
SB^Λ. Then logB S log A

Proof. The proof is similar to the previous proposition [3].
Definition 2.5. Let A and B be self-adjoint operators acting in the

Hubert space Jf. Consider the corresponding forms (Af,g} and
(Bf,g). If there exists a self-adjoint operator C such that Ά(Q = Ά(A)
nl(B) and such that its form satisfies <C/, g) = <ΛL/, #> + <£/, g>, then
this operator C will be called the form sum of A and B.

Proposition 2.6. Let C be the form sum of A and B. Then @(A)n!3)(B)
C 9{C\

Proof. Let / be in 9{A)r\9{B). Then Afetf and 5/eJf7, so
g\->(Cf, g} = <A/, 0> + <£/, g> is a functional on 1(C) which extends
by continuity to Jf. This implies that CfeJ^, so /e^(C).

If C is the form sum of A and 5 we write C = A + B, even though in
general it is possible that 2{A)n2{B) = {0}.

Theorem 2.7. [6; Chapter V]. Let ̂  be a Hubert space and Ho^0
be a self-adjoint operator acting in Jf. Let U and W be self-adjoint
operators acting in Jf. Assume that L/^0 and that i(ifo)ni(ί/) is dense
in Jf7. Assume that there exists a< 1 and b such that ±W^a(H0 + b)
(in particular £l(W) D Ά(H0)). Then there exists a self-adjoint operator H
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which is the form sum H = (H0+U)+W. Also
and H is bounded below, in fact, H^ —b.

Proof. The dense subspace £(H0)nΆ(U) with the inner product
<(Ή0 -h U+ 1)/, g} is a Hubert space. Thus Ho + U is self-adjoint with
j2(#0 + U) = l(H0)nl(U) [9; § 7, Theorem 2].

Let Hi = Ho + U and J - Ά(Hγ\ Then ± W = a(H0 + b) ̂  α ^ + b),
that is, W:J2-^i2* with \\(HX + 6)"* P^(#i + b)"*|| ^ α < 1. Hence

exists as an operator from J* to Ά. In particular, it sends j f into
+ W) C Ά and so H1 4- W is self-adjoint with 1{HX + W) = .

III. Ordered Hubert Space

In this section we present some elementary aspects of the theory of
ordered Hubert spaces [11; Chapter V]. Since it is convenient to deal
with order in real spaces, we begin with a brief discussion of the reduction
of the problem from complex spaces to real spaces.

Definition 3.1. Let # b e a complex Hubert space. Then J'.iV^Ψ*
is a conjugation if J is anti-linear (J(af+ bg) = a*J(f) + b*J(g)\ anti-
unitary «J/, Jg) = </, #>*) and J 2 = 1. If fe if and Jf = f, then / is
called real (with respect to J). If A is an operator acting in if such that
fe£$(A) implies that Jfe^(A) and JAf = AJf, then A is called real.

The set of real elements in a complex Hubert space forms a real
Hubert space. If A is real, then A leaves this real Hubert space invariant.
Questions about real operators in a complex Hubert space may often
be reduced to questions about operators in a real Hubert space.

Note in particular that if A is a real self-adjoint operator with respect
to the conjugation J' \Ψ'->#~ then J : 3){A)^>2(A) is also a conjugation
with respect to the graph inner product on 9)(A). Thus for questions of
essential self-adjointness for real operators it is enough to consider
only real Hubert space.

Definition 3.2. Let Jf be a real vector space. A proper cone is a subset
Jfoϊje such that Jf + J f c Jf.aJf C JΓ for all a ̂  0, and Jf n -JΓ = {0}.
If a proper cone Jf C JΊf is given, then Jf is called an ordered vector
space and JΓ is called the positive cone of J»f. If / and g are elements
of 2tf., we write / g g whenever g — f belongs to the positive cone Jf.
If Jf is a real Banach space and the positive cone JΓ is closed in Jf7, then
Jf is called an ordered Banach space.

Definition 3.3. Let Jf be an ordered Banach space and let e be a
positive element of f̂. If feJf, set | | / | | e = inf{ί^0: ± / ^ ί e } . Then
S£(e) is defined to be the space of all / in Jf such that | | / | | e < oo.
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Proposition 3.4. [11; Chapter V]. The space ££{e) is a normed space
and the ball \\f\\e^cis a closed subset of Jf7 for every c^0.

Proof. Since the positive cone is closed in Jf, the infimum in the
definition of | | / | | e is assumed. Thus \\f\\e^c if and only if ±f^ce.
From this it follows that | |/ | | β is a norm: if | | / | | e = 0, then ± / ^ 0 , so
/ = 0. The fact that the ball | | / | | e :g c is closed also follows from the fact
that the positive cone is closed in jήf.

Definition 3.5. Let Jf be an ordered vector space and let A be a
linear operator acting in Jf. Then A is said to be positivity preserving if
/ ^ 0 implies Af ^ 0.

Proposition 3.6. Let 3tf be an ordered Banach space. Let A\ffl
be a positivity preserving operator. Assume Ae^e. Then A leaves
invariant and \\Af\\e^\\f\\e.

Proof. Since ± / g \\f\\ee9 we have ±Af^\\f\\eAe^\\f\\ee.
Definition 3.7. Let Jf be an ordered vector space. An absolute value

is a function /V> |/ | from 3tf to Jtf such that ± / ^ |/ |.
It follows from - | / l ^ / ^ l / l that | / | ^ 0 and that | / | = 0 implies

/ = 0. (Notice that we do not assume that ±f^g implies \f\^g.)
We define f± =W\±f\ Then f± ^ 0 and / = / + - / _ , \f\=f+ +/_.

Definition 3.8. Let Jf be a real Hubert space which is an ordered
vector space. Assume that the positive cone is closed in jtf. Then Jf is
called an ordered Hubert space if / ^ 0 and g ̂  0 implies (f,g}^0 and
there is an absolute value defined on Jf such that || | / | || = | |/ | | .

It is a consequence of the first part of the definition that +fSg
implies 11/11 ̂ Hflfll. In fact | |#| | 2 - | | / | | 2 = (g + f,g- /> ̂ 0. The con-
dition || I/I II = 11/11 of the second part of the definition is equivalent to
</ + ,/_>=0.

The obvious example of an ordered Hubert space is ^ = l}{M,μ\
where μ is a measure in the measure space M. (The space consists of
real functions and fSg means f{p)^g{p) for almost every p.) Another
example is the space of self-adjoint Hilbert-Schmidt operators. This
space is not a lattice and its order structure has other unfamiliar properties.

For instance, if u = and v = i , then ±u^v but it is false
that |u| ̂  17. \° - 1 / ^ 2 2>

Proposition 3.9. [1], Let Jf7 be an ordered Hilbert space and A Jf-^3^
and B : #? —• &? be positivity preserving. Assume that / ^ 0 implies Bft^ A f.
Then\\B\\S]\A\\.

Proof. Since ±Bf^B\f\g,A\f\, we see that | |B/|| ^ \\A\f\ \\
^ Mi l II1/111 = Mi l ll/ll
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Proposition 3.10. Let j f be an ordered Hubert space. Let A be a
self-adjoint positivity preserving operator acting in Jtf*. Assume that
he^(A) implies \h\e@(A). If ge^(A) and ±f^g, then feSf(A).

Proof. If ge9{A) we have + </, A/ι>= ±</,Λft + > + </,,4ft_>
^(g,Ah+} + (g,Ah-) = (g,A\h\y. Thus KfAhy\S<Ag,\h\)^\\Ag\\ \\h\\.
It follows that h±->(f,Ah} is continuous, so fe@>(A).

Corollary 3.11. Let e e 2tf with e ^ 0. Let U be a self-adjoint positivity
preserving operator acting in J-f such that h e Θ(U) implies \h\ e <2ι{U) and
such that ee@(U). Then

IV. Essential Self-Adjointness

In this section we prove a theorem on existence of form sums and a
theorem on essential self-adjointness of operator sums. The theorem on
form sums (Theorem 4.1) is a direct consequence of a more general
result (Theorem 2.7). It is given here only to show the parallel with the
theorem on operator sums (Theorem 4.4). The theorem on operator sums
is proved by means of a theory of contractive semigroups (Lemma 1) and
an extension of a method of Davies for obtaining quadratic estimates
(Lemma 2).

Theorem 4.1. Let J f be an ordered Hubert space. Let e^O be an
element of J f such that S£{e) is dense in Jf. Let Ho^0 be a self-adjoint
operator acting in J f such that Hoe = 0. Assume that exp( — tH0) is
positivity preserving for ί^O. Let U and W be commuting self-adjoint
operators acting in Jf7 and set V=U +W. Assume that £/g:0 and
^(e)cΆ{U). Assume also that there exists a<\ and b such that
+ W rg a(H0 + b). Then the form sum H = H0 + V is self-adjoint and
bounded below.

Proof. In order to apply Theorem 2.7 we need only show that
Ά(HQ) n Ά(Ό) is dense in Jf. Let δ = exp ( - Ho) &(e). Then
δ C &(H0) c £{HQ). Since exp ( — tHQ) is positivity preserving and
exp( — tH0)e = e, exp( — tH0) sends S£(έ) into JSf(e) by Proposition 3.6.
Hence δ C JS?(e) C 9(Ό\ To see that δ is dense in Jf, we observe that if
h±δ, then exp(-H0)h±&(e), so exp(-Ho)fι = 0, fc = 0.

Since U and ^commute, 2(U)n£(W)c J(F)and Ά{V)n2(W)c£{U).
Hence 1(H) = 1(HO)n 1{V) and H = H0 + V. This completes the proof
of the theorem.

In the following corollary we let U, W, V denote real measurable
functions on M and also the corresponding multiplication operators
on L2(M,μ).
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Corollary 4.2. Let μ be a measure in M and let Jf = L2(M, μ). Let e
be an element of ffl such that e(p)>0 for almost every p in M. Let Ho

be a self-adjoint operator acting in Jf such that Hoe = 0. Assume that
Qxp( — tH0) is positivity preserving for ί^O. Let U and W be real meas-
urable functions on M and set V = U + W. Assume that U ̂  0 and that
U e 1} (M, e2 μ). Assume also that there exist a < 1 and b such that
±W^a{H0 + b). Then the form sum H = H0 + V is self-adjoint and
bounded below.

Proof. Since exp( — tH0) is positivity preserving, it is a real operator
(with respect to complex conjugation). Hence Ho is real. Thus we may
consider Ho and V as operators in a real Hubert space.

We need only show that jS?(e) is dense in jf. But if h±&(e)9 then
h±esign(h\ so \h\le. Since e>0 almost everywhere, this implies that
fc = 0.

Definition 43. Let U^iO be a self-adjoint operator. The truncated
operator Uk is defined by Uk=U on the subspace where UkSK ^4 = 0
on the orthogonal complement.

Theorem 4.4. Let Jf be an ordered Hubert space. Let e^O be an
element of Jtf such that 5£{e) is dense in #?. Let Ho be a self-adjoint operator
acting in Jf such that Hoe = 0. Assume that exp( — tH0) is positivity
preserving for ί^O. Let U and W be commuting self-adjoint operators
acting in 2tf and set V=U + W. Assume that C/^0, that &(e)c2(Ό\
and that for each k exp (— t Uk) and 1 — exp { — tUk) are positivity preserving
for t ̂  0. Assume also that | W\ is positivity preserving, that its domain is
invariant under the absolute value, and that there exist constants a<\
and b such that W2 ^ a2(H0 + b)2. Let H = H0 + V. Then H is essentially
self-adjoint on

Remark. In the statement of the theorem we have assumed that W
satisfies the second order estimate W2 ^ a2 (Ho + b)2 and consequently
9{W)J9{HO\ It follows from Proposition 2.3 that W satisfies the first
order estimate \W\^a(H0 + b) and so £(W)D2(H0). Thus H is self-
adjoint and bounded below, by Theorem 4.1.

Lemma 1. Let Hί=H0 + U. Then Hi is essentially self-adjoint on

Proof. Let Uk be the truncated operator: Uk=U where
0 otherwise. Set Hlk = H0+Uk. Then Hlk is self-adjoint with £0{Hίk)
= @(H0), since Uk is bounded. It follows from the Trotter product

formula [9; §8] that e x p ( - ί H l k ) / = limf exp( - — Ho) exp(- — Uk]\ f

for all feϋ and tZO. " ^ [ n ' l n »
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We also have exρ(-ίfl r

1)/= lim exp(-ίi ί l k )/. In fact Ukϊ U,
n —*• G O

so Hlk"\ Hi in the sense of quadratic forms. This implies [6; Theo-
rem VΠI-3.13] [3] strong resolvent convergence. It follows [6; Theo-
rem IX-2.16] that the corresponding semigroups converge strongly.

Since exp( — tH0) is positivity preserving and exp( — tH0)e = e, it
follows by Proposition 3.6 that exp( — tH0) is a contraction on «5?(e).
Also exp( — tUk) is positivity preserving and exp( — tUk)e^e (since
1— exp( — tUk) is positivity preserving), so again by Proposition 3.6
exp( — tUk) is a contraction on ££(e). The fact that these semigroups are
contractions on an auxiliary space justifies the term contractive semi-
group [15]. It is this feature which now permits us to estimate exp( — tHγ)
by use of the Trotter product formula.

Recall that according to Proposition 3.4 the ball | | / | | e ^ c is closed
in Jtf. Thus if / e JS?(e) with | | / | | β ^ c , then | | exp(-ίH l k )/ | | e gc and so
Nexpί-ίi/J/H^c. Thus expi-tH^ ^(e)C^(e) for ί^O.

Now let δ = exp{-H1)&{e). We will see that δc@{H0)n@(U)
C ̂ ( # 0 and that δ is dense in ^{H^. In order to see that δ is dense in
^(#1) we observe that if hλδ in the graph inner product on ^(H^), then
(l+jtf^expί-HJfcl^, so (l+H1

2)exp(-H1)Λ = 0, ft = 0.
In order to show that δ C 9{HQ)n9{U\ we notice that δ = exp(-ί^)

&(e)cSe{e) and &{e)c9>(U) by assumption. Thus δQ@{U). But also
<f C ®(#i). So if fe S, then ^ / and Uf are in f̂. But then g\->(Hof, g}
= (Hίf,g} — (Uf,g} is continuous, so fe@{H0). Therefore we have
also shown that δ C 2{H0).

Lemma 2. There exists constants a < 1 and b such that W2 ^ α2(H t + i>)2.

Proof. We have assumed that if h^O then 0^exp( — tΌk)h^h and
that if O^f^g then 0^exp(-ίtf o )/^exp(-fH o )g. It follows that

^ 0 implies 0 ^ (exp ί - — Ho) exp ί - — uΛ\ / ^ e x p ( - ί H 0 ) / . Let

n->oo. We see that Ogexp(- ί// l k )/^exp(- ί# 0 )/ . Now let fc->oo.
We obtain 0^exp( — ί//1)/^exp( — tH0)f. Finally, from the formula

00

(Hί + fe)~1= J exρ(-feί)exp(-ίH f)/dί we see that O g ^ + b ) ' 1 /

^(i/o + fe)'1/.
Let / be an arbitrary element of JP. Then ±(H1+b)~ίf

S (H. + by'lfl^ (H0 + b)'ι\fl Hence (H, + bylfeD(\W\l by Propo-

sition 3.10. F r o m Proposition 3.9 we conclude that || \W\ (Hί +i>) x | |

SlWWKHo + by'l This is equivalent to (H1 + b)~ιW2(H1+by1

<,(H0 + by1W2(H0 + by1 and the right hand side is bounded by a2.
Thus W2 ^ α 2 ^ + b)2, as was to be shown.

Notice that even though Hγ — H0-\-JJ with Ho ^ 0 and 1/ ̂  0, it is
false in general that (Ho + b)2 ^ (f/i + b)2. That is why this quadratic
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estimate is more difficult than the linear estimate ±W^a(H0

^ a{Hx + b) of Theorem 2.7.
To finish the proof of the theorem, it is sufficient to recall that if

H = H1 + Wand @{W)D2{Hγ) with ||W{HX + c)" 1 \\ < 1 for some c>0,
then @(H) = @(Hί) and the graph norms are equivalent. (In fact
UH + cifW^Wμ + WiH. + cΓ^iH^cjfW and l + W^+c)'1 is
invertible.) So if S is dense in ^(H^ it is dense in 2{H). In the present
case this is applied to δ = 3f{H0)r\3f{JJ). Since @(W)D@(H0) we have
gC@(H0)n@(W)n@{U)c@{H0)n2ι{Vl so 9{H0)n9{V) is dense in

Corollary 4.5. Let ffl — L2(M, μ), where μ is a measure in the measure
space M. Let e be an element of Jf7 such that e(p)>0 for almost every p
in M. Let Ho ^ 0 be a self-adjoint operator acting in Jf7 such that Hoe = 0.
Assume that exp( — tH0) is positivity preserving for ί^O. Let U and W
be real measurable functions on M and set V= U + W. Assume that
U^0 and UeL2(M,e2μ). Assume also that there exist constants a<\
and b such that the multiplication operator W satisfies W2 ^a2(H0 + b)2.
Let H = H0 + V. Then H is essentially self-adjoint on

V. Schrodinger Operators

In this section we apply the abstract theory developed in the previous
section to Schrodinger operators. The main result is Theorem 5.2.
Theorem 5.1 is put in mainly to show how much easier it is to get a result
which depends only on linear (rather than quadratic) estimates.

Theorem 5.1. Let J^ = L2(ΈC,dx) and let V be a real measurable
function on JR". Assume that V=U + W, where U^O and U e L1 locally
on the complement of a closed set of measure zero, and where We Lp + L°

for some P^~^~ (and wherep^lifn = l,p>lifn = 2). ThenH = — A -f V

is self-adjoint and bounded below and

Proof. According to Theorem 2.7 we must show that Ά(Δ)nΆ{Ό)
is dense in J-f and that + W ^ a( — Δ + b) for some a < 1.

We have assumed that U is locally integrable on the complement of a
closed set M of measure zero. Let 3F be the space of C2 functions with
compact support in the complement of M. Clearly ^cΆ(H0)n 1{V)
and 3F is dense in Jf7.

As for the estimate on W, it is well known [2] that under the hypo-
theses of the theorem for all a > 0 there exists b such that \W\ S a(H0 + b).
This completes the proof.

Theorem 5.2. Let J f = L2(1Rn,dx). Let V be a real function on 1R".
Assume that V=U+W, where U^O and UeL2(]R\exp(-2a\x\)dx)
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for some a < oo and where WE Lp(JRn, dx) + L°°(IRn, dx) for some p ^ —

^ 2 1/ n = 1, 2, or 3, /? > 2 1/ n = 4;. 77ιen H = - J + F is essentially
self-adjoint on <&(Δ)r\Θ(V).

Proof. Let Y be a real function on 1R" which is constant on a ball
centered at the origin and is zero elsewhere. Then — A + Y is self-adjoint
with the same domain as — Δ, since Y is a bounded function. By a
suitable choice of Y we may arrange that — Δ + Y has a strictly negative
eigenvalue. We may choose it as negative as we please. Let — c2 (where
0 0) be the most negative eigenvalue of — A + Y and set Ho = — A
+ Y + c2. Then Ho^0 and zero is an eigenvalue of Ho. It is sufficient to
prove the theorem with Ho in place of — A.

Let e be the eigenfunction of Ho with Ho e = 0. We may choose the
sign of e so that e(x) > 0 for all x in IRn, by the Perron-Frobenius theorem
or by explicit computation.

Since exp(ίzl) is an integral operator with positive kernel for ί > 0 ,
it is positivity preserving. Thus exp( — tH0) is positivity preserving, by
the Trotter product formula.

We now use our freedom to choose c arbitrarily large to require that
0 a. It may be seen from decay estimates [3] or explicit computation
that this implies that e satisfies an estimate e(x)^Kexp( — a\x\). Hence
J U(x)2 e(x)2dx^K2 f U(x)2 exp(-2a\x\)dx < 00, so (7eL2(lR"?e(x)2 dx).

It is well known [2] that the hypotheses on W imply that for all a > 0
there exists b<oo such that W2 ^a2(-A +b)2. However (-A+b)2

S 2{(H0 + b)2 + (Y + c2)2) ^ 2(H0 + d)2 for d sufficiently large. It follows
that W2 ^ 2a2(H0 + d)2. The proof is completed by an application of
Corollary 4.5.

VI. Quantum Field Theory

The Hamiltonian H = H0+V for a self-interacting boson field
(in one space dimension with a space cutoff) is analogous to a Schrodinger
operator. The Hubert space may be represented as I?(M,μ\ where
M = ]RCO and μ is Gaussian measure, in such a way that Ho^0 is a
second order linear differential operator and V is a polynomial of even
degree in infinitely many variables. Such a polynomial need not be
bounded below.

The foundation of the recent work on this Hamiltonian is an LP space
estimate of Nelson [8] which may be used to prove that H is self-adjoint
and bounded below. Essential self-adjointness on a common domain
for Ho and V was first proved (but only for V of fourth degree) by Glimm
and Jaffe [4] using Nelson's results and estimates on commutators.
The first essential self-adjointness proof using Π space techniques was
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due to Rosen [10]. The U space techniques were developed in an abstract
setting by I. Segal [12,13]. The resulting theory of hypercontractive
semigroups in IP space and its application to quantum field theory has
been surveyed and extended by Simon and Hoegh-Krohn [15].

In this section we give a particularly simple proof of essential self-
adjointness which uses neither estimates on commutators nor the
theory of hypercontractive semigroups. It is a direct application of the
same abstract theory that was applied above to Schrodinger operators.

Let μ be a measure in the measure space M with μ(M)= 1. Let V
be a real measurable function on M. We say that V satisfies the Nelson
estimate [8] if there exist strictly positive constants α, b, c, d such that

μ{P: V(p) <; - x } g a exp(-b exp(cxd))

Theorem 6.1. Let Jf = L2(M,μl where μ ( M ) = l . Let # 0 ^ 0 be a
self-adjoint operator acting in J f with f f 0 1=0. Assume that exp( — tH0)
is positivity preserving for all t^0 and that there exists T>0 and r>2
such that exp( — TH0): L2 -> U is bounded. Assume that V is a real function
in L2(M,μ) which satisfies the Nelson estimate. Then H = H0 + V is
self-adjoint and bounded below. In addition H = H0+V is essentially
self-adjoint on 2{H0)CΛ9{V).

Proof. We apply Corollary 4.5. Write V=V+-V_, where F ± ^ 0
are the positive and negative parts of V. Then V+ eL2(M,μ). On the
other hand exp(cK?) e Lq(M, μ) for all c < oo and q < oo, by the Nelson

estimate. If we choose a such that 1 = —, then
q r 2

exp(cV2)exp(-TH0):L2->L2

is bounded, by Holder's inequality. Thus exp(2cFi)^Xexp(2Ti/ 0 ).
It follows from Proposition 2.4 that 2cV2 ^ 2TH0 + In K. If we choose
oT, this says that V_ satisfies an estimate V2 ^ a2(H0 + b) with a < 1.
We may assume that b ^ l , so that (Ho + b) g (Ho -f b)2. Thus
V2 ^ a2{H0 + b)2. This is the required estimate.

This result justifies the use of the Trotter product formula. This
formula has been applied in quantum field theory to show that the field
automorphisms converge in the relativistic limit where the space cutoff
is removed.

References

1. Davies,E.B.: Properties of the Green's functions of some Schrodinger operators,
to appear.

2. Faris,W.: Product formula for semigroups defined by Friedrichs extensions. Pacific
J. Math. 22, 47—70 (1967).

3. Faris, W.: Quadratic forms and essential self-adjointness. Helv. Phys. Acta (to appear).



34 W. G. Faris: Essential Self-Adjointness

4. Glimm,J., Jaffe,A.: Singular perturbations of self-adjoint operators. Commun.
Pure Appl. Math. 22, 401—414 (1969).

5. Hoegh-Krohn, R.: A general class of quantum fields without cutoff in two space-time
dimensions. Commun. math. Phys. 21, 244—255 (1971).

6. Kato,T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York:
Springer 1966.

7. Kato,T.: Schrodinger operators with singular potentials, to appear.
8. Nelson,E.: A quartic interaction in two dimensions. In: Goodman,R., Segal,I.E.

(Eds.): Mathematical theory of elementary particles. Cambridge: M.I.T. Press 1966.
9. Nelson,E.: Topics in dynamics I: Flows. Princeton, N.J.: Princeton University Press

1969.
10. Rosen,L.: A λφ2n field theory without cutoffs. Commun. math. Phys. 16, 157—183

(1970).
11. Schaefer,H.H.: Topological vector spaces. New York: Macmillan 1966.
12. Segal,I.: Construction of nonlinear local quantum processes: I. Ann. Math. 92,

462—481 (1970).
13. Segal, I.: Construction of nonlinear local quantum processes: II. Inventiones math. 14,

211—241 (1971).
14. Simon, B.: Essential self-adjointness of Schrodinger operators with positive potentials.

Math. Ann., to appear.
15. Simon, B., Hoegh-Krohn, R.: Hypercontractive semigroups and two dimensional

self-coupled Bose fields. J. Funct. Anal. 9, 121—180 (1972).

William G. Faris
Battelle
Advanced Studies Center
Geneva, Switzerland




