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Abstract. Necessary and sufficient conditions for the conservation of vector currents
covariant under translations and of the Conformal currents, are formulated and proven.
Only the weak spectrum condition is assumed, thus the theorems serve as generalizations
of a well-known theorem due to Coleman. This is done under the axioms of Relativistic
Quantum Field Theory due to Wightman.

I. Introduction
In a previous publication [1], necessary and sufficient conditions for

conservation of internal and conformal currents were formulated and
proven. This treatment lacks rigour (e.g., distributions were integrated
as ordinary functions). In the present treatment appropriate formula-
tions and proofs are given in the framework of Relativistic Quantum
Field Theory [2].

The theorems proven in this note serve as a rigorous formulation of
the connection between current conservation and the fact that the
corresponding charge annihilates (in some well defined manner) the
vacuum state. This connection is known as "Coleman's Theorem" [3].
Our statements differ from previous versions of Coleman's Theorem as
they are in a form of necessary and sufficient conditions and we do not
demand a mass gap.

Thus, our theorems apply to cases where the presence of zero mass
particles is an intrinsic feature of the symmetry group under considera-
tion, as is the case with unbroken Chiral symmetry in the realization
where the baryons are massless and unbroken Conformal symmetry
where all the masses vanish. Furthermore, the theorems apply also to
cases of spontanously broken internal and Conformal symmetries.

II. The Framework and Praeliminaria

The framework is Relativistic Quantum Field Theory. The postulates
of the theory are given in Chap. 3 of Ref. 2. We stress that only the so
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called "weak spectrum condition" is assumed. This means that we do
not demand a gap above the point p = 0 (which corresponds to the
vacuum state) in the energy momentum spectrum. Several specific
assumptions which are used in the following will now be specified.

We assume the existence of four field operators, which we denote by
jμ(x) (μ = 0,1,2, 3), whose transformation properties under the Poincare
group will be given later. jμ(x) are assumed to be relatively local and
local with respect to the algebra 01 of localized operators under which the
vacuum is cyclic. For every test function fey(R4) (i.e., functions over
the four dimensional real space with an infinite number of continuous
derivatives and with strong decrease, i.e. faster than any inverse of a
polynomial) jμ{f) is an operator in the Hubert space of states, having as
a domain the common dense domain of the smeared field operators.
Actually, the demand that jμ(x) is tempered (i.e., jμ(f) is defined for
every fe^) is stronger than necessary for our purpose and we can
equally do with the assumption that jμ{f) is defined for every fe @(R4)
(i.e., functions over the four dimensional real space with an infinite
number of continuous derivatives and with compact support). This is
true because we are dealing with Borcher's positive tensor distributions
(Eq. (11)) and the class of Borcher's positive tensor distributions is
identical to the class of Borcher's positive tempered tensor distribu-
tions [4].

We will use the common notation

jμ(f)=$dxf(x)jμ(x).

Let Θr{x) denote a @(R3) function which satisfies

i ^ < i

o l*L>2

y

and let η(x°) be any Qι(R) function.

Let us assume that the current jμ(x) is covariant under translations

* , ( * ) = - ; *

(2)

where U(a) is a unitary representation of the translation group.
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Then, due to the invariance of the vacuum state |0) under translations

°° W{x-y) (3)

is a distribution in the variable x — y1.

<0| ϋ°(θ) f()-] \0)$dx Θr(x) η(x°) W(x - y) (4)

is a C^iR4) function of y 2 (i.e., it has an infinite number of continuous
derivatives) and we can consider its value at a point.

In the following, we will be concerned with currents of the form [5]

dμ(x)=xvθ
μv Jfμv(x)-(2xvxλ-δ\x2) Θμλ(x) (5)

where the tensor θμv(x) is co variant under translations. In this case also,
the following expressions are C 0 0 ^ 4 ) functions of y:

(O\ld°(Θrη\Θμv(y)-]\θy <0 |[Jf 0 v(6>^), ^ v (y)] |0> (6)

and we can consider their values at a point.

III. Two Theorems

Theorem 1. Let jμ(x) be a vector current covariant under the Poincare

gr0UP U(a,Λ)jμ(x) U-1(a,Λ) = (Λ-1)μ

vΓ(Λx + a) (7)

where U(a, Λ) is a unitary representation of the Poincare group.

Then, the following four conditions are equivalent:

(i) VOΉO
(ii) l i m < 0 | [ / 0 ( β r ^ ; 0 0 ; ) ] | 0 > = 0

for every ηe^(R) and one arbitrary y e R4 .

(iii) lim<0|[/ °(Θ^),δojo(3;)]|0> = 0

for every η e @(R) and one arbitrary y e JR4 .

(iv) lim<0|[/ ° (Θ^),a μ 7 μ ω] |0> = 0

for every ηeΘ(R) and one arbitrary yeR4 .

Remarks. 1) For simplicity of notation, we assumed jμ(x) to be
hermitian. Otherwise, we should carry a dagger sign over one current.

2) All the limits in (ii) to (iv) exist as, due to locality, they are achieved
for finite ro = ro(η, y).

3) The theorem remains valid if we change everywhere [j°(Θrη)J°(y)']
to \j°(Θr, y°)J°(y, ηj] etc. This may be more apealing, as there is no time
smearing in the "charge" j°(Θry0).

1 See Theorem 3.2 in Ref. 2.
2 See page 42 in Ref. 2.
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Theorem 2. Let us denote

dμ(x) = xv θ
μv{x) Xμv(x) = (2xvxλ - x\) θμλ(x) (8)

and let us assume that the hermitian tensor field θμv(x) satisfies

θμy(x) = θ"μ(x); dμθ
μv(x) = 0; (0\θμv(x)\0> = 0 (9)

U{a, Λ) θμv{x) U-^a, Λ) = {Λ-1)μ

σ{Λ'1)\θσκ{Λx + a). (10)

Then the following five conditions are equivalent:

(a) dμd
μ(y) = θμ

μ(y) = O.

(c) l i /

for every ηe@(R) and one arbitrary y e JR4.

(d) l im<0 | [J f o o (Θ r ^θ/(>;)] |0>=0

for every η e @(R), one arbitrary y e R3 and every y° e R.

(e) rlim<O|[JΓO ί(0^)^/(};)]|O> = O

for every ηe<3{R\ one i = l , 2 5 3 and one arbitrary yeR4 with / φ O .

Remark. Similar to Remark 3 (after Theorem 1), this theorem
remains valid if one removes the time smearing and puts it in θμ

μ(y) in
(c)-(e). Thus, in (c) we would have ld°{Θry0),θμ

μ{y,η)~] etc. In (d) it is
then sufficient to demand the vanishing for y° = 0 only.

We will prove now Theorem 1.

We use a rigorous version of the Kallen-Lehman representation [6],
as given by Wightman and Garding and by Reeh [7]

(p) (11)

(12)

where ρx(p) and ρ2(p) are tempered measures with support in the close
forward light cone V+, and are invariant under the restricted Lorentz
group <£\. Let us define

(13)

ρ(p) is also a Lorentz invariant tempered measure with support in V+.
The general form of such a measure is [9]

ρ(p) dp = cδ(p) dp+Sdχ ρ(χ) δ(p2 -χ)dp; po^0 (14)

where ρ(χ) is a tempered measure whose support is in the non-negative
real line.
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Thus, for every g e 5^(JR4) we have

ί dp g(p) ρ(p) =]dχ h(χ) ρ(χ) + cg{0) (15)
0

where

ί dpg(p)δ(p2-χ). (16)

A useful result is [8] that for every g(p)e^(RA) whose support
excludes an open region which contains the point p = 0, the corre-
sponding h(χ) is in £f(R).

The equivalence of conditions (i) and (ii) of Theorem 1 is a con-
sequence of the following two lemmas.

Lemma 1. The following two conditions are equivalent:

(i) dJ»(y) = 0.

(ϋ)p"ρ(p) = 0.

Lemma 2. The following two conditions are equivalent:

(i) lim<0O°((9 r iy),70(y)]|0>=0

for every ηeΘ(R) and one arbitrary yeR*.

(ii) p*ρ(p) = 0.

The equivalence of condition (i) of Theorem 1 to conditions (iii) and (iv)
follows along the same line (i.e., from the equivalence of conditions (iii)
and(iv)topμρ(p) = 0).

Proof of Lemma 1. Let us assume that pμρ(p) = 0. According to
Eqs. (11), (12) and (13) we have

J μ μ Q. (17)

Thus, for every fe^(R4') we have

and thus (see Theorem 4.3 in Ref. 2)

<3μ/(/) = 0 for every fe®
or

dμf(x) = 0. (18)

Let us assume now the Eq. (18) holds. Eqs. (11), (12) and (13) yield then

0 = <0LT(x) dyΓ(y)\ 0> - 1 1 dp e- 'X*-Vβ(p) (19)
or

PμQ(β) = 0. (20)

This concludes the proof of Lemma 1.
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Proof of Lemma 2. Let us first find an expression for the vacuum
matrix element in terms of the spectral functions ρ(p) and Qι(p).

Defining the Fourier transforms

Θr(p) = Θr(~p)=μXe-ipxΘr(x); η(po) = jdxoe
ip°x°η(xo) (21)

and using Eqs. (11), (12) and (13), we get

O O \dp Θr(p) ίeipyη(-po)-e^^η ρ(p)

We will show now that, due to the presence of the factor p2 in the
second term, this term drops when r goes to infinity.

The /ι-function, which corresponds to the second term in Eq. (22)
by Eq. (16), is

K(X)= ί dpp2ei^Θr{p)lei^η(-po)-e-ipoy°η{po)]δ(p2-χ). (23)

For every η e & we have η e £f and it is easy to see that

ipoyoη(-p0)-e-ipoy°ηoη(-p0)-e η(p0)
= /(Po)<

From Eq. (1) it follows that

Θr(p) = r3Θ(rp).

Using Eqs. (23), (24) and (25), we get

2e^'yθ(p)f[χ+

as function of pi. (24)

(25)

(26)

Since ρx(χ) is a tempered measure, there exist an N > 0 and a constant
K such that the following estimates for the absolute value of the second
term in Eq. (22) hold [8]

I dχK(χ)Qι{l)
x>o

f hr{χ)\

K

χ>o

f/ωι
r χ>0

Where in the last equality we used the fact that

\Θ(p)\ =
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Thus the second term in Eq. (22) vanishes when r goes to infinity.
We then have

One part of Lemma 2 can be proven now. If we assume that pμρ(p) = 0
or ρ(p) = cδ(p) we get that the expression in Eq. (27) vanishes for every
η e @(R) and every y e R4.

Let us assume now that the limit in Eq. (27) vanishes for every ηe@(R)
and one arbitrary y e R4. The fr-function which corresponds to Eq. (27)
for finite r, by virtue of Eq. (16), is

Hr(χ)= j ^ ^ ^ r ( p ) [ β ^ ^ ( - p o ) - ^ ί p o y o ^ o ) ] ^ ( P 2 - Z ) . (28)
Po^O

Using Eqs. (24) and (25) we get

lim Hr(χ) = f{χ) J dp θ(p) = (2π)3 /(χ). (29)

Thus, the vanishing of the limit in Eq. (27) is equivalent to the statement
that for every /, defined in Eq. (24), we have

]dχf(χ)ρ(χ) = 0. (30)
0

We claim that when η(χ0) varies over Q), fipl\ as defined in Eq. (24),
varies over a dense set in Sf. In order to prove the claim, note that for
every / e ^ w e can choose φ e £f such that

2f0 ~ / ( P θ )

Thech O 1 ce 1 S

Thus, the proof that {/} is dense in £f reduces to the proof that for
{η} = 3ι, the set {η} is dense in ίf. Since Ql is dense in ̂  and the Fourier
transfer is a continuous map of Sf onto itself, it follows that {η} is dense
in £f, thus {/} is dense in £f also.

From this conclusion and from Eq. (30), it follows that for every

]dχh(χ)ρ(χ) = 0. (31)
o

Using the result, given after Eq. (16), we conclude that for every
4
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which is equivalent to the statement that the support of ρ is the point
p = 0. The general form of a measure with such a property is

= cδ(p)9

which is equivalent to

This concludes the proof of Lemma 2.

The proof of Theorem 2 is similar to that of Theorem 1. We will now
outline the proof of Theorem 2.

We start from a spectral representation for the tensor current two
point function

(0\θμ\x)θβκ(y)\0} = $dpe~ip{χ-y)σμvρκ{p). (32)

The form of σμvβκ(p\ consistent with Eqs. (9) and (10), is

σμvρκ(p) = M P ) KP2) W K - P2(gμvPβPκ + gQKPμf) + P'PVP6PK1

+ σ2{p)\{p2)2{gμQgxκ + gμκgVQ) (33)

- P2{gμQfPκ + gvκPμPσ + gμκPβPv + gVQPμPκ) +

where σx(p) and σ2(p) are Lorentz invariant tempered measures with
support in V+. Let us define

(p)] (34)

σ(p) is also a Lorentz invariant tempered measure with support in V+.

Theorem 2 follows from two lemmas, whose proofs can be given along
the same lines as the proofs of Lemma 1 and Lemma 2 respectively.
The two lemmas are:

Lemma 3. The following two conditions are equivalent:
(i) 0/0;) = 0.

(ϋ) ( P V - P W ( P ) = O.
Lemma 4. The following conditions are equivalent:
(i) Each of the three conditions (c)—(e) of Theorem 2.

(ϋ) ( P V - P V V ( P ) = O.
We will end with two consequences of Theorems 1 and 2. Let 01

denote the algebra of unbounded field operators, i.e. polynomials in
Wightman fields smeared with @(R4) test functions. Using arguments
similar to those of Chap.II we conclude that <0| [/°(x), A] \ 0> in a ^°°(K4)
function in x for every A e 01 which is (due to locality) a @(R3) function
in JC for fixed x°. The following is already a known result [10] which
is a consequence of Theorem 1:
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Corollary 1. Under the assumptions of Theorem ί, the following
condition

j dx<fi\[jo(x)9 A] 10> - 0 for every Ae^and one arbitrary x° e R ,

y i d d s dJ"{x) = 0.

Similarly, one deduces from Theorem 2 a result which is Coleman's
theorem for Conformal symmetry:

Corollary 2. Under the assumption of Theorem 2, each of the following
conditions

1) $ dx(0\[d°{x\ A]\0} =0 for every AEM and one arbitrary x°eR,

2) Jd*<0 | [J f o o (x) ,y4] |0>=0 for every Ae® and x° = 0,

3) jdx<0|[ jΓ O ί (x),v4] |0>=0 for every AeM, one i = 1,2, 3 and
one arbitrary x° e R,

yields
0/(x) = O

and thus

Added Note: Parallely H. Reeh treated the same problems, using slightly deferent
technique [11].

Acknowledgements. The author wishes to express his gratitude to H. Reeh for con-
versations and correspondence and to J. Slawny for his constant interest and helpful advice.

References

1. Gal-Ezer,E.: Nuovo Cimento A 10, 682 (1972).
2. Streater,R.F., Wightman,A.S.: PCT, Spin & Statistics and All That. New York:

Benjamin 1964.
3. The original treatment, in which heuristic arguments are given, is Coleman, S.: J. Math.

Phys. 7, 787 (1966). A review article, in which a rigorous formulation and proof is
outlined and which contains previous references, is Orzalesi, G. A.: Rev. Mod. Phys. 42,
381 (1970). For a formulation and proof of a Coleman Theorem for the case of Con-
formal symmetry, see Bose,S.K., McGlinn,W.D.: Phys. Rev. D4, 342 (1971).

4. Schwartz, L.: Application of distributions to the theory of elementary particles in
quantum mechanics. New York: Gordon and Breach, 1968.

5. dμ(x) and Kμv{x) are the currents generating the conformal group and #μv(x) is the
"improved energy momentum tensor". See Callan,C.G.,Jr., Coleman, S., Jackiw,R.:
Ann. Phys. (N.Y.) 59, 42 (1970); Gell-Mann,M.: Proceedings of the 3rd Hawaii
Topical Conference in Particle Physics, 1969 (Western Periodicals Co., Los Angeles).

6. Kallen,G.: Helv. Phys. Acta 25, 417 (1952); Lehman, H.: Nuovo Cimento 11, 342
(1954).



10 E. Gal-Ezer: Current Conservation

7. Wightman,A.S., Garding,L.: Arkiv for Fysik 28, 129 (1965); Reeh,H.: Commun.
math. Phys. 14,315(1969).

8. Garding,L., Lions,J.L.: Functional analysis, Suppl. Al Vol. XIV. Del Nuovo
Cimento (1959).

9. Wightman, A. S.: Relativistic invariance and quantum mechanics. Suppl. A1 Vol. XIV
Del Nuovo Cimento (1959).

10. Epstein,H , Hepp,K., Nuyts,J.: Quantum field theory seminar notes. Princeton
(1966), unpublished preprint.

11. Reeh,H.: Coleman's Theorem, unpublished seminar talk, Max-Planck-Institut fur
Physik und Astrophysik.

Dr. Eldad Gal-Ezer
Dept. of Physics and Astronomy
Tel-Aviv University
Ramat Aviv/Israel




