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Abstract. It is proved that if a metric space is subjected to a mixing transformation,
then there exists a positive number x0 such that the probability that any arbitrary set of
positive measure is asymptotically mapped into a set of diameter less than x0 is zero.
Physical implications of this result, in particular the interpretation of Poincare recurrence,
are discussed.

In this note we consider a metric space (Ω, d) usually assumed
separable, on which a probability measure P is defined. The domain of P
is assumed to include all Borel sets in Ω; in particular, therefore, all
spherical neighborhoods (open balls) are P-measurable. We call P
non-singular if there exist two open balls Qx, β 2 , and a positive number x0

such that P ( β 1 ) > 0 , P(Q 2 )>0, and d(w1,w2)>x0 for all w1 in Ql9 w2

in Q 2. We call P pervasive if P(Q) > 0 for all open balls Q in Ω. If Ω has
more than one point, then clearly any pervasive measure is non-singular.

As usual, a transformation T of Ω onto itself is called (strongly)
mixing if the inverse image Ύ~ιA of any P-measurable set A is P-
measurable, and

lim P(T~nAnB) = P(A) P(B) (1)
«-> 00

for any two P-measurable subsets A, B in Ω. The diameter of a subset S
of Ω, i.e., the supremum of the set of all distances d(w1,w2) for w l 9 w2

both in S, will be denoted by diam(S). If S is P-measurable, then the
essential diameter of 5, denoted by essdiam(S), is the infimum of the
diameters of all P-measurable sets S' such that S'QS and P(S') = P(S).
Both diam(S) and ess diam(S) may be infinite.
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Our principal aim is to prove the following:

Theorem 1. Let T be mixing with respect to a non-singular probability
measure P on a separable metric space (Ω, d). For any subset S of Ω and
any x > 0, let N(S, T, x) denote the set of positive integers m such that
diam(Tm<S)<x, and let χN{S,τ,x) denote the characteristic function of
N(S, T, x). Then there is a positive number x0 such that

1 "
lim — £ χiv(S>r,xo)(m) = 0 (2)
«-oo n m = 1

for any P-measurable set S with P(S) > 0. If P is pervasive then x0 in (2)
can be taken to be any number less than ess diam(Ω). Furthermore, if TA
is measurable for any measurable set A, and if ess N(T,S, x) denotes the
set of positive integers m such that ess diam(TmiS) < x, then (2) holds with
N(S, T, x0) replaced by ess N(S, T, x0).

Loosely speaking, Theorem 1 says that on the average a mixing trans-
formation never (well, hardly ever!) maps a set of positive measure into
a set of small (essential) diameter. Such a result can have considerable
physical significance: there is a brief discussion of this at the end of the
note, immediately upon the conclusion of the proof of Theorem 1.
The proof itself is based on, and therefore preceded by, Lemmas 1 and 2
and Theorem 3.

We begin the formal discussions with the consideration of a special
case. If T, in addition to being mixing, is invertible (one-one and such that
the image of any P-measurable set is P-measurable) then Theorem 1 is
a corollary of the stronger result established in the following:

Theorem 2. Let T be invertible and mixing with respect to a non-
singular probability measure P on a (not necessarily separable) metric
space (Ω, d). Then there is a positive number x0 such that for any P-
measurable set S with P(S) > 0 there exists a positive integer n(S) such that:

essdiam(TmS)>;c 0 for all m^n(S). (3)

IfP is pervasive then x0 can be taken to be any number less than ess diam(Ω).

Proof. If T is invertible, then (1), as is well-known (and readily
verified) is equivalent to:

lim P(TnAnB) = P(A) P(B) (4)
w-»oo

for any P-measurable sets A, B. IfP is non-singular there exist open balls
Qί9Q2 and an x 0 > 0 such that P(Qi)> 0, P(Q2)> 0, and d(wγ, w2) > x0

for all wx in Qί9 w2 in β 2 . Clearly, if P is pervasive, then x0 can be any
number less than ess diam(Ω).
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Now let S be any P-measurable set with P(S) > 0. By virtue of (4),
there is an integer n(S) such that both P(TmSnQ1)>0 and
P(TmSnQ2) > 0 for m ^ n{S). Since d(w'm, < ) > x0 for any w'm in TmSnQ1

and w'ή in T w S n g 2 , it follows that ess diam(TmS) > x0. Hence (3) holds
and the proof of Theorem 2 is complete.

In Lemma 1, and subsequently, we shall use the standard facts
concerning product measures as found, e.g., in [5], § 6.2. We shall also
need the notion of a product transformation: if Tx transforms Ωι into
itself, and T2 transforms Ω2 into itself, then their product is the trans-
formation 7; x T2 defined on Ωx x Ω2 by (Tx x T2) (w1, w2) = (Tγ wί, T2 w2)
for all pairs (w1? w2) in Oj x Ώ 2 .

Lemma 1. Let Tj fee mixing with respect to a probability measure Px

on a set Ωl9 and T2 be mixing with respect to a probability measure P2

on a set Ω2. Then the product transformation Tγ x T2 is mixing with
respect to the product measure of Pί and P2 on Ω1xΩ2.

Proof. A Cartesian rectangle in Ωγ x Ω2 is a set of the form S1 x S2,
where S1 is a Px-measurable subset of Ωί and <S2 a P2-measurable subset
of Ω2. By direct computation, one verifies that (1) holds, first of all
when A and B are each Cartesian rectangles, and then when A and B are
each a union of two disjoint Cartesian rectangles. Since the intersection
of two Cartesian rectangles is a Cartesian rectangle, it follows that (1)
holds whenever A and B are in the field generated by the Cartesian
rectangles in Ωγ x Ω2. A standard result (see e.g., [1], Theorem 1.2) now
permits us to extend (1) to arbitrary A and B in the σ-field generated by
the Cartesian rectangles in Ωt x Ω2 hence Tx x T2 is mixing with respect
to the product measure of Pί and P2.

For any positive integer n, we denote the n-fold product Γ x T x x T
of a transformation T with itself by T{n\ and the rc-fold product of a
probability measure P with itself by Pin\ An induction then yields the
following:

Corollary. // T is mixing with respect to P on Ω, then T ( π ) is mixing
with respect to P(n) on Ωn = Ω x x Ω for each positive integer n.

Lemma 2. Let P be a probability measure on a separable metric space
(Ω, d). For any real number x, let Dx denote the set of all pairs (wl9 w2) of
points in Ω such that d(w1, w2) < x. Then Dx is P{2)-measurable for each x,
and the real function F defined by:

F(x) = P^(Dx) (5)

is a distribution function such that F(x) = 0 for x 1Ξ 0. // P is non-singular,
then there is a positive number x0 such that F(x0) < 1 if P is pervasive,
then F(x) < 1 for all x < ess diam(Ω).
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Proof. If x ^ O , then Dx is empty, therefore automatically P ( 2 ) -
measurable with Pi2)(Dx) = F(x) = 0. If x > 0, then it readily follows from
the separability of (Ω, d) that Dx may be expressed as a countable union
of open Cartesian rectangles of the form Q x R, where Q is an open ball
of small diameter (compared to x) and R is the set of all points w such that
d(w, w') < x for all points W in Q. Hence Dx is P(2)-measurable and F(x)
is well-defined for all x. That F is a distribution function follows from the
standard properties of the probability measure P. If P is non-singular,
we take x0 as in the proof of Theorem 2. We then have:

F(x0) ^ 1 - P^iQ, x Q2) = 1 - P(ρ x ) P(β 2 ) < 1. (6)

If P is pervasive, then, as before, we note that x0 in (6) can be taken to be
any number less than essdiam(Ω), and this observation completes the
proof.

If the metric space (Ω, d) is not separable, then the product measure
P ( 2 ) may not be defined for all Borel sets in ΩxΩ. Hence the sets Dx

may not be P(2>-measurable even though the distance function d remains
continuous1.

Theorem 3. Let T be mixing with respect to a probability measure P
on a separable metric space (Ω, d). For a fixed positive integer /c, an
arbitrary 2k-tuple w = (wί, w2,..., w2k_ί, w2k) of points in Ω, and an
arbitrary x > 0, let M(/c, w, T, x) denote the set of positive integers m such

d(Tmw1,T
mw2)<x,...,d(Tmw2k_1,T»ιw2k)<x.

^et XM(k,w,τ,x) be t n e characteristic function of M(k,w, T,x) and F the
distribution function defined in Lemma 2. Then there is a set Wk in Ω2k,
with P{2k)(Wk) = 1, such that for all w in Wk we have

!™- Σ^w,τ,» = W for all x>0. (7)

Proof. We first note that

where Dx = {(u, v)\d(u, v)<x}. Now, by the Corollary to Lemma 1,
T ( 2 f e ) is mixing on Ω2k with respect to P ( 2 k ) . Hence (see [1], pp. 12-15),
γ(2k) j s e r g 0 ( j j c o n Q2k a n ( j j t f o u o w s from the Birkhoίf ergodic theorem
that for any x > 0 there is a set Wk(x) in Ω2k, with P(2k)(Wk(x)) = 1, such
that for all w in Wk(x) the limit in (7) exists and is equal to P(2k)(Dx

k).
But by the definition of product measure and (5),

Pm\Dx

k) = ίPw(Dx)f = (F(x)f .
1 For a discussion of these points, see pp. 224-225 in P. Bϋίingsley; Convergence of

Probability Measures, Wiley, 1968.
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It remains to eliminate the dependence on x of the set Wk(x). To this end
let {x;} be a countable dense subset of the real line, containing any
discontinuity points of F; let {^(x,)} be the corresponding sets of
measure one on which the limit in (7) exists; and let

wk= Π
ί=l

Then Pi2k\Wk)=l and the limit in (7) exists for all x in {xj and all w
in Wk. But since the distribution function F is completely determined
by its behavior on {xj the limit exists for all x. This completes the proof
of Theorem 3.

We can now prove Theorem 1. Let S be any P-measurable subset
of Ω with P(S) > 0. Then for any positive integer k, S2k is P(2k)-measurable
and Pi2k)(S2k)>0. Let Wk be as in Theorem 3: since P^2k\Wk)=l it
follows that Pi2k)(S2knWk) = P{2k)(S2k)>0, whence S2knWk is not
empty. Let w be a 2/c-tuple in S2knWk: from the definitions of the sets
N(S, T, x) (in Theorem 1) and M(k, w, T, x) (in Theorem 3) it is clear that
N(S, T, x) is a subset of M(k, w, T, x) for any given x > 0. Hence

T j c )(m) for all m ^ l ,

whence (7) yields:

limsup— £ χN(s^x)(m)S(F(x)f for all x > 0 , (8)
n~+co ΐl m = 1

and for any positive integer k. If x is such that F(x) < 1, then the right-
hand side of (8) can be made arbitrarily small by taking k sufficiently
large. In particular, by Lemma 2 there is such an x > 0 if P is non-singular,
while any x < ess diam(β) will do if P is pervasive; in both cases it follows
that the left-hand side of (8) is 0, which yields (2). Finally, if TE is measur-
able for any measurable set E, then TmS is measurable for any positive
integer m. Let m be in ess AT(S, T, x0). Then there is a subset Vm of TmS
such that P(Vm) = P(TmS) and diam Vm < x0. Let Z m = TmS\Vm. Since Γ
is measure-preserving, P(T~~mZm) = P{Zm) = Q. Consequently, since
T~mZm and T~mVm are disjoint and SQT-mTmS=T~m(Vm\jZm)
= Γ m F m u Γ m Z m , we have:

Now let So be the intersection of the sets SnT~mVm for all m in
ess AT (5, T,x0). Then P(So) = P(S)>0 and diam TmS0<x0 for any m
in ess N(S, T, x0). Thus, as above, for any w in S0

2knWk9 the set
essN(S,T,x0) is contained in M(k,w9T,x0)9 whence the rest of the
argument concludes as before. This completes the proof of Theorem 1.
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Mixing transformations were originally introduced [3] as mathe-
matical models of the physical processes which occur when solutes are
homogeneously dispersed in solvents by prolonged stirring. Up to now,
most informal discussions of mixing transformations have focused on
the homogenizing effects; Theorems 1 and 2 now make the equally
important dispersive effects explicit. One approach to a treatment of such
dispersive effects is furnished by Theorem 3, which admits the following
interpretation: for almost all pairs of points, the distance between the
images of the points under a mixing transformation behaves like a random
variable whose distribution is given by the function F of Lemma 2.
Furthermore, for almost all finite sets of pairs of points, the corresponding
random variables are independent and identically distributed. Thus
mixing transformations on metric spaces give rise to a new class of
probabilistic metric (PM-) spaces (for a survey of the theory of PM-
spaces, see [6]); these may, by analogy with the equilateral PM-spaces
(see [7]), be called almost equilateral.

00

In [2], the mean distance, i.e., the integral j xdF(x), was introduced
o

as a useful characterization of the dispersive effects of a mixing
transformation. Such mean distances will not distinguish between two
mixing transformations on the same space, since F depends only on the
metricd and the probability measure P: nevertheless, two such transforma-
tions will generally differ in the rapidity and smoothness of the mixing
process, and these differences can be gauged by the rate of approach to,
and fluctuations about, the mean distance for particular sets of points.
Numerical calculations of these quantities have been carried out in
particular cases, and may be found in [2] and [4].

If a mixing transformation T is invertible, then its inverse T " 1 is
also mixing, and Theorem 2 applies to it. Thus we encounter dispersion
if we follow a set S of small diameter and positive measure into the
"distant past" as well as the "distant future". Another way of putting it is
that S is the result of the coalescence of an originally completely spread-
out set: this coalescence can last only a finite time and is then inevitably
followed by a further, and final, dispersal. On this basis, biological, and
even cosmological speculations immediately suggest themselves . . . .

Perhaps the most significant implications of Theorems 1 and 2 arise
in connection with a question that goes back to the very origins of
ergodic theory: the famous controversy between Boltzmann and Zermelo
about the relevance of the Poincare (or Poincare-Caratheodory) recur-
rence theorem (for a brief discussion and references to the original papers,
see [2]). Poincare had shown that almost all points in a space subject to
a measure-preserving transformation return over and over again to
positions arbitrarily close to their original position. Since states of
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physical systems are often represented as points in appropriate phase
spaces, and the transformations these spaces undergo are measure-
preserving (Liouville's theorem), the recurrence theorem holds, with an
effect that seems to contradict the observed manifestations of fundamental
thermodynamic principles. But, ideally, to represent a state of a physical
system as a point, the state must be known exactly. Since this is effectively
never the case, an obviously more realistic model, which reflects the
imprecision of our measurements, is that the initial configuration of a
system does not comprise a single state but rather an assembly of
experimentally indistinguishable states which correspond to a set, of
possibly very small, but still positive, diameter, and possibly very small,
but still positive, measure. If now the physical transformation involved
can be represented by a mixing transformation of the phase space (a
far-reaching but not altogether unnatural assumption), then Theorem 1
or Theorem 2 will apply and yield the fact that there will generally be no
recurrence: the initial set will, after a while, spread out in diameter and,
with probability 1, stay spread out A detailed discussion of the relation
of this principle of "Stable Recurrence" to "Poincare Recurrence" and
"Exact Recurrence" is given in [2]. In this sense, Theorems 1 and 2
constitute a partial, if belated, vindication of the physical intuition of
Ludwig Boltzmann.
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