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Abstract. It is proved that if a metric space is subjected to a mixing transformation,
then there exists a positive number x, such that the probability that any arbitrary set of
positive measure is asymptotically mapped into a set of diameter less than x, is zero.
Physical implications of this result, in particular the interpretation of Poincaré recurrence,
are discussed.

In this note we consider a metric space (2,d) usually assumed
separable, on which a probability measure P is defined. The domain of P
is assumed to include all Borel sets in Q; in particular, therefore, all
spherical neighborhoods (open balls) are P-measurable. We call P
non-singular if there exist two open balls Q,, Q,, and a positive number x,,
such that P(Q,)>0, P(Q,)>0, and d(w,,w,)>x, for all w, in Q;, w,
in Q,. We call P pervasive if P(Q)> 0 for all open balls Q in Q. If Q has
more than one point, then clearly any pervasive measure is non-singular.

As usual, a transformation T of Q onto itself is called (strongly)
mixing if the inverse image T 'A of any P-measurable set 4 is P-
measurable, and

lim P(T =" A B)= P(4) P(B) 1)

for any two P-measurable subsets 4, B in Q. The diameter of a subset S
of @, i.e., the supremum of the set of all distances d(w,, w,) for w,, w,
both in S, will be denoted by diam(S). If S is P-measurable, then the
essential diameter of S, denoted by ess diam(S), is the infimum of the
diameters of all P-measurable sets S’ such that §'CS and P(S’)= P(S).
Both diam(S) and ess diam (S) may be infinite.
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Our principal aim is to prove the following:

Theorem 1. Let T be mixing with respect to a non-singular probability
measure P on a separable metric space (2, d). For any subset S of Q and
any x>0, let N(S, T, x) denote the set of positive integers m such that
diam(T™S) < x, and let yy, 1.5 denote the characteristic function of
N(S, T, x). Then there is a positive number x, such that

.12
lim — Z ANG, T, x0)(M) =0 (2
1

N
n>oo N7

for any P-measurable set S with P(S)> 0. If P is pervasive then x, in (2)
can be taken to be any number less than ess diam (). Furthermore, if T A
is measurable for any measurable set A, and if essN(T, S, x) denotes the
set of positive integers m such that ess diam(T™S) < x, then (2) holds with
N(S, T, x,) replaced by essN(S, T, x,).

Loosely speaking, Theorem 1 says that on the average a mixing trans-
formation never (well, hardly ever!) maps a set of positive measure into
a set of small (essential) diameter. Such a result can have considerable
physical significance: there is a brief discussion of this at the end of the
note, immediately upon the conclusion of the proof of Theorem 1.
The proof itself is based on, and therefore preceded by, Lemmas 1 and 2
and Theorem 3.

We begin the formal discussions with the consideration of a special
case. If T, in addition to being mixing, is invertible (one-one and such that
the image of any P-measurable set is P-measurable) then Theorem 1 is
a corollary of the stronger result established in the following:

Theorem 2. Let T be invertible and mixing with respect to a non-
singular probability measure P on a (not necessarily separable) metric
space (2,d). Then there is a positive number x, such that for any P-
measurable set S with P(S) > 0 there exists a positive integer n(S) such that :

essdiam(T™"S)>x, forall m=n(S). (3)

If P is pervasive then x, can be taken to be any number less than ess diam (Q).

Proof. If T is invertible, then (1), as is well-known (and readily
verified) is equivalent to:

lim P(T"ANB)=P(4) P(B) 4

for any P-measurable sets 4, B. If P is non-singular there exist open balls
01,0, and an x, >0 such that P(Q,)>0, P(Q,)>0, and d(w,, w,) > x,
for all w, in Q{, w, in Q,. Clearly, if P is pervasive, then x, can be any
number less than ess diam ().
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Now let S be any P-measurable set with P(S)> 0. By virtue of (4),
there is an integer n(S) such that both P(T"SnQ;)>0 and
P(T"SNQ,)>0for m = n(S). Since d(w,,, w,,) > X, for any w,, in T"SNQ,
and w,, in T"SNQ,, it follows that ess diam(7™S) > x,,. Hence (3) holds
and the proof of Theorem 2 is complete.

In Lemma 1, and subsequently, we shall use the standard facts
concerning product measures as found, e.g., in [5], § 6.2. We shall also
need the notion of a product transformation: if T, transforms Q, into
itself, and T, transforms Q, into itself, then their product is the trans-
formation T; x T, defined on Q; x Q, by (Ty x T,) (wy, w,) = (Ty wy, T, w,)
for all pairs (w;,w,) in Q, x Q,.

Lemma 1. Let T, be mixing with respect to a probability measure P;
on a set Q, and T, be mixing with respect to a probability measure P,
on a set Q,. Then the product transformation T, x T, is mixing with
respect to the product measure of P, and P, on Q, x Q,.

Proof. A Cartesian rectangle in Q, x @2, is a set of the form S; x §,,
where S, is a P;-measurable subset of 2, and S, a P,-measurable subset
of Q,. By direct computation, one verifies that (1) holds, first of all
when A and B are each Cartesian rectangles, and then when A4 and B are
each a union of two disjoint Cartesian rectangles. Since the intersection
of two Cartesian rectangles is a Cartesian rectangle, it follows that (1)
holds whenever 4 and B are in the field generated by the Cartesian
rectangles in Q, x Q,. A standard result (see e.g., [1], Theorem 1.2) now
permits us to extend (1) to arbitrary 4 and B in the o-field generated by
the Cartesian rectangles in 2, x Q,; hence T; x T, is mixing with respect
to the product measure of P, and P,.

For any positive integer n, we denote the n-fold product Tx T'x ---x T
of a transformation T with itself by T™, and the n-fold product of a
probability measure P with itself by P™. An induction then yields the
following:

Corollary. If T is mixing with respect to P on Q, then T™ is mixing
with respect to P™ on Q"= Q x --- x Q for each positive integer n.

Lemma 2. Let P be a probability measure on a separable metric space
(2, d). For any real number x, let D, denote the set of all pairs (wy, w,) of
points in Q such that d(w,, w,) < x. Then D, is P®-measurable for each x,
and the real function F defined by:

F(x)=P?(D,) )
is a distribution function such that F(x)=0 for x 0. If P is non-singular,

then there is a positive number x, such that F(x,)<1; if P is pervasive,
then F(x) <1 for all x < ess diam(Q).
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Proof. If x<0, then D, is empty, therefore automatically P®-
measurable with P®(D,) = F(x)=0. If x > 0, then it readily follows from
the separability of (€2, d) that D, may be expressed as a countable union
of open Cartesian rectangles of the form Q x R, where Q is an open ball
of small diameter (compared to x) and R is the set of all points w such that
d(w, w') < x for all points w’ in Q. Hence D, is P‘»-measurable and F(x)
is well-defined for all x. That F is a distribution function follows from the
standard properties of the probability measure P. If P is non-singular,
we take x, as in the proof of Theorem 2. We then have:

F(xog) S1=P?(Q; xQ,)=1-P(Q,) P(Q,)<1. (6)

If P is pervasive, then, as before, we note that x in (6) can be taken to be
any number less than ess diam(£2), and this observation completes the
proof.

If the metric space (R, d) is not separable, then the product measure
P? may not be defined for all Borel sets in Q x Q. Hence the sets D,
may not be P‘?-measurable even though the distance function d remains
continuous *.

Theorem 3. Let T be mixing with respect to a probability measure P
on a separable metric space (2, d). For a fixed positive integer k, an
arbitrary 2k-tuple w= (W, Wy, ..., Wyr_1, Wo,) of points in Q, and an
arbitrary x > 0, let M (k, w, T, x) denote the set of positive integers m such
that

A(T™wy, T"wy) <Xy oo, d(T"Wyp_ 1, T Wy ) < X .
Let Yprgw 1,x) De the characteristic function of M(k,w, T, x) and F the
distribution function defined in Lemma 2. Then there is a set W, in Q*,
with P?®(W,) = 1, such that for all w in W, we have

n

limi Y XM(k’w,T,x)(m)=(F(x))k forall x>0. (7

n>o N 7y
Proof. We first note that
XM (k,w, T, x) (m)= X(Dxy< [(T(Zk))m(w)] >
where D, = {(4,v)|d(u, v)< x}. Now, by the Corollary to Lemma 1,
T@" is mixing on Q** with respect to P‘*. Hence (see [1], pp. 12—15),
T2 is ergodic on Q** and it follows from the Birkhoff ergodic theorem
that for any x>0 there is a set W,(x) in Q*%, with P@¥(W,(x)) =1, such

that for all w in W,(x) the limit in (7) exists and is equal to P®¥(D¥).
But by the definition of product measure and (5),

PEODF)=[PP(D)]* = (F(x)f.

! For a discussion of these points, see pp. 224225 in P. Billingsley; Convergence of
Probability Measures, Wiley, 1968.
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It remains to eliminate the dependence on x of the set W, (x). To this end
let {x;} be a countable dense subset of the real line, containing any
discontinuity points of F; let {W,(x;)} be the corresponding sets of
measure one on which the limit in (7) exists; and let

We= () Wix).
i=1

Then P@*(W,)=1 and the limit in (7) exists for all x in {x;} and all w
in W,. But since the distribution function F is completely determined
by its behavior on {x;} the limit exists for all x. This completes the proof
of Theorem 3.

We can now prove Theorem 1. Let S be any P-measurable subset
of Q@ with P(S) > 0. Then for any positive integer k, S2* is P?¥-measurable
and P?M(S29>0. Let W, be as in Theorem 3: since PZ¥(W,)=1, it
follows that PZM(S2*nW,)=P2M($2%) >0, whence S**nW, is not
empty. Let w be a 2k-tuple in S?*n W, : from the definitions of the sets
N(S, T, x) (in Theorem 1) and M (k, w, T, x) (in Theorem 3) it is clear that
N(S, T, x) is a subset of M(k,w, T, x) for any given x> 0. Hence

XN(S, T,x)(m) é XM(k,w, T,x)(m) for all m g 1 )
whence (7) yields:
1 n
lim sup - Y ans.t.omM=(F(x)F forall x>0, 8)
m=1

and for any positive integer k. If x is such that F(x)< 1, then the right-
hand side of (8) can be made arbitrarily small by taking k sufficiently
large. In particular, by Lemma 2 there is such an x > 0 if P is non-singular,
while any x < ess diam () will do if P is pervasive; in both cases it follows
that the left-hand side of (8) is 0, which yields (2). Finally, if T E is measur-
able for any measurable set E, then T™S is measurable for any positive
integer m. Let m be in ess N(S, T, x,). Then there is a subset V,, of TS
such that P(V,,)=P(T™S) and diamV,, < x,. Let Z,, = T™S\V,,. Since T
is measure-preserving, P(T™Z,)=P(Z,)=0. Consequently, since
T~"%z, and T™™V, are disjoint and SCT "T"S=T""(V,,VZ,)
=T"V,0T™™Z,, we have:
PS)=PEnT"T"S)=P(SNT "V, )u(SNT"Z,))
=PENT ™"V )+PSNT ™ ™Z,)=P(SNT"V,).
Now let S, be the intersection of the sets SAT™™V,, for all m in
essN(S, T, xo). Then P(S;)=P(S)>0 and diam T™S,<x, for any m
in ess N(S, T, xo). Thus, as above, for any w in S,2*nW,, the set
essN(S, T, x,) is contained in Mk, w, T, x,), whence the rest of the
argument concludes as before. This completes the proof of Theorem 1.

22¢
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Mixing transformations were originally introduced [3] as mathe-
matical models of the physical processes which occur when solutes are
homogeneously dispersed in solvents by prolonged stirring. Up to now,
most informal discussions of mixing transformations have focused on
the homogenizing effects; Theorems 1 and 2 now make the equally
important dispersive effects explicit. One approach to a treatment of such
dispersive effects is furnished by Theorem 3, which admits the following
interpretation: for almost all pairs of points, the distance between the
images of the points under a mixing transformation behaves like a random
variable whose distribution is given by the function F of Lemma 2.
Furthermore, for almost all finite sets of pairs of points, the corresponding
random variables are independent and identically distributed. Thus
mixing transformations on metric spaces give rise to a new class of
probabilistic metric (PM-) spaces (for a survey of the theory of PM-
spaces, see [6]); these may, by analogy with the equilateral PM-spaces
(see [7]), be called almost equilateral.

feo)

In [2], the mean distance, i.e., the integral | x dF(x), was introduced
0

as a useful characterization of the dispersive effects of a mixing
transformation. Such mean distances will not distinguish between two
mixing transformations on the same space, since F depends only on the
metricd and the probability measure P:nevertheless, two such transforma-
tions will generally differ in the rapidity and smoothness of the mixing
process, and these differences can be gauged by the rate of approach to,
and fluctuations about, the mean distance for particular sets of points.
Numerical calculations of these quantities have been carried out in
particular cases, and may be found in [2] and [4].

If a mixing transformation T is invertible, then its inverse T~ ! is
also mixing, and Theorem 2 applies to it. Thus we encounter dispersion
if we follow a set S of small diameter and positive measure into the
“distant past” as well as the “distant future”. Another way of putting it is
that S is the result of the coalescence of an originally completely spread-
out set: this coalescence can last only a finite time and is then inevitably
followed by a further, and final, dispersal. On this basis, biological, and
even cosmological speculations immediately suggest themselves ... .

Perhaps the most significant implications of Theorems 1 and 2 arise
in connection with a question that goes back to the very origins of
ergodic theory: the famous controversy between Boltzmann and Zermelo
about the relevance of the Poincaré (or Poincaré-Carathéodory) recur-
rence theorem (for a brief discussion and references to the original papers,
see [2]). Poincaré had shown that almost all points in a space subject to
a measure-preserving transformation return over and over again to
positions arbitrarily close to their original position. Since states of
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physical systems are often represented as points in appropriate phase
spaces, and the transformations these spaces undergo are measure-
preserving (Liouville’s theorem), the recurrence theorem holds, with an
effect that seems to contradict the observed manifestations of fundamental
thermodynamic principles. But, ideally, to represent a state of a physical
system as a point, the state must be known exactly. Since this is effectively
never the case, an obviously more realistic model, which reflects the
imprecision of our measurements, is that the initial configuration of a
system does not comprise a single state but rather an assembly of
experimentally indistinguishable states which correspond to a set, of
possibly very small, but still positive, diameter, and possibly very small,
but still positive, measure. If now the physical transformation involved
can be represented by a mixing transformation of the phase space (a
far-reaching but not altogether unnatural assumption), then Theorem 1
or Theorem 2 will apply and yield the fact that there will generally be no
recurrence: the initial set will, after a while, spread out in diameter and,
with probability 1, stay spread out. A detailed discussion of the relation
of this principle of “Stable Recurrence” to “Poincaré Recurrence” and
“Exact Recurrence” is given in [2]. In this sense, Theorems 1 and 2
constitute a partial, if belated, vindication of the physical intuition of
Ludwig Boltzmann.
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