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Time Dependent Axially Symmetric Solutions
of the Einstein-Maxwell-Yukawa Fields

A. R. Roy and C. R. Datta
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Abstract. Extending a technique developed for static fields by Janis et al. [10] to the
nonstatic fields two exact solutions in the case of Einstein-Rosen metric for the interacting
electromagnetic and zero mass scalar fields have been obtained.

1. Introduction

The need for exact solutions in the general theory of relativity is well
known. In view of the highly nonlinear character of the field equations
only a limited number of solutions are available in the theory. The object
of this paper is to generate solutions for the interacting electromagnetic
and meson fields which study is of considerable interest in the field of
high energy particle physics.

The possibility of construction of new solutions out of existing
solutions in some special cases has been established by the following
authors. Datta Majumdar [1] has shown that for a static Einstein-
Maxwell source free field the solutions could be generated from those
of corresponding vacuum solutions. This investigation has further been
extended by Misra and Radhakrishna [2] and later by Harrison [3]
to the case of nonstatic Weyl fields. Formulating the idea of 'reciprocal
solutions' Buchdahl [4], [5], [6], [7], has developed methods for gener-
ating new solutions from those of empty spacetime solutions. His work
incidentally extends into Unified theories. It may be mentioned here
that work relating to the generation of solutions of Unified theory has
been done by Bandyopadhyay [8] and Rao and Tiwari [9].

Janis et al [10] have developed results, for constructing solutions
for the coupled fields from those of vacuum field equations in the case
of a static metric. Observing that in the cylindrically symmetric metric we
have considered, the results of Janis et al [10] can be adapted to generate
time dependent solutions from those of vacuum solutions, we have
obtained two exact solutions. These solutions correspond to two of the
solutions obtained by Rao et al. [11]. This technique is a powerful tool
for obtaining new time dependent solutions and the work is being
pursued separately.
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2. Field Equations

The general relativistic field equations for the interacting sourcefree
electromagnetic and zero mass scalar (meson) field is given by

(2.1)

where κl =—^—) is the gravitational constant.

is the energy momentum tensor for the electromagnetic field and
given by

(2.3)

the energy momentum tensor for the zero mass scalar field. Here Ftj

satisfies the Maxwell field equations

Fij = AiJ-AjJ, (2.4)

Fij

;j = 0, (2.5)

At being the four potential.
Following [11], the final set of field equations for the coupled

electromagnetic and zero mass (meson) scalar fields, for the axially
symmetric Einstein-Rosen metric

= e2«-2β(dt2-dρ2)-ρ2e-2βdΦ2-e2βdz2,

is as follows:

(2.6)

(2.7)
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and

Vn-V4A + ^=0; (2.13)

where φ and ψ denote the components A2 and Λ3 of the electromagnetic
4-potential and V is the scalar potential satisfying the wave equation

Here α, β, φ, ψ and Fare functions of ρ and t only and the suffixes 1 and 4
after these unknown functions denote partial differentiation with respect
to ρ and t respectively.

3. Technique for Developing the Solutions

The results of Janis et al. [10] modified for a metric of signature
( 1_) r e a ( j as follows:

If a vacuum solution of the Einstein's field equations is given by the
metric of the line element

then a static solution of the coupled Einstein scalar field equations is
given by the metric of the line element

ds2 = e2u(dx4)2 - e-2uhiJdxidxJ (3.2)

and V where

V — Au and u = v\\-\—-—) , (3.3)
\ /

A being a constant. If in addition to the scalar field a sourcefree electro-
magnetic field is also taken then the solutions of the coupled Einstein
Maxwell Yukawa field equations

i κ i i

is given by

V.F^^Je^iδfuj-δlud (3-4)

and the metric of the line element

ds2 = e2w(dx4)2 - e'^hijdx'd^, (3.5)
where

w = — log cos/zw.
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As this theorem is true in general for the static fields only, we shall
in the following section first convert the nonstatic metric (2.6) to a static
metric by the transformation (z, ή-*(ίt\ izf) and then apply the technique
to get a solution in the static form. Finally applying the reverse trans-
formation (z', t')->(it, iz) we get the solution of the coupled field in the
nonstatic form. The above mentioned conversion of nonstatic fields
to the corresponding static fields and vice versa is possible only in the
case of axially symmetric fields. It may also be remarked that the results
of [10] presupposes the form for ds2 given by (3.1) which is possible in
general only in the case of static fields.

4. Applications of the Technique

In this section, we shall generate the solutions of the field equations
(2.7)-(2.13) for the coupled fields from the known solutions of K^ = 0,
by applying the technique mentioned in the preceeding section.

(i) A Time Independent Solution:

The field equations for the empty space characterized by 1 ^ = 0,
for the metric (2.6) become

β2i+βl--y=0, (4.1)

j8ii-flu + - y - = 0 , (4.2)

-^-2β1β4 = 0. (4.3)

The solution of (4.1)-(4.3) obtained by Levi-Civita [12] is given by
the metric q2 + 2q

ds2 = (-^] 2 (dt2 - dρ2) - l-^)q ρ2dΦ2 - (-2-) q dz2 , (4.4)
\Qo) \Qo) \Qo)

where ρ 0 is a constant. This solution corresponds to a line mass placed
along the z-axis.

Applying the transformation

ρ->ρr, Φ^Φf, z^it', t^iz', (4.5)

t h e m e t r i c (4.4) b e c o m e s

. dt'2 - f — I \(dρ'2 + dz'2)\ ) +ρ/2dΦf2\. (4.6)
Qo \Qo I \QoJ J
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Identifying (4.6) with the metric (3.1), we have

and 2

hijdddx* = (—) (dρf2 + dz'2) + ρ'2dΦ'2 . (4.7)

From (3.3), we get the scalar potential Fas

i.e.,

(^] (4.8)
where

2 \ 8π

Again from (3.5), we have

w= —log cosh u
(4.9)

= log sech (N — M log ρ'),

where N = Mlogρ0, is a constant.
This gives

e2 w = sech2 (AT - M log ρ'). (4.10)

We shall now find the electromagnetic field. It is clear from the structure
of (3.4) that the only nonzero component of the electromagnetic 4-po-
tential is F 1 4 .

Thus from (3.4), we have

2 s e c h 2 (N-M log ρ').)\κ ) ρ

Noting F 1 4 = — ψu we have

ψί = [ — sech2 (N-Mlogρ'),
\ K J ρ

which on integration gives

(^V (4.11)
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Now applying the reverse transformation

ρ'-»ρ, Φ'->Φ, t'-+iz9 z'-+it, (4.12)

in (4.8), (4.10) and (4.11), we get the final solution of the coupled field
in the form

% Q
and gt, given by

ds2 = cosh 2(N-Mlogβ)(—) (dt2-dρ2)

(413)
-ρ 2 cosh 2 (ΛΓ-Mlogρ)dΦ 2 -sech 2 (ΛΓ-Mlogρ)dz 2 .

Making the identification of (4.13) with (2.6), we get

β = i - log {sech2 (N - Mlogρ)} .

Adjusting the arbitrary constants involved, this solution can easily be
identified with the solution (41) of [11].

fzΐj 4̂ Nonstatic Solution:

We now consider a time dependent solution of the empty space field
equations (4.1)-(4.3) given by (Misra and Radhakrishna [2])

q2ρ2

ds2 = e~+a+qt~n{dt2 - dρ2) - ρ2eqt'ndΦ2 - e~qt+ndz2 , (4.14)

where ρ, n and a are arbitrary constants.
As in the previous solution, applying the transformation (4.5) and

then identifying the transformed metric with (3.1), we get

v = —-^r\ic{z —n)

and

hijdx^dx^e 4 (dρ'2 + dz'2)-\-ρf2dΦ'2. (4.15)

Thus in this case the scalar potential is given by

8π / 1 2

V=-AM{iqz'-ή), (4.16)
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where now

M

2\ 8π

Also the metric characterising the solution of the coupled field equations is

ds2 = sech2 {- M(iqz' - n)} dt'2

ΓϊVi + 1 (4 1

-cosh 2{-M(iqz'-n)}[e 4 (dρ'2 + dz'2) + ρ'2dΦ'2\.

Again from (3.4), the only component of the electromagnetic field
tensor which survives in this case is given by

which on simplification gives

F34 == (^-Y iqMsech2 {-M(iqzf - n)} .

Assuming ^34 = ̂ 3, and integrating w.r.t. zf we get

Ψ=P- (^fΐ tanh {- M(iqz' - n)}. (4.18)

Now applying the reverse transformation (4.12) in (4.16), (4.17) and (4.18),

W e g e t V=AM(qt + ή), (4.19)

ψ = p - (%*y tanh {M(qt + n)} (4.20)
\ K I

and the gtj given by
Q2Q\

ds2 = e~^~ cosh2{M(qt + n)} (dt2 - dρ2)

- cosh2 {M(qt + n)} ρ2dΦ2 - sech2 {M(qt + n)} dz2 .

Identifying (4.21) with (2.6), we have

β = i - log {sech2 M ^ ί + w)}.

This solution also after certain adjustments of the arbitrary constants
corresponds to the solution (50) of [11].
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