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Abstract. Solutions of the Cauchy problem associated with the Einstein field equations
which satisfy general initial conditions are obtained under the assumptions that (1) the
source of the gravitational field is a perfect fluid with pressure, p, equal to energy density, w,
and (2) the space-time admits the three parameter group of motions of the Euclidean plane,
that is, the space-time is plane symmetric. The results apply to the situation where the
source of the gravitational field is a massless scalar field since such a source has the same
stress-energy tensor as an irrotational fluid with p = w. The relation between characteristic
coordinates and comoving ones is discussed and used to interpret a number of special
solutions. A solution involving a shock wave is discussed.

1. Introduction

The Einstein field equations for a self-gravitating perfect fluid with
rest energy density w, pressure p and four-velocity uμ may be written as

where
Λ μ =l (1.2)

and the units are chosen so that the velocity of light c—ί and Newton's
constant of gravitation G= 1/8 π. As is well-known, Eqs. (1.1) must be
supplemented by an additional requirement on the motion of the fluid.
This may be taken to be an equation of state of the form

p = p(w). (1.3)

The velocity of sound in the fluid is then given by

«2= (1.4)
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Since we must have a ̂  1, it is evident that a limiting form of the
equation of state is

p = w. (1.5)

We shall show below that if the fluid satisfies this equation of state and
if in addition its motion is irrotational, that is if

(1.6)
then Eqs. (1.1) may be written as

(1.7)

the Einstein field equations for the gravitational field due to the scalar
field φ. Eqs. (1.7) may also be written as

Rμv=-σ,μσ>v (1.8)
where σ = ]/2φ.

These equations are simply related to the Brans-Dicke field equations
in vacuum. The latter equations may be reduced to

u A r Rμv = σ,μσ,v
by defining

&

 pσ/yω + 3/2__ ^
6 — B-DΨ

and

where B _Dφ and B-Dgμv are the quantities occurring in the Brans-Dicke
theory [1]. Thus, these three theories are all simply related.

The derivation of Eq. (1.7) from Eqs. (1.1), (1.5) and (1.6) is as follows.
It is a consequence of the Bianchi identities that

i )u v

; v (1.9)
and that

J£p,v = (P + w)"Xv (1.10)
where

If Eq. (1.3) obtains we may define a function

Eq. (1.9) may be then written as

[>-*(? + w)«"].μ = 0. (1.12)

It follows from Eqs. (1.6) and (1.11) that Eqs. (1.10) become
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Hence Σ — \n]/φ,λφ'λ is a function of φ alone. Now we may always
replace φ by φ = F(φ) and not change uμ. Hence it is no restriction to
require that , _

Σ(w) = \n}/φ>λφ>λ. (1.13)

This equation determines w and hence p as a function of the scalar
φ,λφ'λ. Further, it is equivalent to Eqs. (1.10) when Eqs. (1.3) and (1.6)
obtain.

Eq. (1.12) may now be written as

(e-2Σ(p + w)φ,μg^}f^g\v = Q. (1.14)
When p = w,

= w = ±σσ>
λ

and Eq. (1.14) becomes

(1.15)

the wave equation for the scalar field φ, and Eqs. (1.1) become Eqs. (1.7)
or equivalently Eqs. (1.8).

It is the purpose of this paper to discuss the solutions of Eqs. (1.8)
under the additional assumption that the space-time admits the three-
parameter group of the Euclidean plane, i.e., it is plane symmetric.
This assumption enables one to reduce the problem to one of solving a
simple linear equation for the function σ. The discussion given below
will make use of two coordinate systems; a coordinate system based
on the characteristics of this equation and one in which the fluid is
at rest, a comoving coordinate system. The relation between these
coordinates will be discussed. We shall also discuss the Riemann function
for the equation satisfied by σ and give a formula for the solution of the
Cauchy problem for the metric tensor as well as for the function σ. A
number of specific examples will be treated in detail.

2. Plane Symmetric Solution

In this section we give a general solution of Eqs. (1.8) restricted
to plane symmetry. We adopt the definition and coordinates given by
Taub [2].

The line element can be written in the form

ds2 = eω(dt2 - dz2) - eμ(dx2 + dy2) (2.1)

where ω and μ are functions of t and z.
It is somewhat convenient to introduce the characteristic coordinates

u = t — z and υ = t + z to get

ds2 = eωdu dυ - eμ(dx2 + dy2) .

Differentiation with respect to u and υ will be denoted by the sub-
scripts + and - , respectively.
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It is a matter of direct computation to write the field equations

— σ+ = μ++ +iμi — μ+ω+ , (2.2)

-σ*_ = μ__ +±μ

2_ -μ_ω_ , (2.3)
1

-σ + σ_-μ + 2μ+μ_ ω+_ ^

σ + _ = —^-(σ + μ_ + σ_μ+). (2.5)

The equation not enumerated follows from the others. Eq. (2.5) corre-
sponds to Π σ = 0.

The nice feature of plane symmetry is that (2.4) has a general solution,

If either / or g is a constant, then from (2.2) or (2.3) we see that p = w = 0.
Therefore this case would correspond to a plane symmetric vacuum;
the solution is known [2] to be

(dχ2 + dy2}

I/I + /cz

Therefore, let us assume neither / nor g to be locally constant. We can
then set/ = u/2 and g = v/2 by an appropriate coordinate transformation.
In these coordinates (2.5) is a linear equation for σ, namely

σ+- = 4 -̂. (2-7)
2 w + i;

We pick a solution of (2.7) and then solve for ω using (2.2) and (2.3).
It is rewarding to see that the integrability condition for the existence
of ω is just Eq. (2.7).

It is now straightforward to verify that

c* = + exP Cί (M + ϋ) ( + - (28)

1/w + t;

is the solution. The line integral above starts from any fixed point in the
(u, v) plane.

It is convenient to gather the results in the (ί, z) coordinates defined

= σ,( + |σ,, (2.9)

= - = (dt2 - dz2) - t(dx2 + dy2) , (2.10)

Ω = I ί [(σ(

2 + σ2) dt + 2σtσzdz~]

-σz

2)e-
Ω. (2.11)
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The conclusion is that for any solution of the linear Eq. (2.9) it is
possible to generate a solution of the field equations Rμv= — σ μσ v.

We notice that if (gμv, σ) is any solution then (λgμv> σ) is also a solution,
whenever λ is a constant. From now on it shall be understood that all
line elements can be multiplied by a constant conformal factor.

3. Solution in Comoving Coordinates

In this section we shall discuss the same problem of the preceding
one in comoving coordinates. Comoving coordinates are usually
adopted in hydrodynamics and therefore it is of interest to see what
difficulties arise.

We shall start from the following line element

ds2 = e2φdT2 - e2ψdZ2 - R2(dX2 + dY2). (3.1)

When the pressure is non-vanishing the field equations can be
written in the form [3]

2m - R(e~2φR2

τ - e~2ψR2

z) , (3.2)

mz = wR2Rz, (3.3)

mτ=-pR2Rτ, (3.4)

Q = Rzτ-φzRτ-ψτRz, (3.5)

(3.7)v '
.

w + p R

With the assumption p = w the solution of the Eqs. (3.6) and (3.7) is

(3.8)

where functions of integration have been absorbed in the definition
of T and Z. The line element (3.1) now reads

ds2 = —(dT2 - ^-\ -R2(dX2 + dY2} .

It is possible to get a single equation for R alone from the field
equations :

(R2R2

z)z=ί-^f\ . (3.9)
\ κ IT
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Combining (3.2), (3.3), (3.4) and (3.8) we get

mτ 2RRT

m R2

Γ-R4R2

Z

mz 2RRZ

m R2

Γ-R4R2

and
2m

-~ R(R2-R4R2)'

So a solution of the Eq. (3.9) generates a solution of the field equations.
It is interesting that the non-linear partial differential Eq. (3.9)

can be solved completely.
It is convenient to work with R2 instead of R and so we shall define

t = R2 (3.10)

so t satisfies

(«z)z=(-τL) - (3.1D
V l IT

Eq. (3.11) assures us for the existence of a function z(T, Z) such that

ttz = zτ ^γ=zz (3.12)

or

A well-known method to solve these equations is to reverse the role
of dependent and independent variables to obtain a linear system.
That is, instead of looking for ί = ί(T, Z) and z = z(T9Z) we solve for
T=T(t,z)andZ = Z(ί,z).

It will now be shown that this inversion is possible whenever the
density does not vanish. We shall therefore show that when the Jacobian
J = tτzz — tzzτ vanishes so does the density.

Let us take a solution of (3.12) with J = 0 and at the same time
assume the corresponding density to be non-zero. This will lead us to a
contradiction. The advantage of this method is that we can use
Eqs. (3.2)-(3.7). Combining (3.2), (3.8) and (3.10) we get m = 0. From (3.3)
and (3.4) we get that R is a constant function. Now from (3.6) and (3.7) we
learn that φ = ψ, so we are again returned to the line element (2.1)
with eμ = R2 constant. Field Eqs, (2.2) and (2.4) then tell us that the
solution is a flat space-time which cannot have but zero density. This is
the sought contradiction.
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With the help of inversion formulas

tz = J 1 z

 zz~ J * t

tτ = JZz zτ=-JZt (3.13)

J = tτzz - tzzτ

(3. 12) reads
Zt-tTz = Q Zz-tTt = 0 (3.14)

which are linear equations.
The scheme for solving (3.18) is to pick any solution of

Γzz = Ttί + iT( (3.15)

and to calculate Z = Z(ί, z) from

(3.16)

which involves a single quadrature. In the next section we shall give a
procedure to avoid this step.

All that is left now is to find p. For this, we use the formulas

derived from (3.2).
We can now calculate m from

m

m
= -8ίT fΓz.

This last set of equations are derived in a straight-forward manner
from (3.2), (3.3), and (3.4).

To summarize, we define Ω by

and the line element then becomes

ds2 = — Γ-^- - — Id T2 - - - t(dX2 + dY2). (3.18)
2 2 2 V

The correspondence of this line element to (2.10) is seen by defining
σ = 2T and adding a constant to Ω.

We shall now give a prescription to transform any solution in
characteristic coordinates to comoving ones for the purpose of inter-
pretation.
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Obviously σ can be chosen to be the comoving time. It can also be
easily seen that the coordinate Z defined by

dZ = t(σzdt + σtdz) (3.19)

is orthogonal to σ, x and y and therefore Z is comoving. Eq. (2.9)
guarantees that the differential defining Z is exact.

We now have the required transformation formulas

= σ(f,z)

= Z(ί,z)
(3.20)

where Γ, Z, X and Y are the comoving coordinates. All that is left to
verify is the existence of the inverse transformation. The Jacobian of
(3.2) is

d(tzxy) ^ " z /

which can be seen from (2.11) to vanish only when p = w = Q or on the
surface ί = 0. In any event, the surface ί = 0 is, from (2.10), pathological
and in all examples studied so far it is singular.

We now write the line element (2.10) in comoving coordinates to
obtain once again (3.18).

4. Cauchy Problem

We have by now reduced the problem of integrating the field equations
to that of solving the simple linear differential Eq. (2.7), namely

This equation has many simple solutions, some of which we shall
discuss in the next section. Here we shall give a method of generating
solutions from given physical data. The Riemann-Volterra representation
for linear hyperbolic equations fits our needs very nicely. This method
will give us a solution of (4.1) for prescribed values of σ and its derivatives
along an arbitrary curve in the (M, υ) plane. Clearly, any one derivative
of σ not tangent to the curve is sufficient. We shall give a physical
interpretation for this kind of data.
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Fig. 1. When data on Γ is given, σ(P) is determined. L is the curve u + v = t = 0

Now let us refer to Fig. 1. The value of σ at any point
is given by the Riemann-Volterra representation [4].

= (u09vQ)

σ(B)R(B}]

— — J (4.2)

where R is the Riemann function. Now R is uniquely determined by the
differential Eq. (4.1) and is, fortunately, known to be

1 1

7'T"
(M - UQ) (V - VQ)

(U + V) (UQ + VQ)

(4.3)

where F is a hypergoemetric function. We might add that u0 and VQ

play the role of parameters in (4.2).
We shall now use formula (4.2) in the following way: pick any space-

like curve Γ in the (u, v) plane and let it correspond to an equal comoving
time surface; that is, σ = 0 on Γ. Specification of the density on Γ is
enough to generate a solution, as we shall see in a moment.

Under these conditions (4.2) reads

=-i J R[σ+du-σ_dυ]. (4.4)
AB

Now let u = u(y) and v = v(y] be the parametric equations of Γ. Since
σ = 0 on Γ we shall have

•-">—* <
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and from here

σ(u0,v0)=- J R[u(γ)9υ(γ)ιu0v0]σ+(γ)-^-dγ. (4.6)
AB ay

follows.
All that is now required is to express σ+(γ) in terms of the density.

For this we use (1.14), (2.8) and (4.5). We then get the following expression
for w(y)

w(y) = Y (M + «)* e~
Ω ~y σ2

+ (7) (4.7)

where

and 70 is defined to be the value of the parameter y for which Ω vanishes.
Our problem now is to invert (4.7), that is, to express σ + (γ) in terms

of w(y). The inversion is accomplished by rewriting (4.7) in the following
way:

(M + p)*^tlw * 'β- (4.9)
ay 2 ay

Integrating (4.9) and differentiating the result with respect to y then
gives us the desired result

- - (4.10)
]/ΰ+ϋ du/dγ

Formula (4.6) combined with (4.10) can be used to study the behavior
of matter for arbitrary times. We have done some explicit integrations
of (4.6) for simple initial matter distributions and obtained solutions
that could be derived by more elementary means, these special cases
are discussed in the next section.

We can derive the following property from (4.6): if matter is initially
confined to one side of an infinite plane, σλσ

λ will eventually become
negative.

The theorem as it stands is not true unless we add some remarks.
First, let us point out that the sign in front of eΩ in formula (2.10) is
arbitrary. This means that our t coordinate can either be time-like or
space-like. We notice that the line element has a singularity at f = 0.
Therefore if we choose ί to be a time coordinate the singularity is of the
Big Bang type, but if t is a space coordinate we get a Big Wall type
singularity. The theorem is valid if we exclude this last kind of singularity;
that is, if we choose ί to be a time coordinate.
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We now proceed to prove the statement. Let σ vanish on the curve Γ
in Fig. 1. Let w be zero on Γ for wrgO. This situation can always be
accomplished because the whole theory is invariant under the following
transformations:

u' = u + A

v' = v — A .

It is understood that u0 and v0 transform in the same manner. Let us
also assume that Γ is at a finite distance away from the Big Bang u. + v = 0
and u + v evaluated on Γ has a nonvanished minimum. We shall evaluate

σ(uQ, v0) in a region satisfying the conditions u0 <ζ u + v and vQ ^> u + v,
where the values of u + v range over that portion of Γ for which the
density is non-zero and w 0 : g w > 0 for some u. Under these conditions
the argument of the hypergoemetric function (4.3) is as close to zero as we
please. If in addition we choose the parameter y to be u itself, we get the
following asymptotic expression for σ(u0, vQ):

~(μ)σ + (u)du. (4.11)
o

In other words, σ(u0, v0) has the form

E*(UQ) fΛΛ^\
σ(w0,t>0)^—,— . (4.1^)

Evaluation of σλσ
λ from this expression gives

---• 1 —-* d(E2} (4.13)

We therefore see that it is necessarily negative for small values of u0

since E(0) = 0 and E2 is positive.
We would like to add that if matter is not orginally confined, σλσ

λ

need not grow negative.
A problem of physical interpretation arises when σλσ

λ is negative.
First of all we see from (1.6) and from the fact that σ=y2φ7 that uμ

is imaginary. Since we are primarily looking for solutions of (1.1) it is
clear that when σλσ

λ is negative we still have a solution of (1.1) if

(4.14)
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This formal solution has to be ruled out on physical grounds because
uμ in (4.14) is space-like. Two attitudes can now be adopted: either we
eliminate the region of space-time where σλσ

λ is negative or we fill the
region with some other kind of fluid. The first alternative does not seem
reasonable because the line element does not show any pathologies where
σλσ

λ becomes negative. We shall now try to find a reasonable stress-
energy tensor for the line element (2.10) where σλσ

λ is negative1.
From (1.8) we get the following stress-energy tensor:

Tμv = σ μσ v - τσtλσ
 λgμv (4.15)

where σ μ is a space-like vector field. From (3.19) we learn that Ztfl

is orthogonal to σ? j U, x>μ and y>μ and therefore it is a time like vector field.
Now let Z μ, σ t μ , x μ and y>μ denote the corresponding unit vector fields.
Using the fact that

9μv = Z,μZ>v - σ μσt v - x>μx>v - y>μy,v

the stress-energy tensor (4.15) can be written as:

The stress- energy tensor is that of an anisotropic fluid with positive
rest energy density — \σλσ

λ and vanishing heat-flow vector. Wo would
like to add that the energy inequality Tμvu

μuv^Q, for all time-like
vectors uμ, is satisfied. The widely adopted inequality (Tμλ,—^Tgμ^)uμuv^Q
is satisfied too [5]. We have therefore achieved a reasonable model.

5. Special Cases

In this section we shall consider particular plane symmetric solutions
of the perfect fluid model with p — w equation of state.

For the purpose of conversion to comoving coordinates it is con-
venient to notice a simple manner of integrating Eq. (3.19). The procedure
is to pick a solution Σ(ί, z) of Eq. (2.9) and set σ = Σz which solves the
same equation. It then follows from (3.19) that Z = tΣt. In this way we
avoid one integration.

(a) Static Space-time. If one assumes the corresponding timelike
Killing vector orthogonal to the surface σ = constant, it follows that
the static case is characterized by Z = Z(ί), and Σ turns out to be given by
Σ = ̂ a(z2+^t2) where a is a constant. From here we get Ω = a2t2/2.
It is, in (2.10), necessary to choose the minus sign to get time-like fluid

1 This approach has been suggested to us by R. K. Sachs.
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lines. The static solution then reads

e*
2t2/2

ds" = —-j=— (dz2 — dt2} — t(dx2

73

In comoving coordinates we have

(dT2 - dZ2) - aZ(dx2 + dy2)ds2 =

where a minor coordinate transformation has been made.
The interpretation is as follows: we choose d to be the proper distance

from Z = 0 along x, y, T constant. The density vanishes at Z = oo and at
Z = 0 as described by Fig. 2. The plane Z = 0 behaves like a hard wall.
It can be shown that all time-like geodesies oscillate between two Z
planes determined by initial conditions. No time-like geodesic ever touches
the wall. We can, nevertheless, imagine the space-time for Z < 0 to be the
vacuum solution (2.6). Strictly speaking one doesn't know the matching
condition for singular hypersurfaces but the type of divergence from both
sides of Z = 0 is exactly the same.

We conclude that the only way to have a static solution is to introduce
an additional boundary condition, the wall.

Fig. 2. Density dependence for the static space-time
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(b) Robertson-Walker Space-time. Without going through details we
find Σ to be given by

the metric by

and the density by

= t(dt2-dz2-dx2-dy2)

4 ί3

(c) Asymptotic Robert son- Walker Space-time. Here we shall consider
a particular solution which is inhomogeneous and anisotropic but
tends to an homogeneous space-time for large times. The solution
depends on two parameters α and β. For α2 + β2 = 3/2 we get Robertson-
Walker space-time asymptotically.

The case in question is defined by

σ = αlnί + βcos'1 z/t α > β > 0 .

Without going through details we give the main functions

Q = (α2 + β2) - z2/ί2) + 2αβcos

The variables z and ί are restricted to z2 ̂  ί2. We shall now make use of
Fig. 3 to state the behavior of the fluidlines. The fluid-lines P between N

Fig. 3. Behavior of the fluid-lines for the particular solution "<Γ
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and 5 are hyperbolas given by

t2

[Z//α2TF]2
-1

This last expression comes from the formula for Z above.
In the region between £ and N one has that σλσ

λ < 0, so we therefore
make use of the discussion at the end of section 4 to see that the fluid-lines
are now given by σ(f, z) = constant. N is the locus of points where
σλσ

λ = 0 and is given by

α2-/?2 - z .

itself a fluid line, A is parallel to the hyperbola's asymptotes and is given by

1
t = β.

We see that the fluid world-lines approach straight lines for f-»oo. We
shall now show that in this limit, space-time is homogeneous, and for
some values of the parameters, Robertson-Walker. All we have to do is to
carry out the inversion to comoving coordinates for t large and Z finite.
The calculation is straight-forward but rather long, so we omit it. The
result in comoving coordinates is:

where

K = Ί Ί exp 2aβ cos

T — e(σ - β cos - 1 β/Va2 + β2)/^

Zf = Z/α.

Therefore we get that for any group of fluid world-lines, defined in some
interval Zi ^ Z' ^ Z'2 and times T > (j8/|/α2 + jβ2) Z2 the space-time is
homogeneous. We also see that only α2 + β2 = 3/2 corresponds to a
Robertson-Walker space-time.
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(d) Shocks. By shocks we understand a three-surface across which
the pressure is discontinuous. We shall show that the present theory
does admit shock solutions by means of a special example. We shall also
sketch a method to generate arbitrary shocks solutions. The solution to
the continuity conditions across the shock has been given by Taub [6].
From these continuity conditions it can be shown that the shock can
occur only on characteristic surfaces, that is, along u = constant or
v = constant. These conditions in our case just amount to the continuity
of e~Ω defined by (2.10), and the derivatives of σ(u, v) within the shock
surface.

Let us assume the shock at u — 0. One way to construct these space-
times is to first assume a background solution σB(u9 v) with no disconti-
nuities. We then superimpose another solution σs(u9 v) defined only for
u<0 such that σs(0, t;) = 0. In this way we insure the continuity of σ_
across the shock. A sufficient condition for the continuity of e~Ω is
that σ+ be finite on both sides of the shock. Fortunately, it is simple
to give an integral representation for σs(u9 v). First we notice that
G(x)/]/(x — u)(v + x) is a solution of (2.7) for arbitrary x and then we
make a suitable superposition, namely,

° G(x)dx
σcίw, v) = — , u < U .

This integral solves (2.7) even with the variable limit of integration if
G(x) satisfies limxG(x) = 0. We prove the statement by assuming the

χ->0

usual rules of differentiation for parametric integrals after making the
change of variable to θ = x/u. Using the same method we can see that
σs(0, t;) = 0 follows from lim ]/ — x G(x) = 0. The jump pressure can

only be due to the jump in σ + (u9 v)atu = 0. The condition for a disconti-

nuity in σ+(u9 v) is just lim—- -]/ — x G(x)=t=0. The simplest choice for
~, , . *^o ax
G(x) is

where γ is an arbitrary constant.
To give just one example, let us choose

where σB corresponds to the Robertson- Walker space-time and σs

comes from our simple choice of G(x) [7]. It is straightforward to get
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the jump in pressure; the result is

Λ p i / π

where p stands for the pressure at u = 0 in the Robertson-Walker model.
For positive y the pressure on the Robertson-Walker side is the lowest.

We have checked the continuity of e~Ω. The fluid lines are everywhere
time-like for positive y. The formula for the jump in pressure is much more
general. It is simple to see that for small negatives value of u

E(u) ° G(x)dx
Hσs ^ —-Ί=- where E(u)= —,

yv u yx-u

and from here it then follows that

Δp
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