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Abstract. It is shown that any point of space-time has a neighbourhood U such that
the b-boundary U of U coincides with U\U.

1. Introduction

The b-boundary construction is a device to attach to any space-time
a set of boundary points [1]. Such a boundary point can be considered
as an equivalence class of inextensible curves in a space-time, whose
affine length [2] (i.e. the length measured in a parallely propagated
frame) is finite.

It may happen that such a curve is trapped in a compact set and still
defines a "boundary point". An example is given by a closed null geodesic,
which has moreover the following property. Choose a tangent vector X
to the geodesic at a point p and parallelly propagate it along the geodesic.
If we return to p with the vector λX, 0 < A < 1, then the affine length
traversed in going round the geodesic n times is 1(1 + λ + λ2 H h λn"i).
Hence the length of the inextensible curve defined by going round again
and again is finite. Such a situation occurs in Taub-NUT space [2].

From the above example we learn that the following is possible: If U
is an open submanifold of a space-time V4 with compact closure U
(relative to 74), then [/, the ^-boundary of the space-time 17, possibly
contains more points than C7\[7, the boundary of U relative to V4.
(From the definition of the fo-boundary, U\U CUis obvious.)

Now one can ask the following question, which - as far as the author
is aware - was first posed by Hawking: has any point pe V4 a neigh-
bourhood U such that Ϊ7\17 = 17? An affirmative answer to this question
is extremely important because otherwise the set of boundary points
could be dense in the topological space F4u V4! Clearly the b-boundary
would then be useless for a description of singularities.

The main purpose of this paper is to prove that t7\l7 = U holds,
provided there is no null geodesic trapped in U.
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Thisj.mplies in particular that for normal neighbourhoods N we have
always N\N = N9 the desired property.

To simplify terminology, we say that a space is locajly complete at a
point if there is a neighbourhood U of this point with U\U = U.

2. A Counter Example

The /^-boundary construction works not only for space-times but
for any linear connection. In this section I shall give an example of a linear
connection which is at no point locally complete !

The idea is to construct a 2-dimensional connection with the property
that there are closed curves in any neighbourhood of a point having a
lift of finite length into the frame bundle if we go around the closed curve
again and again.

The example of a closed null geodesic suggests that we construct a
connection whose holonomy group consists of homothetic linear maps φ,
i.e. φ(X) = CX for any vector X e Tx.

Consider the following analytic connection on R2, on which (x1, x2)
is a global coordinate system, whose only non-vanishing components are

Γί!=x2, Γf^-x1. (1)

The Riemann tensor at the origin is

nί \ _ /pi pi I pm pi pm pi \|
Λ j k l l O — \ Λ j \ k \ l ~ ί j l \ k ~r *• jk1 lm~ λ jl L km)\0 ,~

= (Γjk\l ~~^7z|fc)lθ

Hence the only non vanishing components are

Obviously all derivatives of Rl

klm vanish at the origin. Therefore Rl

kί2

generates the holonomy group, because the connection is analytic and
the manifold simply connected [3]. The linear maps generated by Rl

kl2

are, because of (3) ^6ϊ;_^f αeRι (4)

Take an arbitrary curve x'(ί), with xl(t + 1) = xl(ί) for any ί, such that
for a vector field X(t) which is parallelly propagated along x'(ί), we have
X(l) = q - X(0) with 0 < q < 1. Such curves exist in any neighbourhood
of any point because of (4) and because the local holonomy group is
isomorphic to the holonomy group for analytic connections [3].

If X = ζ1^-^, Y = η1^—^ are two linearly independent vector fields
dxl dxl

parallel along xl(t\ the components of xl(f) in the frame (X, Y) are

(5)
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and the bundle length of the horizontal lift of x'(ί) defined by (X(Q), 7(0)) is

J [α2 + β2]1/2dί = £ q* J[α2 + £2]1/2^<oo. (6)
0

Therefore this connection is not locally complete at any point.

The invariance groups of all indefinite metrics which are not normal-
hyperbolic contain subgroups which are homothetic on sub-spaces of
dimension ^ 2. Therefore it is very likely that such spaces are in general
not locally complete.

3. Proof of the Theorem

In this Section I shall show that every space-time is locally complete,
by proving a slightly more general

Theorem. // _V4 is a space-time and U an open submanίfold with
compact closure U which contains no trapped null geodesic, then U, the
b-boundary of U, coincides with U\U9 the boundary of U relative to V4.

Proof. The definition of the 6-boundary [1] obviously implies
U\U C U. Suppose there is a point in U which is not contained in U\U.
Such a point is defined by a Cauchy sequence uv in the Lorentz bundle
Jzf(l/) endowed with the bundle metric. We can assume that the points
uv are points on a horizontal curve u(λ) of finite length, with uv:= u(λv),
and having the properties: xv:=π(uv)C U, {uv;veN} is not contained
in a compact subset of π~ 1(C7). Without loss of generality we can assume
that (xv) has a limit x e U.

Let us choose a local cross-section around x, i.e. an open neighbour-
hood N oΐx and a map σ : N -> JSf (F4) satisfying π°σ = idN. The sequence
ύv:= σ(xv) has a limit ύ because xv->x.

The Lorentz group acts freely on the right on J2?(F4), and simply
transitively on the fibres (u->Rlu = ul).

Therefore there is a uniquely defined sequence of Lorentz trans-
formations L such that 7 ,.,

uv = uvlv. (1)

The action of the Lorentz group on the Lorentz frames (eα) is defined by

eα-*ebϋα (2)

where Lb

α is a Lorentz transformation with respect to a fixed ortho-
normal basis. Hence there is a unique decomposition

lv = rvbvrv (3)
V V V

4*
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with the properties: rv, Fv are spatial rotations keeping the timelike
vectors of the frames fixed; bv is a pure Lorentz transformation acting as

(4)

We know that uv is not contained in a compact set of π~1(ί/), therefore
|£v| < C is impossible. Because of this and the compactness of the rotation
group, there is a subsequence such that

rv,->r, rv,->r, £ V >^GG, ξv, + 1 - ξv, >α>0 (5)

holds for arbitrarily chosen α.
Instead of fiv,, we consider now the sequence

iV : = βV ' (Fv) ~ * = uv' rv' bV' (6)

which has a limit υ because of wv, ->M and rv>-+r.
The idea is to "slide down" the pieces of the curve w(λ), λv ̂  A ̂  λv> + x

from MV, = w(λv,) to ιv, and to calculate the change of the length of the
pieces. More precisely: ,^ ,_.y Cv:u(λ\ λv,^λ^λv, + 1 (7)

is a sequence of curves. If we apply the rotation rv to the curve Cv> we
get another sequence

Cv,rv,:vv.(λ):=u(λ)rv., λv,^λ^λv, + l (8)

and finally by applying bv

Cv,'.= Cvrvbv'.vv(λ):=υv,(λ}b^ λv^λ^λv + l . (9)

Because of (8) and (9), the initial points of C v/

vv,(λv) = uvrvbv = υv (10)

have a limit v. The endpoints of Cv, are

v' V + l = V' + 1 v 1 1 v' v'

and this, together with (5), shows the existence of a neighbourhood F
of v such that all endpoints of Cv are outside F. We shall need this later.

The bundle length of u(λ), 0 ̂  λ < oo, is finite, hence L(CV,\ the
bundle length of Cv/, tends to zero. If we apply a spatial rotation to a
horizontal curve, its length does not change, therefore

L(Cv,rv,)-»0. (12)

Using the standard horizontal vector fields [3], Bu: = B0 + B1, Bv\ = B0

— Bl9 B2, B3, the tangent vector of Cvrv is

SAX) = ΘU

V'BU + θ»v,Bυ + Θ2

V,B2 + Θ$B, (13)
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and therefore we find for the length of Cv> rv

L(CV. rv.) = "'if ' [(β;,)2 + W')2 + (»v2 )2 + (flv3')2]1'2 dλ . (14)
λv>

The relation υv (λ) = υv (λ) bv> implies [3] because of (4),

vv, = θ«,e-^Bu + θv

v,e^Bv + θ2

v,B2 + ΘΪB,. (15)

The length of Cv, is therefore

L(CV.) = "V]+1 \_e2^'(θ»,)2 + e-2**'(β°v,)
2 + (θ2.)2 + (ΘV

3,)2]1/2 dλ . (16)
λ v/

The fact that L(Cv,rv/)->0, together with (14) implies

7 |0;,|dλ-»0, V J + 1 |0 2 I<M->0, VJ+ 1 |ΘJ|dλ->0. (17)
λv' λv' Λ v >

This will now lead to a contradiction.
The initial points vv, of Cυ. tend to the limit v, and we have shown

above that there is a compact neighbourhood V o f v such that no endpoint
and no accumulation point of endpoints is contained in V. The integral
curve g(λ) of the vector field Bv passing through v projects onto a null
geodesic and therefore by our assumptions g(λ) leaves π~l(U\ This
implies the existence of a compact neighbourhood W of v9 WcV, such
that all integral curves of Bυ in π~ 1(t7) passing through a point in W do
not enter π~^(π(W)} again after leaving W, and moreover leave π~1((7).

Choosing W sufficiently small, we can construct a compact tube
T^)W around g(λ) which is the union of integral curves of Bv such that:
1. any integral-curve has a part of finite length outside π~ 1(C7) - in both
directions - 2. any hypersurface in T nowhere tangent to Bv is met by
an integral curve only once and 3. there exists a hypersurface H in T
which is met by any integral curve (comoving coordinates for the vector
field Bυ).

Then π~1(π(W))c}T= W holds, and therefore the curves Cv whose
initial points are in T for V ̂  N must leave T because the endpoints
are in π~1(π(W)) but not in W.

If we denote by τ the projection: τ : T^H defined by the fibration
of T by the integral curves of Bv, the following inequality holds as T
is compact

(18)

with constants A, B, (gb being the bundle metric).
Because all curves Cv leave T, they have a projection onto H whose

length is larger than a certain number, as the initial points converge to υ.
This, together with (18), contradicts (17); which completes the proof.
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Remarks. If one makes no assumption about the null geodesies ki U,
the proof given above shows that U\U φ U implies the existence of a
trapped geodesic. I have not been able to prove that this geodesic is
necessarily incomplete. This is easy to show if the null geodesic is closed,
or if all its accumulation points not on the geodesic are on a closed
geodesic. However, there is the possibility that the accumulation points
have a dimension greater than 1.

Corollary^ Every point xofa space-time V4 has an open neighbourhood
U such that Ό\U=U.

This is a trivial consequence of the theorem, because every point has
a normal neighbourhood in which no geodesies are trapped.
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