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Abstract. For each state of a C*-algebra its spectrum is defined and shown to coincide
with the spectrum of the naturally associated modular operator. For strongly clustering
states of asymptotically abelian C*-algebras the spectrum is minimal among the states in
the same quasi-equivalence class, hence is a *-isomorphic invariant for the weak closure
of the G.N.S.-representation. Furthermore, the non-zero elements in the spectrum of
strongly clustering states form a multiplicative group.

1. Introduction

If 21 is an asymptotically abelian C*-algebra and ρ is an extremal
invariant state with cyclic representation πβ9 the structure of ρ and
πρ(9l)" is quite well understood if πρ(2I)" is a semi-finite von Neumann
algebra [8, 13, 15, 16]. It is the purpose of the present paper to study the
general case when πρ(2l)" may also be of type III. This is best done if
we define the spectrum Spec(ρ) of a state ρ of a C*-algebra 51 to be -
roughly - the set of real numbers u such that there is A e 31 with ρ(A* A)—\
such that uρ(BA) is approximately equal to ρ(AB) for all B e 2ί (Defini-
tion 2.1). For example; ρ is a trace if and only if Spec(ρ) = {1}, and if ρ
is a pure state and not a homomorphism then Spec(ρ)= {0,1}. If xρ is
the cyclic vector such that ρ(A) = (πρ(A)xρ,xρ) for AeSΆ, we may cut
down πρ(2I)" by the support Eρ of the state ωXe, and define the modular
operator of Tomita of xρ relative to this smaller von Neumann algebra.
If we extend the modular operator to be 0 on the complement of Eρ it
turns out that its spectrum equals Spec(ρ) (Theorem 2.3). Together with
the resent results of Connes [2, 3] this result gives us a useful tool for
studying the spectrum of ρ. Now assume 91 is asymptotically abelian
and that ρ is a strongly clustering invariant state, e.g. if ρ is an invariant
factor state. Then our main result (Theorem 3.1) states that the nonzero
elements in Spec(ρ) form a closed subgroup of the multiplicative group
R + of positive real numbers. Furthermore, if ω is a state of 91 quasi-
equivalent to ρ then Spec(ρ)C Spec(ω). This last statement shows in
particular that Spec(ρ) is a *-isomorphic invariant for πρ(2I)". Since every
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proper closed subgroup of 1R+ is cyclic we have obtained an isomorphism
class for each we [0,1], where 1 corresponds to the group {1} and 0 to 1R+.
It seems that Spec(ρ) most often equals 1R+. This is in particular the case
when 21 is asymptotically abelian with respect to a one parameter group
and ρ is an extremal KMS-state (Corollary 4.5).

We shall follow the theory of asymptotically abelian C*-algebras as
developed in [15]. Thus we shall say a C*-algebra 21 is asymptotically
abelian with respect to a group G of *-automorphisms if there is a
sequence {#„}„= if2>..., in G such that lim ||[#n(,4), J5]|| = 0 for all A, B e 21.

This definition is sufficiently general to take care of most cases of physical
interest and extends in particular the original one of Doplicher, Kastler,
and Robinson [5] and Ruelle [12], in which case G is the translation
group 1RM. We refer the reader to [6] for a general survey of the theory of
asymptotically abelian C*-algebras. It is unclear at the present whether
our results can be generalized to other definitions of asymptotically
abelian systems.

As indicated above the main part of our analysis will be concerned
with the modular operator of Tomita. We refer the reader to the notes
of Takesaki [17] for the theory of Tomita and Takesaki. For the general
theory of von Neumann algebras the reader is referred to the book of
Dixmier [4]. We only remark that the strong-* topology on a von Neu-
mann algebra is generated by the semi-norms >4 —> ||^4JC|| + ||^4*x||? and
that the usual density theorems hold for this topology.

The author is indebted to A. Connes for very helpful correspondence.

2. The Spectrum of a State

In this section we shall give two equivalent definitions of the spectrum
of a state and then obtain some simple properties of the spectrum.

Definition 2.1. Let 91 be a C*-algebra and ρ a state of 21. Then the
spectrum of ρ, denoted by Spec(ρ), is the set of real numbers u such that
given ε > 0 there is A e 91 for which ρ(A*A) = 1 such that

\uρ(BA)-ρ(AB)\<ερ(B*B)*

for all B e 21.
We shall soon show that u must be non negative. A modification

of the same argument shows that in the definition we might as well have
assumed u to be a complex number. It is clear that the definition can be
generalized to other linear functionals.

Let ρ and 21 be as above. Let πρ be a representation of ρ on a Hubert
space ξ) and x a unit vector in § cyclic for π (21) such that
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ρ(A) = (πρ(A)xρ, xρ) for A e 91. Let 9ΐρ denote the von Neumann algebra
πρ(9ϊ)". Let Eρ = [9ίρxρ]. Then xρ is a separating and cyclic vector for the
von Neumann algebra Eρ$lρEρ acting on Eρξ>ρ. Let Aρbe the modular
operator of xρ relative to £ ρ 9ΐ ρ £ ρ , and consider it as an operator on § ρ

by defining it to be 0 on (/ — £ ρ )$ ρ .

Definition 2.2. With the above notation we call ΔQ the modular
operator of the state ρ.

Theorem 2.3. Let 91 fee a C*-algebra and ρ a state of 91 with modular
operator ΔQ. Then Spec(ρ) = Spec(zlρ).

Proof. Suppose wφO and ue Spec(ρ). In the notation introduced
above drop the subscripts ρ, so 9Ϊ = 5Rρ, E = Eρ, x = xρ, A=Aρ, π = πρ.
We first show u belongs to the spectrum of ωx considered as a state on
EWE. Since π(9I) is dense in 9Ϊ in the strong-* topology it is clear that u
belongs to the spectrum Spec(ωJ of ωx as a state of 9i.

Let ε > 0 be given. Choose A e 9ΐ such that \\Ax\\ = 1 and such that

1) \u(BAx,x)-(ABx9x)\<ε\\Bx\\

for all Be 91. Apply 1) to B(I - E). Since (I-E)x = 0 we have
u(B(I-E)Ax,x) = 0, so that (I-E)Ax = 0 by cyclicity of x. Thus
Ax = EAEx, and in particular ||£,4£x|| = 1. Apply next 1) to EB. Then

\u(EBAx, x) - {EAEBx, x)\ < ε \\EBx\\ ^ ε \\Bx\\ .

But (EBAx,x) = (BAx,x) = (BEAEx,x), so ue Spec(ωJ£5R£), as we
wanted to show (we are indebted to F. Combes for the quick proof we
have just given).

Restricting attention to E91E we may thus assume x is separating
and cyclic for 91 (so E = I). Let J be the conjugation so that JΔ^Bx
= A ~ϊJBx = B*x for B e 9ί [17, Theorem 7.1]. Since the Tomita algebra
(called modular algebra in [17]) is strong-* dense in 9ί we may assume A
belongs to the Tomita algebra, and thus Ax belongs to the domain of
zΓ* (see e.g. proof of [17, Theorem 10.1]). Then 1) becomes

\u{Ax, A -*JBx) - (Bx, JΔ^Ax)\ < ε \\Bx\\ ,
or

\(uA -*Ax, JBJx) - (A* Ax, JBJx)\ < ε \\JBJx\\ .

Since J<$IJ = <$1/ by [17, Theorem 12.1], and x is cyclic for W we have

\(uA-*Ax-A*Ax,y)\<ε\\y\\

for all y e §. Thus we have

\\A~*(uI - Δ)Ax\\ = \\uA-τ Ax- Δ^ Ax\\<ε .
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Now A ~*(Φl + Δ*) ̂  /. Hence we have

Since Ax is a unit vector and ε is arbitrary w* G Spec(zl^), hence u e Spec(J).
Now suppose u = 0 e Spec(ρ). If 0 φ Spec(zl) E = /, so x is separating

and cyclic for 9ϊ. Furthermore since O^Spec(J) there exists k>0 such
that Δ* ̂  fc/. By 1) we can for each integer n find An e 9ί such that
||^4nx|| = 1 and

\(Bx,A*x)\<(ί/n)\\Bx\\

for all B e 91 Since x is cyclic we have ||^4*x|| < l/w f° r e a c n n Thus

μ*x | | = \\JΔ-Anx\\ = \\Δ*Anx\\ ^k\\Anx\\=k.

This is a contradiction for n sufficiently large. Therefore 0 e Spec(zd), and
we have shown Spec(ρ)C Spec(zl).

Conversely assume u e Spec(J). We assert that 0 e Spec(zl ~*(ul — A)).
Indeed, if u = 0 then 0 e Sρec(zl^) = — Spec(J "^(0/ — A)\ so the assertion
holds for u = 0. If u φ 0 choose a spectral projection F for A such that
FA and FA~^ are bounded and weSρec(Fzl). Let ε > 0 and choose a
unit vector yeFξ> such that \\{ul — A)y\\ <ε/\\FΔ~*\\. Then we have

\\A-*(uI-A)y\\ = \\Δ~*F(uI-Δ)y\\ ^ ||z|-^F|| \\(uI-A)y\\ <ε.

Thus OeSpQc(A~i(uI-A)) as asserted. Now the Tomita algebra is
dense in the domain of A'^iμl — A\ (see proof of [17, Theorem 10.1]).
Therefore if ε > 0 is given there exists A in the Tomita algebra such that
\Ax\ = 1 and

Therefore if B e 9ί we have

\u(Ax,B*x)-(Bx,A*x)\

= \{uA~^Ax,JBx)-(A^Ax,JBx)\<ε\\JBx\\=ε\\B\\ .

Thus UE Spec (ωx). Since π(2I) is strong-* dense in % wGSpec(ρ). The
proof is complete.

Corollary 2.4. Let % be a C*-algebra and ρ a state of 91, ρ(A)
= (πρ(A)xρ,xρ)forAeSΆ. Then

i) Spec(ρ) is a closed subset of the non negative real numbers such
that 1 G Spec(ρ).

ii) // wφO, ue Spec(ρ) then M~ 1 G Spec(ρ).
iii) Spec(ρ) = {1} if and only if ρ is a trace.
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iv) Spec(ρ) = {0,1} if and only if ωXg is a trace on πρ(9I)' but ρ is not
a trace on 91.

Proof, i) Since 1 e Spec (Δ ρ) and Spec(zlρ) is a closed subset of the non
negative reals, the same is true for ρ by Theorem 2.3.

ii) Since wφO, t/eSpec(Jρ) implies u'1 e Spec(zlρ) by [17, Theo-
rem 7.1], ii) follows from Theorem 2.3.

iii) If ρ is a trace then ρ(4B) = ρ(BA) for all 4, B e ST. Let w e Spec(ρ).
Then

) μ ) |
for all A, £ e 51. If u * 1 letε = £ \u- 1|. Choose.4 e 91 such that ρ(4M) = 1
and such that

\u-l\\Q(AB)\<±\u-l\Q(B*Bf

for all B e 91. Thus |ρt4B)| < %Q[B*Bf for all 5. In particular if B = A*
we get 1 = ρ(A* A) = ρ(AA*) < \ ρ{AA*ψ = \, a contradiction. Thus w= 1.

Conversely, if Spec(ρ) = {l} then by Theorem 2.3 Spec(Λρ) = {l},
so ωx is a trace on πρ(9I)"5 see e.g. proof of [17, Theorem 13.1], hence ρ
is a trace on 9Ϊ.

iv) Assume Spec(ρ) = {0,1}. Then the spectrum of ^ l ρ £ ρ acting on
£ ρ 5) ρ is {1}, where Eρ = [πρ(S8)'χβ]. Thus, as above, ωXβ is a trace on
£ ρ π ρ (9I)"£ ρ , hence a trace on πρ(9I)'. By iii) ρ is not a trace. Conversely,
if ωx is a trace on πρ(9I)', but ρ is not a trace, then as above the spectrum
of Δe

QEQ is {1}, hence Spec(zlρ) = {0,1}, so by Theorem 2.3 S p e φ ) = {0,1}.
The proof is complete.

3. Asymptotically Abelian C*-Algebras

This section is devoted to the main result on asymptotically abelian
C*-algebras and its proof. Following [15] if 91 is a C*-algebra and G a
group of ^-automorphisms of 91, we say 9ί is asymptotically abelian with
respect to G if there is a sequence {#„}„>! in G such that whenever
A,BeSΆ then

where [ , ] is the Lie commutator. A G-invariant state ρ of 91 is said to be
strongly clustering (or strongly mixing) if for A, B e 91 we have

lim ρ(
n~~* oo

We shall need a concept which is slightly more general than that of
quasi-equivalence. If ρ and ω are states of 91 we say ω is quasi-contained
in ρ if the cyclic representation π ω of ω is quasi-contained in that π ρ of ρ;
in other words πω is quasi-equivalent to a subrepresentation of π ρ .

20 Commun. math. Phys., Vol. 28
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It is easy to see that ω is quasi-contained in ρ if and only if ω = ω ° πe,
where ω is a normal state of πρ(9ϊ)".

Theorem 3.1. Let 91 be a C*-algebra which is asymptotically abelian
with respect to a group G of *-automorphisms. Suppose ρ is a strongly
clustering G-invariant state. Then the nonzero elements in Spec(ρ) form
a closed subgroup of the multiplicative group of positive real numbers.
Furthermore, if ω is a state of 9Ϊ quasi-contained in ρ then Spec(ρ)
CSpec(ω).

We shall first prove a few lemmas. Let as in the proof of Theorem 2.3
π be a ^-representation of 91 on a Hubert space §, x a unit vector in §
cyclic for π(9l) such that ρ(A) = (π(A)x,x) for AeSΆ. Let SR = π(2l)",
let g-+ Ug be a unitary representation of G on § such that Ugx = x and
π(g(A)) = Ugπ(A) Ug~

1 for g e G, A e 91. Let Eo be the orthogonal projec-
tion on {yeξ>:Ugy = y for all g e G}. Then Eo = [x] is the one
dimensional projection on the subspace spanned by x, since ρ is extremal
G-invariant by [15, Theorem 4.4] and therefore Eo = [x] by [15, Theo-
rem 3.3]. Let {gn} be a sequence in G such that lim || \_gn{A\ B~\ || = 0 and

limρ(gn(A)B) = Q(A)ρ(B). Then by [15, Theorem 4.4] ί/gn->[x] weakly,

and if ^ 6 91 then t / ^ π ^ t / ^ ^ ρ ^ ) / weakly. Let £ = [ 9 ΐ / x ] be the
support of ωx on 5R. Let A be the modular operator of the state ρ (Defini-
tion 2.2) and J the conjugation of the Hubert space Eξ> defined by x,
so JEMEJ = EW by [17, Theorem 12.1]. Extend J to all of § by defining
it to be 0 on (/ — E)ξ>. Thus J = JE = EJ. Since ωx is invariant under the
automorphisms T^UgTU'1 its support E is invariant. Therefore
EUg=UgE ϊor allgieG.

Lemma 3.2. Lei A e π(9I). Lei y e <r>.

Proof. For β, C e 31 we have

lim || [0B-J (C), B] || = lim || [B, 3 n" '(C)] || = lim | ^(B) , C] | = 0,

and limρ(^-1(C)β) = limρ(β6rn-
1(C)) = limρ(0n(β)C) = ρ(β)ρ(C), so that

the sequence {gfn

-1} have the same properties as the sequence {#„}. Thus
for Be21 we have weak ]imUg~

1π(B)Uβn = ρ(B)I. Thus we have for

lim || 17"! ^ [7,^1 2

The proof is complete.
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Lemma 3.3. Let ε > 0 be given. Let A e π(2ί) be chosen so that
1= \\Ax\\ < \\EAx\\ +ε. Let yeEξ>. Then we have

< ε

Proof. We first consider the case when y = B'x with B'eW. Since
U~* E Ug = E for g e G and weak lim UQn = [x] we have

~ 1 γ R'* R/ γ\

N o w if w, j / , i

1) | | | w | | -

Indeed,

V
II

+
w — z

w — z
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IIΛ
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I M I -
w —
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Λ
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v — z | | + | II z
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-\\y\
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+ z —
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If y e Eξ> let δ > 0 be given. Since E = [9ί'x] we can choose F G 9ίr

such that ||£'x|| = \\y\\ and ||B'x-j>|| <δ/2||A||. From the case y = B'x
we can choose nγ so large that if n ̂  nγ then

Thus by 1), since Ĥ 'xH = ||y||5 we have for n^nx

ε\\y\\+δ/2 = δ + ε\\y\\.

Since δ is arbitrary the lemma follows.

Lemma 3.4. Let u e Spec(zlE), where ΔE is considered as an operator
on Eξ>. Let ε>0. Then there is A in π(9ϊ) with the following properties:

i)
ϋ)

iii)

Ax\\ = .
£,4x||>l-ε.
uiAx-JA*Jx\\<ε.

iv) // y is a unit vector in ξ> then there is nt such that if n^.nx then
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Proof. Since weSpec(zl£) there is by [2] B in EWE such that
\\Bx\\ = 1 and \\ΦBx- JB*JX\\ <ε/2. Since π(9ί) is strong-* dense in 5R
and £e9ϊ we can find AeπCk) such that ||(̂ 4 —J5)x|| <min{ε, ε/4ι^},
| | (^-B*)x <ε/4, and ||Ax|| - 1 . Then 1 = ||Bx|| ^ ||£Ax|| + ||E,4x-Bx

Ax — Bx\\ < \\EAx\\ + ε, so i) and ii) hold.
iii) follows since we have

\\u*Ax-JA*Jx\\

^ \\ΦAx- M*BX|| + \\u*Bx - JB*Jx\\ + \\JB*Jx - JA*Jx\\

< u*ε/4u* 4- ε/2 + ε/4 = ε,

if M Φ 0, and trivially if u = 0.
In order to show iv) we first assume y = Cx with C = π(2I). Let

z = ΦAx — JA*JX. Then by iii) ||z|| <ε. By Lemma 3.2 and definition
of 21 being asymptotically abelian we can choose an integer n1 so that if
n^nί then

Let An = UgnA Ug~
1. Since J = JE = EJwe have JAnJ = JE UQnA Ug~

x EJ
e JEWEJ = E$i\ In particular, JAnJECE = ECEJAnJ. As "remarked
before Lemma 3.2 EUg= UgE for all geG. Thus, since Ugx = x for g9

it follows from [16, Lemma 2] that JUg= UgJ for all g. We therefore have

\\E(u*AnCx-JA*JCx)\\

gM*||£[^Π,C]x|| + \\E(Cu*Anx-JA*JECEx)\\

< Φε + \ECiμ±Anx - JA*Jx)\\

£u*ε+\\Ug-n

1CUβn(u*Ax-JA*Jx)\\

< Φε + 2ε = (u* + 2)ε,

^n1. Now let y be an arbitrary unit vector in §. Since x is cyclic for
π(9l) we can choose C in π(9ϊ) such that ||Cx|| = 1 and | |Cx-j; | | <ε/
Let n1 be as above. Then for n ̂  n1 we have

\\E(u*Any-JA*Jy)\\

g \\Eu-An(y-Cx)\\

< ŵ ε + {Φ + 2)ε + ε = (2φ + 3)ε .

The proof is complete.
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Lemma 3.5. Let u,ve Spec(zl E). Let ε > 0. Then there exist A, Be π(Sί)
and an integer n2 such that if n^.n2 then

ii) ||£Bt/^^1x||-l|<2ε,
iii) \E({uvfBUgnAUg-n

ιx- J(BUgnAUg-n

ι)*Jx)\\ <(2(κι;)± + 2u± + l)ε.

Proof. Let A be chosen so that i), ii), iii) in Lemma 3.4 hold. Apply
Lemma 3.4 once more to find £eπ(9I) such that | | β χ | | = l and if
w = v^Bx — JB*Jx then ||w|| <ε/||,4||. Now from Lemma 3.4 and its
proof there is an integer nγ such that if n^ nx and An= UgnAUgn

γ then

\Eiμ±AnBx - JA*JBx)\\ < {Φ + 2)ε .

Also from the proof we have | | [^ί Π ,β] | | < ε for n^nx. Thus for n^nλ

we have

\\E({uvfBAnx-J{BAn)*Jx)\\

S \\E(uυγ [B 94Jx| | + \\E(uv)*AnBx-JA*B*Jx\\

?x- JA%JBx)\\ + \\EJA*J(v*Bx-JB*Jx)\\

and iii) is proved.
To show ii) we choose by Lemma 3.3 n2^nί such that iϊn^n2 then

Thus we have

|| | \\ || I H H | = 2ε .
Thus ii) follows, and the proof is complete.

Proof of Theorem 3.1. We first show that Spec(ρ)\{0} is a multipli-
cative group of positive real numbers. By Corollary 2.4 1 e Spec(ρ)\{0},
and if ue Spec(ρ)\{0} then so is M " 1 . Therefore it remains to show
Spec(ρ) is closed under multiplication. Let M, ve Spec(ρ), wφOφίλ
By Theorem 2.3 u,ve Spec(zlE). By Lemma 3.5 if ε > 0 there is S e EWE
(e.g. S = EBAnE) such that | | |Sx | - 1| <2ε and

\\(uυ)*Sx - JS*Jx\\ < (2(uvf + 2ϋ* + l)ε .

Since ε is arbitrary it follows from [2] that uv e Spec(zl), hence uve Spec(ρ)
by Theorem 2.3, and Spec(ρ)\{0} is a multiplicative group. By
Corollary 2.4 Spec(ρ) is a closed subset of the non negative real numbers.
Thus Spec(ρ)\{0} is a closed subgroup of the positive real numbers.

We next show that if ω is a state of 9ί quasi-contained in ρ then
Spec(ρ) C Spec(ω). Then ω = ω ° π with ω a normal state of 9ΐ. We first
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assume ω has support E. Since x is separating and cyclic for E91E, ώ = ωy

with y a unit vector which is separating for EWE [4, Theorem 4, p. 233].
Let u Φ 0, u e Spec(ρ). Then as above u e Spec(zlE). By Lemma 3.4 there
is Aeπ{SΆ) such that | |4x| | = l, | |E4x| | > 1-ε, and if An = UgnAU~n

 1

then there is nγ such that if n Ξ> nί then

2) \\u*EAny-JA*Jy\\<(2u* + 3)ε.

By Lemma 3.3 there is n2 ̂  nt such that if n ̂  n2 then

3) ||£^||-l|<β.

Choose JBeπ(SI) such that ||JBX-J;|| <min{ε, ε/||yl||}. Since 91 is
asymptotically abelian there is n3 ̂  n2 such that if n^n3 then

ε. Thus we have

\\EA*Ey-u*JAnJy\\

= \\EA*y-u*JAnJy\\

£ \\EA*(y-Bx)\\ + \\EA*Bx-u*JAnJBx\\+u*\\JAnJ{y-Bx)

< ε + \\EA*Bx - u*EBEJAnJx\\ + u^ε

S (u* + l)ε + || [A*, B]x\\ + \\EBA*x- u*EBEJAnJx\\

< {Φ + 2)ε + \EBUgn{A*x - u±JAJx)\

^{u* + 2)ε+\BUβn{A*x-u*JAJx)\ .

By Lemma 3.2 this converges to

(M* + 2)ε + ||JBX|| | |^l*x- w^J^lJx||

\JA*Jx-u±Ax\

Since ||βχ|| < | | j | | +ε = 1 + ε, we have that there exists n 4 ^ n 3 such
that if n ̂  n4 then

4) | | £ , 4 * £ j ; - M*J^ w Jy| | < (w* + 2)ε + ε(l + ε) + ε = (w* + 4 + ε)ε.

By 2) we have

5) \\u*EAnEy-JA*Jy\\<{2u* + 3)ε.

Let P = [£9ί£y]. Then PeEW, and j ; is separating and cyclic for
EWEP. By 5) we have

\\u*PEAnEy- PJA*JPy\\ < {2Φ + 3)ε .

By 4) we have

\{PEAnE)*y-u*(PJA*JP)*y\ = \\PEA*EPy-u*PJAnJPy\\

g \\EA*Ey - u*JAnJy\\ < (M* + 4 + ε)ε .
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Finally \\PEAnEy\\ = \\EAnEPy\\ = \\EAHEy\\ = \\EAny\\, so by 3)
I | |P£^Ey | | - \\y\\ \ < s. Therefore by [2] u belongs to the spectrum of Δω,
hence by Theorem 2.3 u e Spec^) = Spec(ω). Since Spec(ω) = Spec(ω),
us Spec(ω).

In particular we have shown that Spec(zl£)= f] Spec(zJφ), where
φ

the intersection is taken over all faithful normal states φ of EWE. By
definition n Spec(zlφ) equals the invariant S(EWE) defined by Connes [2].
If EWE is semi-finite then S{EWE) is either {1}, or {0,1}. Thus either ρ
is a trace or ωx 19t' is a trace by Corollary 2.4. If W is finite let (£ denote
its center. Let Φ be the centervalued trace on W [4, Theorem 3, p. 267].
By uniqueness of Φ [4, Theorem 3, p. 267], [ / ^ ( ί / ^ T φ ί / ; 1 = Φ{T)
for all TeW. Thus ωx(Φ(UgTUg-

1)) = ωx(UgΦ(T)Ug-
1) = ωx(Φ(T))9 so

that (ωJ(£)oΦ is a G-invariant normal state. By uniqueness of ωx

[15, Theorem 3.3] ωx = (ωx\&)° Φ, so ωx is a trace, hence so is ρ, and
Spec(ρ) - {1} by Corollary 2.4. Thus if W is finite Spec(ρ) = {1} = S(«),
and if W is not finite then S(SR) = {0,1} = Spec(ρ). Therefore in either
case Spec(ρ) = S(9ΐ) in case S(9t) is defined, and Spec (ρ)C Spec(ω) for
any state of 51 quasi-contained in ρ.

We now consider the case when EWE is not semi-finite. Then W is
not semi-finite, hence is of type III since the automorphisms T-> Ug T U~*
act ergodically on the center (£ of W [15, Theorem 3.3]. Then as remarked
in [3], OeSpec(ω) for all ω, hence we may assume us Spec(ρ), w + 0.
Furthermore, since W is of type III, every normal state of W is a vector
state [4, Corollary 9, p. 322]. Let ωy be a vector state of SR. Let F be its
support, F=[3Γy]. Since [91 y] ^1 = [SRx] we have [9ί}^]<[5Rx],
hence by [4,Theorem 2, p. 231] [Wy~] < [91'x], or F < £. Therefore there
is a partial isometry V in 9Ϊ such that F*F = £ 1 ^ £ , F F * = F. Since
£5R£ has a separating vector £ is countably decomposable [4, Proposi-
tion 6, p. 6]. Now the central carrier CF of F equals that of Eί. Thus
ECF~E1~F by [4, Corollary 5, p. 320]. Therefore FWF^EίWE1

~EWECF. Suppose we have shown Sρec(ρ)C S(EWECF). Then Spec(ρ)
CS(FWF), hence Spec(ρ)C Spec^), and Spec (ρ)C Spec (ω) for any
state ω of 91 quasi-contained in ρ. It therefore remains to consider the
case when y e EQ where Q is a central projection in W and the support F
of ωy equals EQ.

Let z be a vector in £(/ — β)§ which is separating for EWE(I — Q),
e.g. let z = (I — Q)x. Then y + z is separating for £9Ϊ£ and y + z e £ § .
By 4) and 5) there exist a constant k and an integer nA such that if n ̂  rc4

then

\\ < kε

z) - JA* J[y + z)|| < kε .
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By 3) we further have

\\\EAnE(y + z ) \ \ - \ \ y + z \ \ \ < ε \ \ y + z \ \ .

Thus we have

\\QEA*Ey-u*QJAnJy\\

= \\QEA*E(y + z) - u-QJAnJ(y + z)\\< kε

and similarly

\\u*EAnEQy-JA*JQy\\<kε.

Finally, by Lemma 3.3 ||£^4n£Qj;|| = ||1L4Π)/|| converges to | |j;| |. As in the
case when support ωy was E we let P = [E9lEQy]. Then P e EQW. If we
let S = PQEAnEand T = PQJA%JP then S ePQEKE and Te(PQEmE)'
and for sufficiently large n>n4 we have

\\S*y-u*T*y\\<kε9 \\u*Sy-Ty\\<ks9

and \\\Sy\\ - \\y\\\<ε. Thus by [2] weSpec(zϊωy), so by Theorem 2.3
ue Spec(ωy). This completes the proof of the theorem.

4. Applications

We note some consequences of Theorem 3.1. Throughout this section
we use our previous notation, so if 91 is a C*-algebra and ρ a state of 21,
then πρ is a representation of 91 on a Hubert space § ρ , and xρ a unit
vector in § ρ cyclic for πρ(9ϊ) such that ρ(A) = ωXe(πρ(Aj) for all AsSΆ.
Suppose 9Ϊ is asymptotically abelian with respect to a group G. Then if ρ
is a G-invariant factor state, i.e. πρ(9l)" is a factor, then ρ is strongly
clustering by [15, Corollary 4.5]. Hence we have the following corollary
of Theorem 3.1.

Corollary 4.1. Let 91 be a C*-algebra which is asymptotically abelian
with respect to a group G. Suppose ρ is a G-invariant factor state. Then
Spec(ρ)\{0} is a closed subgroup of the multiplicative group of positive
real numbers, and if ω is a state of 91 which is quasi-equivalent to ρ then
Spec (ρ)C Spec (ω).

If SR is a von Neumann algebra we extend the notion 5(9?) defined by
Connes [2] slightly and let S'(9Ϊ) denote nSpQc(Δφ), where φ runs
through the set of all normal states of 9ί (In the definition of 5(91) only
faithful normal states are considered). Sr(9ΐ) is, just as 5(9?), a *-isomorphic
invariant for 9Ϊ.

If 91 is a C*-algebra and ρ and φ two states of 91 they are called
algebraically equivalent if πρ(9I)" is *-isomorphic to πφ(9I)", see [10].
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Corollary 4.2. Let 91 be a C*-algebra which is asymptotically abelian
with respect to a group G. Suppose ρ and φ are strongly clustering G-
invariant states. Then S'(πρ(2I)") = Spec(ρ), hence if Spec(φ)Φ Spec(ρ)
then ρ and φ are not algebraically equivalent.

Proof. The first statement is immediate from Theorem 3.1. If Spec(φ)
φSpec(ρ) we therefore have that y(πρ(2I)")φS'(πφ(2I)"), hence πρ(9I)"
and πφ(9I)" are not *-isomorphic.

If 91 is G-abelian with respect to a group G of ^-automorphisms, see
[9], and if ρ is an extremal G-invariant state then by [16, Corollary 4]
πρ(9I)" is semi-finite if and only if ωx is a trace on πρ(9t)'. For G-invariant
factor states sharper results of this kind can be found in [15]. The next
corollary should be viewed as an extension of these results to the case
when πρ(9ϊ)" is of type III. Recall from [2] that if a countably decom-
posable von Neumann algebra 91 is semi-finite then S(9t)C {0,1}. Thus
in general the same is true for S"(9ΐ).

Corollary 4.3. Let 91 be a C*-algebra which is asymptotically abelian
with respect to a group G. Suppose ρ is a strongly clustering state. Then
Spec(ρ), which equals S'(πρ(9I)"), is one of the following sets:

i) Spec(ρ) = {1}, in which case ρ is a trace.
ii) Spec(ρ) = {0,1}, in which case ωx is a trace on πρ(9I)', but ρ is

not a trace.
iii) Spec(ρ) is the closure of the cyclic group {un} generated by a

number u e (0,1).
iv) Spec(ρ) is the non negative real numbers.

Proof, i) and ii) follow from Corollary 2.4. By Theorem 3.1 Spec(ρ)\{0}
is a closed subgroup of the positive real numbers. Hence the only
possibilities left are iii) and iv).

At this stage it should be pointed out that not all factors can be
obtained as πρ(9I)" for ρ a G-invariant factor state of an asymptotically
abelian C*-algebra. This can even be done for ITPFI-factors, i.e. infinite
tensor products of finite type I factors.

Corollary 4.4. There exist ITPFI-factors which are not of the form
πρ(9l)", where ρ is a G-invariant factor state of an asymptotically abelian
C*-algebra 91.

Proof. By [1, Theorem 10.10] there exist non denumerably many
mutually non-isomorphic ITPFI-factors 9Ϊ with asymptotic, ratio set
equal to {0,1}. By [3] the asymptotic ratio set of 91 equals S(SR). Thus
S(SR) = {0,1}. Since 5R is of type III it cannot be of the form πρ(9I)", where
ρ is a G-invariant factor state of an asymptotically abelian C*-algebra 91,
by an application of [15, Corollary 4.5] and Corollary 4.3.



292 E. St0rmer:

Let 21 be a C*-algebra and {σt: t e IR} be a one parameter auto-
morphism group of 2ϊ. Let ρ be an invariant state. Then ρ is said to be a
KMS-state if there is a constant β > 0 such that for each pair A, B e 21
there is a function F holomorphic in the strip 0<Imz<β and with
continuous boundary values

F(ή = ρ(σt(A)B) and F(t + ίβ) = φ(Bσt(A)).

(It is not necessary to assume ρ invariant, since this follows automatically.)
In quantum statistical mechanics it is sometimes of interest to study
KMS-states of one parameter groups with respect to which the C*-
algebra is asymptotically abelian. The next result is an extension of
[18, IV.4, Lemma 1' and 2].

Corollary 4.5. Let ^Άbe a C*-algebra which is asymptotically abelian
with respect to a one parameter group of automorphisms {σt}. Suppose ρ
is an extremal KMS-state of 21. Then either ρ is a homomorphism onto the
complex numbers or Spec(ρ) is the non negative real numbers.

Proof. By [17, Theorem 13.3] xρ is separating and cyclic for
SR = πβ(2l)". Since ρ is an extremal KMS-state 9ϊ is a factor by [17,
Theorem 15.4]. Since 21 is asymptotically abelian with respect to {σt},
ρ is strongly clustering by [15, Corollary 4.5]. Suppose ρ is not a homo-
morphism. Suppose Spec(ρ) is not the non negative real numbers. Since
xρ is separating for 91 Spec(ρ)φ {0,1} by Corollary 2.4. Thus by Corol-
lary 4.3 Spec(ρ)\{0} is the cyclic group generated by a number u e (0,1].
Let F be the spectral projection of the modular operator ΔQ of ρ onto
the subspace {yeξ>Q: Δρy = uy}. FΦO since u is an isolated point in
Spec(zlρ), which by Theorem 2.3 equals Spec(ρ). Let jtf denote the
abelian von Neumann algebra generated by the spectral projections
of Δρ. Then F is a minimal projection in j / , so Fsί1 = F33(§ρ)F, where
93(§ρ) denotes the bounded operators on § ρ . Since d i m § ρ ^ 2 by assump-
tion there is therefore a nonzero projection F e / orthogonal
to [xρ] and minimal in stf'. Since {σt} is an abelian group and
πQ(σt(A)) = Δi

ρ

tπρ{A)Δ~i\ Δi

ρ

txQ = xρ for all t, we have obtained a contra-
diction, since by [15, Corollary 4.6] [xρ] is the unique nonzero minimal
projection in s4'. Thus Sρec(ρ) equals the non negative real numbers.
The proof is complete.

Remarks. The factors studied by Powers [10,11] having what he
called property Lλ(0^λ^j) in [11], correspond to case iii) in Corollary
4.3 with u = λ/l — λ. His factors where constructed from product states
of the CAR-algebra, for which all factors were equal. These states are
strongly clustering with respect to the group of finite permutations of the
factors [14]. It should be remarked that Connes' proof [2] that the factors
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of Powers are non isomorphic, is much easier and direct than an applica-

tion of the theory developed in this paper.

The case iv) in Corollary 4.3 seems to be most common. For example
00

consider the infinite tensor product 91 = (X) Mi9 where each Mt equals
ί = l

the 3 x 3 matrices over the complex numbers, and consider the group of

finite permutations of the factors of 9ί. The extremal invariant states are

all of the form ρ = (x) ρt with ρt all the same state of Mh and they are all

strongly clustering [14, Theorem 2.7]. Suppose ρi(A) = Ύτ(HA) for all

A e Mf, where Tr is the usual trace on the 3 x 3 matrices, and H is a

positive matrix with Tr (H) = 1. If H has the eigenvalues λx ^ λ2 ^ λ3 φ 0

such that the quotients λjλj are not all contained in the same cyclic

subgroup of the positive real numbers, then Spec(ρ)\{0} is not a cyclic

group. Hence by Corollary 4.3 Spec (ρ) is the non negative real numbers,

and we have case iv) in the corollary.

An example in which the situation in Corollary 4.5 holds, has been

exhibited by Herman and Takesaki [7, § 3, Theorem 1].

References

1. Araki,H., Woods, E.J.: A classification of factors. Publ. RIMS, Kyoto Univ. Ser. A
4, 51—130(1968).

2. Connes,A.: Un nouvel invariant pour les algebres de von Neumann. Compt. Rend.
Ser. A 273, 900—903 (1971).

3. Connes,A.: Calcul des deux invariants d'Araki et Woods par la theorie de Tomita
et Takesaki. Compt. Rend. Ser. A 274, 175—177 (1972).

4. Dixmier,J.: Les algebres d'operateurs dans Γespace hilbertien. Paris: Gauthier-Villars
1957.

5. Doplicher,S., Kastler,D., Robinson, D.W.: Covariance algebras in field theory and
statistical mechanics. Commun. math. Phys. 3, 1—28 (1966).

6. Doplicher,S., Kastler,D., St0rmer,E.: Invariant states and asymptotic abelianness.
J. Funct. Anal. 3, 419—434 (1969).

7. Herman, R.H., Takesaki, M.: States and automorphism groups of operator algebras.
Commun. math. Phys. 19, 142—160 (1970).

8. Hugenholtz, N.: On the factor type of equilibrium states in quantum statistical
mechanics. Commun. math. Phys. 6, 189—193 (1967).

9. Lanford,O., Ruelle,D.: Integral representations of invariant states on i?*-algebras.
J. Math. Phys. 8, 1460—1463 (1967).

10. Powers, R.T.: Representations of uniformly hyperfinite algebras and their associated
von Neumann rings. Ann. Math. 86, 138—171 (1967).

11. Powers, R.T.: UHF algebras and their applications to representations of the anti-
commutation relations. Cargese lectures in physics, Vol. 4, pp. 137—168. New York:
Gordon and Breach 1970.

12. Ruelle,D.: States of physical systems. Commun. math. Phys. 3, 133—150 (1966).
13. St0rmer,E.: Types of von Neumann algebras associated with extremal invariant

states. Commun. math. Phys. 6, 194—204 (1967).



294 E. Stormer: Spectra of States

14. St0rmer,E.: Symmetric states of infinite tensor products of C*-algebras. J. Funct.
Anal. 3, 48—68 (1969).

15. St0rmer,E.: Asymptotically abelian systems. Cargese lectures in physics, Vol. 4,
pp. 195—213. New York: Gordon and Breach 1970.

16. St0rmer,E.: Automorphisms and invariant states of operator algebras. Acta Math.
127, 1—9(1971).

17. Takesaki,M.: Tomita's theory of modular hilbert algebras and its applications.
Lectures Notes Math. 128. Berlin-Heidelberg-New York: Springer 1970.

18. Winnink,M.: An application of C*-algebras to quantum statistical mechanics of
systems in equilibrium. Thesis, Groningen 1968.

E. St0rmer
Department of Mathematics
University of Oslo
Blindern, Oslo 3
Norway




