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Abstract. In order to construct the quantum field theory in a curved space with no
"old" infinities as the curvature tends to zero, the problem of contraction of representa-
tions of the corresponding group of motions is studied. The definitions of contraction of
a local group and of its representations are given in a coordinate-free manner. The con-
traction of the principal continuous series of the de Sitter groups S00(n, 1) to positive
mass representations of both the Euclidean and Poincare groups is carried out in detail.
It is shown that all positive mass continuous unitary irreducible representations of the
resulting groups can be obtained by this method. For the Poincare groups the contraction
procedure yields reducible representations which decompose into two non-equivalent
irreducible representations.

I. Introduction

It was stressed several times by Salam [1] that divergent integrals in
quantum field theory may be replaced by regularized ones using
Lagrangians intrinsically non-polynomial in character, in particular, all
gravity — modified matter Lagrangians. The gravity constant K then plays

the role of a cut-off provided there are no other constants in the

theory than — ~ 1019 GeV . Thus, we may hope that by taking gravity

into account, we can make the quantum field theory free of infinities.
We shall try to check this idea in another way, without assuming the

quantization of gravity but with the Einstein geometrical interpretation
of gravity instead. In other words, we shall construct the quantum field
theory in a curved space the curvature of which will hopefully play the
role of cut-off. Following Fronsdal [2] we may even hope that the quan-
tum field theory in a curved space in some well-defined limit goes not
only to the usual field theory in Minkowski flat space - time but also
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to a new one with no "old" infinities as the curvature tends to zero.
It means that the class of physical theories obtainable as limits as the
curvature tends to zero may be more restrictive.

In this paper we begin the programme and study the limiting pro-
cedure by which the representations of the de Sitter group (the group of
motions of space with constant curvature) go to the representations of
the Poincare group (the group of motions of the Minkowski space). This
procedure, called according to Wigner and Inδnϋ [3] contraction, is also
suitable for elucidating the relation between external and internal sym-
metries, for the unification of different theories, for finding representa-
tions of contracted Lie groups by knowing those of the initial groups,
etc., etc. That is the reason we study a more general case - contractions
of the principal continuous series of representations of the de Sitter
groups S00(n, I)1 to all non-zero mass representations of both the
Poincare group E0(n— 1,I)2 and the Euclidean group E(n).

The process of contraction has, by now, an extensive literature. The
first contraction process was proposed by Segal [4] and the more
specific ones by Inδnϋ and Wigner [3], Saletan [5], by Doebner and
Melsheimer [6] and by Zajcev (see the review article by Lykhmus [7]
which also contains other references).

In most of the papers the authors propose different contractions of
Lie algebras rather than of the Lie groups. Besides differences, the
approaches have also a common feature arising from the following well-
known facts. The Lie algebra of a given Lie group considered as a linear
space is described by basis elements (generators of the algebra) together
with the commutation relations among them. As shown by Cartan,
whenever we change the basis by a non-singular transformation the
resulting basis will describe the generators of an algebra isomorphic to
the original one. However, if the transformation is singular, a new algebra
may be received, provided that the properties of the commutator to be
the commutator of a Lie algebra are fulfilled. The papers [3—7] indicate
different ways of performing this singular transformation and necessary
and sufficient conditions that a given Lie algebra can be contracted into
another one. In practice, we consider a sequence of transformations of
basis elements rather than one transformation. Transformations in the
sequence depend on one (or more) parameter ε such that for all values
of parameter ε except one the corresponding transformation is regular
and in the particular point (usually ε = 0) the transformation becomes
singular. We may divide different approaches into two categories de-
pending whether

1 S00(n, 1) denotes the identity component of the pseudo-orthogonal group 0(n, 1).
2 E0(n, 1) denotes the identity component of the Poincare group with n spatial and

1 timelike dimension.
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i) all generators that depend on ε tend to zero in the same way as
ε— >0 or;

ii) whether some generators vanish faster then the others as ε-»0.

The typical simple examples of both categories can be obtained con-
sidering first the Lie algebra of 5(7(2), i.e., the algebra of angular
momentum, with commutation relations

and taking the transformation of generators either

i) Ji-+Jc

i(ε) = εJi, i = l , 2 , J3-»JS(ε) = J3 or
ii) Jt-> Jf (fi) - εJf, i = 1, 2, J3 -> J^ (ε) - ε2 J3.

As ε -> 0 we get new algebras - the algebra of the Euclidean group
E(2) = SO(2) χ)Γ2 with the commutation relations

[j<, jy = o , [j£, j|] = Jί , [j|, JΠ = JC

2

and the Heisenberg algebra with the commutation relations

[ Jί , J|] = J| , [ JS , J§] - [ Jί , J|] - 0 respectively.

From these examples we can easily see which generators previously
not commuting do commute as ε-»0 as well as why contractions [3-7]
are not satisfactory from the point of view of representation theory.
Really, in contracting representations we find the following main dif-
ficulties :

i) contracting the faithful representation of a given Lie algebra we
obtain, in general, a non-faithful representation of the resulting Lie
algebra (all generators multiplied by ε go to zero operators as ε->03).

ii) The resulting (contracted) Lie algebra is always non-compact.
Hence any contraction of a Hermitian (continuous) irreducible represen-
tation of some compact Lie algebra, which is always /im'ίe-dimensional,
has to yield at the end an iH/ϊraίe-dimensional Hermitian irreducible
representation of the non-compact Lie algebra. This difficulty is not
removed even if we start with a representation of the non-compact Lie
algebra which has already an infinite-dimensional representation space
because the contraction is coupled with a modification of the representa-
tion space (see [8]).

Wigner and Inonu in [3] (see also [8]) mentioned two ways of
treating the difficulties. In the first, they suggest using a similarity trans-
formation, Aε JfC(ε) -A"1, which does not change commutation relations,
but, if it depends on ε in a tricky way3, can make representations of all

3 In this section we clarify different points by using the simplest contraction pro-
cedure [3], however, the statements are also true for other procedures [5—7] which depend
on more parameters ε and their powers as well.

12*
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generators non-trivial as ε-»0. In the second, they change one represen-
tation of the initial algebra to another simultaneously with the change
of ε. Thus, a sequence of representations rather than some particular
representation goes to one contracted representation. In other words,
as ε decreases, the dimensionalities of the representations in the sequence
increase so that the resulting representation space becomes infinite-
dimensional as ε-»0.

These methods were applied for contractions of representations of the
following "de Sitter" groups: S00(2,1) into E0(M) in [8], SO0(4,1)
into £0(3,1) in [9], SO0(3,2) into £0(3,1) in [10] and SOQ(n, I) into
E(n) in [11]. However, no attempt was made at full generality nor at
complete mathematical rigor in these papers. With the exception of [8],
the authors used only infinitesimal approaches (i.e., contracted represen-
tations of algebras) which give rise to two delicate problems in addition —
the question of domains of definitions of generators4 and the question
of integrability of representations.

In order to avoid these complications we study the problem of con-
tractions of representations first of all globally, i.e., for the Lie groups.
We try to formulate the problem also more rigorously and generally.
Thus, in Section II we give the definitions of the contraction of a local
group and of its representations as well. The introduced definition of the
contraction of a Lie group differs essentially from that of Saletan [5]
since it is given in a coordinate-free manner. Sections III and IV are
devoted to the contraction of the principal continuous series of the
de Sitter groups SO0(n, 1) to all positive mass representations of the
Euclidean group E(ή) and of the Poincare group E0(n— 1,1), respec-
tively. Roughly speaking, it is shown that all continuous unitary irre-
ducible representations with positive mass of the group E(n) as well as
EQ(n— 1,1) can be obtained by the method. This result for E(n) agrees
with conclusions made by Wolf in [12]. For E0(n — 1,1), the contraction
procedure yields reducible representations which decompose into two
non-equivalent irreducible representations.

II. Definition of Contraction of Groups and of Their Representations

Saletan [5] has given a definition of the contraction of a Lie group
by using a one-parameter family of coordinate transformations. However,
this definition is not convenient in many cases, because, in general, it is
not always possible to cover the whole group by only one set of co-
ordinates. Of course, if we want to work only in some neighbourhood
of the identity, then one set of coordinate is sufficient.

4 In a continuous Hermitian representation of the non-compact Lie algebra some
generators are unbounded.
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We shall give here a global, coordinate-free definition, of the con-
traction of a topological group G to a topological group Gc. In fact, we
shall only assume that G is defined locally.

Definition 1. Let G be a local group [13] and Gc a topological group.
We say that Gc is a contraction of G if there exists a neighbourhood V of
the identity e in G such that V2 = {xy\ x, y e V] is defined and a family of
mappings

/ ε :F 2 -»G c ; ee[l,0)

such that

i) fε is a homeomorphism from V2 onto /ε(F2) for Vε e [1, 0),

ii) if xc e Gc then 3ε0 e [1, 0) such that xc e/ε(F) if ε < ε0, i.e., f~l(xc)
is defined and belongs to V when ε < c0,

iii) fε(e) is the identity in Gc for Vε e [1, 0),

iv) if x, y E Gc then x y = \irnf ε ( f ~ l ( x ) -/f1 GO)-
ε->0

We illustrate this definition by several examples.

Example L Let G be any topological group and Gc the identity com-
ponent of G. Let V=GC and fε be the identity map on V = V2. It is easily
seen that fε satisfies all the conditions of Definition 1.

Example 2. Let G = S1 (the additive group of a circle), parametrized
in the form eiφ, —π^φ<π and Gc = R1 (the additive group of a real
line). Let V= {φ\φe(- 1, 1)}, so that V2 = {φ\φe(-29 2)}, and let

/ F2-^1 be defined as fε(φ)= — φ. It is easy to prove again that
£

conditions i)— iv) of Definition 1 are fulfilled.

Example 3. Let G = S00(n, 1) and Gc = E(n). Every element of G can
be written uniquely in the form g = k p, where k e S0(n) and

j=ι

where MjιnΛ.± is the non-compact generator of a hyperbolic rotation in
the (/, n + l)-plane. This is the Cartan decomposition for G [14]. Topo-
logically p ~ Rn. For g e G, g = k p(ί1? . . . , tn) where fc can be represented
by an (n x n) orthogonal matrix with matrix elements kμv. Every element
of Gc can be written in the form fe r(ί1? ..., tn\ k<=SO(ri) and r(ί1? . .., tn) is
a translation by the vector t = (ίl5 ..., ίj. Let now V=V2 = G and

fε(k p(t}} = k r\— ί). The conditions i)-iii) are obviously satisfied. The



172 J. Mickelsson and J. Niederle:

condition iv) can be checked as follows :

p ( ε t ( 1 ) ) fc<2) - p(εt(2>)) (2.1)
ε->

= lim/ε(/c(1) - k(2} (k^Γ1 P(εf ( 1 )) fc(2) p(εf<2))) .
ε-» 0

If K denotes the Lie algebra of SO(n) and P= {Mj ? n + 1J = 1, 2, ...,«},
then [X, P] C P and [P, P] C K. Therefore, to the first order in ε we have

where ε/cj2)ίjυ means the vector {εfcjftj1*, εkffή1*, ...,ε/cj2 )ίjυ}. Com-
bining Eqs. (2.1) and (2.2) we obtain

which is equal to /c(1) - r(ί(1)) - /c(2) - r(ί(2)).

Example 4. G = S00(n,m) and Gc = £0(n, m — 1).
n + m-l

[>. Here, M^ n + m is the non-

compact generator of a hyperbolic rotation in the (/, « -f m)-plane. Let
F/ = { g f | g f e G , g f = fc p 5 feeS0 0 (n,m- l^peA'} . Then there exists z l>0
such that iϊV={g\gεVr,g = k' p(t\ -A<tj<Δ,j=l,29...,n}cVr then

F2 C F'. As in the previous example, we put fε(k p(t}) = k - r ί — ί], where
\ ε /

r(ί) is again a translation by the vector t. Using the same arguments as
before, we can show that E0(n, m — 1) is a contraction of SOQ(n, m).

The contractions of the groups in Examples 2-4 correspond to the
usual Inδnu-Wigner contractions of the corresponding Lie algebras.

Next we want to define what is meant by the contraction of a represen-
tation. For this purpose, we consider a one-parameter family of repre-
sentations &(g) of G in Hubert spaces tf ε, i.e., {^(g) in tf\ ε e [1, 0)}.
We assume that representations & are continuous and unitary. Let Aε

be a continuous linear mapping from Jjf ε to a Hubert space ffl such that
Aε:34fε-+Aε(34?ε} is unitary and for VφeJ'f there exists εψ such that

Definition 2. With the same notation as in Definition 1 if the limit of
Aε@

ε(f~1(g})A~1ψ exists for Vψ<=3^,\fgeGcasε-^Q and is continuous
in g, and the homomorphism G C 9 # — >£^(g) defined by

ε->0

is α unitary representation of Gc, the representation g-^&>(g) of Gc is said
to be a contraction of the representation g-*2l(g) of G.
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III. Contraction of Principal Series of Representations
of SOG(n, 1) to All Non-Zero Mass Representations of E(n)

Let G = KAN be the Iwasawa decomposition for G = S00(n, 1) [14].
Let M be the centralizer of A in K, M = S0(n - 1). We denote by (/, s)
the irreducible representation of P = MAN in the vector space J
defined by

@lm est

where m e M, ae A, ne N and 2l is the UIR of M characterized by the
highest weight / = (/ l 5 ..., l[±(n-i)]) and t is a parameter for the elements
in A. The representation of G induced by the representation (/, s) of P
and by the X-invariant measure dμ(x) on X = G/P « S""1 will be denoted

n—\
U(l's\ If s = — - -- h iv, v real, v Φ 0, it will be unitary and irreducible [15].

The Hubert space in which U(l's} acts is the space L($(X] of all square -
integrable functions on X with values in the vector space 2?(l\ The
scalar product is defined by

(φ, ψ) = j φ(x) ψ(x) dμ(x) .
x

The action of U(l's}(g\ the representative of ge G, is given by

(0) φ) (x) = est^ &(m(k^ gkx)) φ(g x) ,

where xeX is presented by a ^-component vector with unit length,
x2 = l, fex is any element of S0(n) such that kx(l,0, ...,0) = x, t ( g , x )
= t(gkx); gkx = ka(t)n and m(k~x gkx) means the first factor in the de-
composition k~x gkx = man, m e M, a e A and n e N. As the generator of
α(ί) we will take M l j Π + 1 (see Example 3, Section II). Now, we will put
Gc = £(n) and the family of maps {/ε} as in Example 3 in Section II. The
linear mapping Aε in Definition 2 is taken as the identity map 1 for every

ε e [1, 0). Moreover, we put s = — - -- h i — . Let us consider the limit

= Urn exp - + - - f (/Γ1 (0X x) (3.1)

• ̂ Mfc^.^x /;1^) **)) vί/r1 to) x) ,
where φ(x) e H$(X) and 0 e Gc. If g = k e S0(n) then we notice that for
every ε the expression above is equal to

@l(m(kϊ* k kx))φ(k x) (3.2)

and so is the limit ε -> 0.
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Assume, now, that g = r(p), i.e., a translation by the π-vector
= ( p ι , . . . , p n ) . Then,

ίε Σ PjMJ,nl
j = l

After putting (3.3) into (3.1) we obtain for the limit

lim exp φ(x).

On the other hand,

f (/f1 (Φ), x)) = t ( f - ί ( r ( p ) ) kx) = if*;1 -/Γ1 (Φ))

j . " ..._,.
= ί^exp tε L ((kx ΊJΓ Pr Mjtn+

(3.3)

(3.4)

+ 0(ε2) (3.5)

Combining (3.4) and (3.5) we get for the limit, which we denote by

(3.6)

(3.6')

Similarly, we denote the limit in (3.2) by

e ' l ( k ) φ(x) = ^ k kx)) φ(k x) .

Eqs. (3.6) and (3.6') define the UIR of E(n) characterized by the repre-
sentation 3)1 of the little group SO(n— 1) and by mass squared = ρ2.
But up to this we have only shown that at every point x e X

geGc. (3.7)

(3.8)

Next, we want to prove that

which is the condition appearing in Definition 2. Consider the subspace
SClί^PO consisting of all continuous functions on X with values in
Jjf(l). S is dense in lS}(X). Since X is compact, any element of S is a
bounded function on X. Let φ e S be fixed,

We define



de Sitter Groups 175

Using (3.1) and (3.5) it is easily seen that there exists M' > 0, c0 > 0 such
that Fε(x) < M' V x e X, ε < ε0. Because of (3.7)

lim Fε(x) = 0 . (3.9)
ε-»0

The left-hand side of (3.8) is equal to (when φ e S)

lim[f FE(x) dμ(x)-]- = [j limFe(x) dμ(x)]* = 0 . (3.10)
ε-»0 J ε->0

X is of finite measure and the functions Fε(x) are uniformly bounded
when ε < ε0, thus the order of integration and lim can be interchanged.

As S is dense in L(2 and all operators under consideration are unitary,
the condition φ e S in (3.10) can be dropped and (3.8) follows.

Thus, we have proved the following theorem:

Theorem 1. Every UIR of E(ή) characterized by "mass-squared"
= ρ 2 >0 and by the representation 2\l = (l^l2,...,/[t(n_1)]), of the little
group SO(n— 1), can be contracted from the representation U(l'*\

s — — h iρ, of the group S00(n, 1).

IV. Contraction of Principal Series of Representations of SOQ(n, 1)
to Positive Mass-Squared Representations of E() (n — 1, 1)

Let us denote by B the connected component of the identity of the
subgroup of SO0(n, 1) which leaves invariant the first component of any
vector in the defining representation. B = S00(n—l, 1). B' is the nor-
malizer of B in G = SO0(n, 1); B'^BuBτ, where

τ = diag(-l, -1,1,1,...,!).
(n — 1) t imes

We should like first to transform the representation U(l's} of G to a new
basis which makes the reduction G [B explicit (for further details see
[16] where n = 2, 3,4 and [17] for arbitrary n, however, ladder repre-
sentations; the general case is studied in [18]).

According to [18] almost every element of G can be written in the form

g = ban; # e G , bεB', aeA, n e i V .

Because of this decomposition, the representation U(l^} of G can be
realized also in the space I^(X] of square-integrable functions on
the manifold X = BΆN/MAN = B'/M instead of the manifold
X - KAN/MAN = K/M. The action of G in Il$(X) is given by [18]

l/(I s)(0) φ(x) = est^ ®l(m(b-l

x g bx)) φ(g - x ) , (4.1)
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where φ(x) is a square-integrable function on X with values in Jtf(l\ bx is
the coset representative of x and t ( g , x ) = t(gbx). The scalar product is
given by

(φ? ψ)= j φ(x) - ψ(x) dμ(x) (4.1')
xeX

where dμ(x) is the B'-invariant measure on X.
X can be realized as a two-sheeted hyperboloid in the Euclidean space

Rn:x = (x1,x2,...9xn), x? + xl + ••• +x^_ 1 -x^= -1. Then, bxeB' is
the element which takes the vector u = (0, 0,..., 0, 1) to the vector x

n

bx is a (n -f-1) x (n + 1) matrix of the type

/± 1 0 0 0

0 #22 ^23 t>2n+ i

0 ^32 & 3 n + l

v : : : /

\ U ^n+12 ^n + l n + 1 /

Let us note that under the subgroup B C B' the hyperboloids

V"i f \- \ v c V Q nrl v / I v I _ l _ 1 \A — ( x | x e Λ ana χ π / | χ j _ + 1)

remain invariant.
Now, we should like to contract the representations U(l's} of G to

representations of the Poincare group in π-dimensions, G° = E0(n— 1,1).
We use the family of mappings explained in Example 4, Section II. We
set again Aε=l for all εe [1,0). Let us denote by g-+@ρj(g) the repre-
sentation of Gc obtained. The contraction does not affect the action of
the subgroup BcG,BcGc:

9*>l(b} φ(x) = U(l^(b) φ(x) = @l(m(b^ - b - bx)) φ(b x),

n- 1
5 = —— + iρ , b e B .

Let us consider a translation r(p) e Gc by vector p.
Again, \imf~1 (r(p)) = β, the identity in G. Therefore,

= lim exp i - - t(fΓl (r(p)), x) φ(x) = @β'l(r(p)) φ(x) .
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In a similar way as in Section III, we obtain

]imt(f-1(r(p)),x) = εp x.
ε->0

It follows that (in the sense of pointwise convergence)

In order to show that

177

lim U" = 0,

(430

(4.4)

we consider dense subspace ScL($(X) of continuous functions with
compact support. Let φ e S and let us denote

It is easy to see that the functions φε(x), εe [ε0,0) are continuous. ε0 is
some positive number such that f~ l (r(p)) is defined when ε^ε0.

We define /"0~
 ί (r(p)) = lim f~ 1 (r(p)) = e. Consider the continuous

ε->0

mapping g, defined by

AQ is the support of φ(x). As [0, ε0] x A0 is compact and g is continuous,
the image of [0, ε0] x A0 in X is also compact. We denote it by A. From
φ ε ( x ) o c φ ( f ~ ί ( r ( p ) ) ' x ) it follows that each φε(x), εE[ε 0,0) is zero
outside the compact set A. We define now

The left-hand side of (4.4) is equal to

Hm[fFEM x) dμ(x) (4.5)

According to what has been said above, Fε(x) is zero outside A when
ε ̂  ε0 and thus the integration in (4.5) can be restricted to A.
With this we have completed the proof of (4.4). Thus, we have shown

that the representation U
representation

B 3 b-*®(l *\b : @(l>

of G can be contracted to the

φ(x) = - b - bx)) φ(b - x) ,

of Gc
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We should like to reduce this result to irreducible representations.
Let us consider first the subspace of L(1J (X] consisting of functions which
are zero on X~. We denote it by L($(X+). It is easily seen that L(1

2

}(X+)
is invariant under the action of Gc. Furthermore, this subspace carries
the irreducible representation of Gc induced by the representation & of
little group M corresponding to the orbit characterized by the "'time-like"
vector (0,0,..., 0, ρ).

The complement of L(1

2

)(X+} in L(1

2

](X) is the subspace lty(X~\ con-
sisting of functions which are zero on X + . From (4.2) and from the
definition of τ, it follows that b_x = bx τ. Thus, we can rewrite (4.6) in
the form:

(4.7)
> b >bx τ})* A'1 φ(b - x) ,

where A is a linear mapping from L(1

2

)(X+) on to L(ζ(X~} given by
Aφ(x) = φ(-x).

From (4.7) we conclude that the restriction of the representation (4.6)
of Gc to the subspace L(l^(X~) is equivalent (via the linear mapping A) to
the following representation, realized in the space L(l^(X + ):

r(p)

> Q} (b) φ(x) = 9

(r(p)) φ(x) - έ
^•b b^φ^ x),

φ(χ),
(4.Ϊ

The representation (4.8) is induced by the characters of the translation
subgroup which belong to the orbit of B with the characteristic "timelike
vector" (0, . . . , 0, — ρ) and by the representation

of the little group M. We have to distinguish two cases: whether the group
S00(n, 1) is with n even or n odd.

a) n is even (n = 2k)

The group M = SO(n— 1) is t
matrices

m e M, m =

1 0 0 .
π\j

0 (

T

) 0 .

.. 0\
o\J

. . I /

, Tis an (n— 1) x(n — 1) matrix.
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Consider subgroup S0(n - 2) C M with Tof the form

/ I 0 . . . 0\

0

0

It is easily seen that

Tf is an (n — 2) x (n — 2) matrix.

The restriction of 3)1 to S0(n — 2) is, therefore, equivalent to the
restriction of $)1 to S0(n — 2). Now, every irreducible representation of
S0(2k — 1) is completely determined (up to an equivalence) by its restric-
tion to the subgroup SO(2k — 2). It follows that Q)1 is equivalent to 2l

b) n ί s o d d ( n = 2k+ 1)

It is not true that irreducible representations of S0(2k) are com-
pletely determined by their restriction to the subgroup SO(2k— 1). Let
/ = (ίιΛ, Λ)> (/ !^/ 2 ^ ••• ^ l / f c l ) be the highest weight of an IR of
S0(2k). Let Γ= (/!, /2, ..., - /J. Then the restrictions of ̂  and ̂ τ to the
subgroup S0(2k— 1) are equivalent. By studying the effect of τ on the
Cartan subalgebra {Hi\i= 1, 2, ..., k} one finds that

τHiτ = Hi, ϊ = 1, 2, ..., k - 1 ,
(4.9)

τHkτ=-Hk,

where Ή ί? / = 1, 2, . . . , k - 1 belong to the algebra of SO(2k - 1) and Hk

does not. From (4.9) we conclude that & is equivalent to ̂ Γ The results
of the last section lead to the following theorem :

n — 1
Theorem 2. 77ιe representation (7(/?s) o/ SO0(n, 1), s = — - -- h iρ, can

be contracted to the representation &(l'β} of £ 0(n-l 5 l). ^(/' ρ) = ̂ (+ ρ)

©^-'ρ), where &+ρ} are irreducible representations. ^(+ρ) is induced by
the representation p-^e±ιρpn of the translation subgroup and by the
representation Q)l

± of the corresponding little group S0(n— 1). &+ = &
$)l_ =&, where l = Tjf n is even, andT= ( / 1 ? / 2, ..., — / Π _ Λ , ί/ n is odd.
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