Exact Solution of the Dirac Equation with a Central Potential

E. J. Kanellopoulos, Th. V. Kanellopoulos, and K. Wildermuth
Institut für Theoretische Physik der Universität Tübingen

Received March 24, 1972

Abstract

The exact solution of the Dirac equation with a central potential, in the semi-relativistic approximation, is derived and formulae for phase shifts and eigenvalue equations are given.

Introduction

The integro-iteration method, introduced in Ref. [1] is applied to the solution of the Dirac's coupled radial equations. The solutions are obtained in a form similar to that of the Schrödinger equation [2], i.e., in simple series which converge strongly when the following restrictions are imposed on the potential $V(r)$:

$$
\begin{equation*}
V_{r \rightarrow 0}(r) \rightarrow r^{-\beta} \beta \leqq 1 \tag{1a}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{a}^{\infty} V(r) d r<\infty \quad \text { for } \quad 0<a<\infty \tag{1b}
\end{equation*}
$$

Condition (1 b) excludes the Coulomb potential, but in this case the solutions are already known [3, 4]. On the other hand in cases with a screened or modified Coulomb potential [5] the method is applicable and one can get results to any desired accuracy.

I. Formulation

In semi-relativistic approximation the Dirac equation with central potential, after separation of the angular part, [3], is reduced to a system of two coupled radial equations [5];

$$
\begin{align*}
(E+V+m) F_{v}+\frac{d G_{v}}{d r}-\frac{v}{r} G_{v} & =0 \\
-(E+V-m) G_{v}+\frac{d F_{v}}{d r}+\frac{v+2}{r} F_{v} & =0 \tag{2}
\end{align*}
$$

Here we use the same notation as in Ref. [5], but for simplicity we have put $\hbar=c=1$, and $v=l$ for $j=l-\frac{1}{2}$ and $v=-l-1$ for $j=l+\frac{1}{2}$.

If we put

$$
\begin{align*}
G_{v} & =\frac{g_{v}}{r} \\
F_{v} & =\frac{f_{v}}{r} \tag{3}
\end{align*}
$$

we obtain the more symmetrical form:

$$
\begin{align*}
(E+V+m) f_{v}+g_{v}^{\prime}-\frac{v+1}{r} g_{v} & =0 \tag{4}\\
-(E+V-m) g_{v}+f_{v}^{\prime}+\frac{v+1}{r} f_{v} & =0
\end{align*}
$$

For $V=0$ the solutions of (4) are readily obtainable and are expressed in terms of Bessel functions if $E^{2}-m^{2}=k^{2}>0$ and modified Bessel functions if $E^{2}-m^{2}=-\kappa^{2}<0$.

Let u_{1} and u_{2} be two independent solutions of (4), with $V=0$, regular respectively irregular at the origin, corresponding to g_{v}^{0} and v_{1} and v_{2} those corresponding to f_{v}^{0}. We normalize them in such a way that

$$
\operatorname{det}\left|\begin{array}{ll}
u_{1} & u_{2} \tag{5}\\
v_{1} & v_{2}
\end{array}\right|=1^{1}
$$

Next we look for a solution of (4) in the form:

$$
\begin{align*}
& g_{v}(r)=C_{1}(r) u_{1}(r)+C_{2}(r) u_{2}(r) \\
& f_{v}(r)=C_{1}(r) v_{1}(r)+C_{2}(r) v_{2}(r) \tag{6}
\end{align*}
$$

where $C_{1}(r)$ and $C_{2}(r)$ are functions to be specified, such that (6) are solutions of Eqs. (4). Using Lagrange's method of undetermined coefficients, and taking into account (5) we find:

$$
\begin{align*}
& C_{1}^{\prime}(r)=-C_{1} V\left(u_{1} u_{2}+v_{1} v_{2}\right)-C_{2} V\left(u_{2}^{2}+v_{2}^{2}\right) \\
& C_{2}^{\prime}(r)=+C_{2} V\left(u_{1} u_{2}+v_{1} v_{2}\right)+C_{1} V\left(u_{1}^{2}+v_{1}^{2}\right) . \tag{7}
\end{align*}
$$

Applying the integro-iteration method [1] we find the general solution of $(7)^{2}$:

$$
\begin{align*}
& C_{1}(r)=\lambda_{1} e^{-f(r)} \Phi_{1}\binom{r}{a, a}-\lambda_{2} e^{-f(r)} \int_{a}^{r} A_{22} e^{2 \not f\left(r^{\prime}\right)} \Phi_{2}\binom{r^{\prime}}{a, a} d r^{\prime} \\
& C_{2}(r)=\lambda_{2} e^{f(r)} \Phi_{2}\binom{r}{a, a}+\lambda_{1} e^{f(r)} \int_{a}^{r} A_{11} e^{-2 \not f\left(r^{\prime}\right)} \Phi_{1}\binom{r^{\prime}}{a, a} d r^{\prime} \tag{8}
\end{align*}
$$

[^0]where λ_{1}, λ_{2} are arbitrary constants,
\[

$$
\begin{align*}
& A_{11}=V\left[u_{1}^{2}+v_{1}^{2}\right] \\
& A_{22}=V\left[u_{2}^{2}+v_{2}^{2}\right] \tag{9}\\
& A_{12}=V\left[u_{1} u_{2}+v_{1} v_{2}\right] \\
& f(r)=\int_{a}^{r} A_{12} d r^{\prime}
\end{align*}
$$
\]

and

$$
\begin{align*}
\Phi_{1}\binom{r}{a, a} & =1-\int_{a}^{r} A_{22} e^{2 f} d r^{\prime} \int_{a}^{r^{\prime}} A_{11} e^{-2 \not} \Phi_{1}\binom{r^{\prime \prime}}{a, a} d r^{\prime \prime} \tag{10a}\\
\Phi_{2}\binom{r}{a, a} & =1-\int_{a}^{r} A_{11} e^{-2 f} d r^{\prime} \int_{a}^{r^{\prime}} A_{22} e^{2 f} \Phi_{2}\binom{r^{\prime \prime}}{a, a} d r^{\prime \prime} \tag{10b}
\end{align*}
$$

The regular solution at $r=0$ is obtained from (8), if we put $\lambda_{2}=0$ and $a=0$, i.e.:

$$
\begin{align*}
& C_{1}(r)=e^{-f(r)} \Phi_{1}\binom{r}{0,0} \tag{11}\\
& \quad C_{2}(r)=e^{f(r)} \int_{0}^{r} A_{11} e^{-2 \not} \Phi_{1}\binom{r^{\prime}}{0,0} d r^{\prime} .
\end{align*}
$$

Finally we get:

$$
\begin{align*}
g_{v} & =u_{1} e^{-f} \Phi_{1}\binom{r}{0,0}+u_{2} e^{\nrightarrow} \int_{0}^{r} A_{11} e^{-2 \not f} \Phi_{1}\binom{r^{\prime}}{0,0} d r^{\prime} \tag{12}\\
f_{v} & =v_{1} e^{-f} \Phi_{1}\binom{r}{0,0}+v_{2} e^{\ngtr} \int_{0}^{r} A_{11} e^{-2 \not f} \Phi_{1}\binom{r^{\prime}}{0,0} d r^{\prime}
\end{align*}
$$

For the existence of the solution (11), or (12), we have only to consider the convergence of the central function $\Phi_{1}\binom{r}{0,0}$. The last is guaranteed by the condition [1]:

$$
\bar{q}=\int_{0}^{\infty}\left|A_{22} e^{2 f}\right| d r^{\prime} \int_{0}^{r^{\prime}}\left|A_{11} e^{-2 f}\right| d r^{\prime \prime}<\infty .
$$

If the potential $V(r)$ fullfils the conditions (1) then the function

$$
f(r)=\int_{0}^{r} A_{12} d r^{\prime}
$$

is bounded for any $0 \leqq r \leqq \infty$. Let be $|\nmid|<\mu$, then we have

$$
\begin{aligned}
\bar{q} & \leqq e^{4 \mu} \int_{0}^{\infty}\left|A_{22}\right| d r \int_{0}^{r}\left|A_{11}\right| d r^{\prime} \\
& \leqq e^{4 \mu} \int_{0}^{\infty}|V|\left\{\left|u_{2}^{2}\right|+\left|v_{2}^{2}\right|\right\} d r \int_{0}^{r}|V|\left\{\left|u_{1}^{2}\right|+\left|v_{1}^{2}\right|\right\} d r^{\prime}
\end{aligned}
$$

The r.h.s. consists of four terms. If we apply for each of them the argument used in [2] § III we prove that all of them are bounded, provided that the potential $V(r)$ obeys conditions (1).

II. Results and Discussion

(i) The application of the integro-iteration method leads, also in the present case, to the explicit expressions of the radial wave functions in a very simple way.
(ii) For $E^{2}-m^{2}=k^{2}>0$ (scattering problems) we find for the phase shifts η_{v} :

$$
\begin{equation*}
\tan \eta_{v}=+\frac{e^{f(\infty)} \int_{0}^{\infty} A_{11} e^{-2 f} \Phi_{1}\binom{r}{0,0} d r}{e^{-f(x)} \Phi_{1}\binom{\infty}{0,0}} \tag{13}
\end{equation*}
$$

where $v=l$ or $-l-1$. It is understood that for every case we have to employ, for the calculations of $\not \not, A_{11}$ and A_{22}, the corresponding expressions of $u_{j}, v_{j}(j=1,2)$ given in the Appendix.
(iii) On the other hand if $E^{2}-m^{2}=-\kappa^{2}<0$ (bound states) we find the eigenvalue equation:

$$
\begin{equation*}
\Phi_{1}\binom{\infty}{0,0}=0 . \tag{14}
\end{equation*}
$$

(iv) The phase function [6] also is explicitly obtained:

$$
\begin{equation*}
S(r)=+\frac{e^{f(r)} \int_{0}^{r} A_{11} e^{-2 f} \Phi_{1}\binom{r^{\prime}}{0,0} d r^{\prime}}{e^{-f(r)} \Phi_{1}\binom{r}{0,0}} \tag{15}
\end{equation*}
$$

It is easy to verify that the phase function (15) is the solution of the Riccati equation:

$$
S^{\prime}=\left[A_{11}+2 A_{12} S+A_{22} S^{2}\right]
$$

or,

$$
\begin{equation*}
S^{\prime}=V\left[\left(u_{1}+u_{2} S\right)^{2}+\left(v_{1}+v_{2} S\right)^{2}\right] \tag{16}
\end{equation*}
$$

with

$$
S(0)=0 .
$$

This expression is found in [6]. The difference is due to the different "normalization" of u_{i}, v_{i} which we adopted in order to have

$$
\operatorname{det}\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|=1
$$

(v) From (12) we find:

$$
\begin{aligned}
& \int_{0}^{\infty} V\left(g_{v} u_{1}+f_{v} v_{1}\right) d r=\int_{0}^{\infty} A_{11} e^{-f} \Phi_{1}\binom{r}{0,0} d r \\
+ & \int_{0}^{\infty} A_{12} e^{\neq} d r \int_{0}^{r} A_{11} e^{-2 \nmid} \Phi_{1}\binom{r^{\prime}}{0,0} d r^{\prime}
\end{aligned}
$$

Integrating by parts the second term in the r.h.s. we find:

$$
\begin{equation*}
\int_{0}^{\infty} V\left(g_{v} u_{1}+f_{v} v_{1}\right) d r=e^{f(x)} \int_{0}^{\infty} A_{11} e^{-2 \neq} \Phi_{1}\binom{r}{0,0} d r \tag{17}
\end{equation*}
$$

In a similar way we find:

$$
\begin{equation*}
\int_{0}^{\infty} V\left(g_{v} u_{2}+f_{v} v_{2}\right) d r=-e^{-f(\infty)} \Phi_{1}\binom{\infty}{0,0}+1 \tag{18}
\end{equation*}
$$

From (17) and (18) we have:

$$
\begin{equation*}
\tan \eta_{v}=\frac{\int_{0}^{\infty} V\left(g_{v} u_{1}+f_{v} v_{1}\right) d r}{1-\int_{0}^{\infty} V\left(g_{v} u_{2}+f_{v} v_{2}\right) d r} \tag{19}
\end{equation*}
$$

with $v=l$ or $-l-1$.
The expression (19) is analogeous to that given by Parzen [7], Eq. (71).
(vi) Finally we mention that the method can be applied with the same easiness to the scattering by a modified Coulomb field and it could be useful for the determination of the nuclear charge density $\varrho(r)$ and the corresponding formfactors [5].

Appendix

If we put in (4) $V=0$ we obtain:

$$
\begin{gather*}
(E+m) f_{v}^{0}+g_{v}^{0 \prime}-\frac{v+1}{r} g_{v}^{0}=0 \\
-(E-m) g_{v}^{0}+f_{v}^{0 \prime}+\frac{v+1}{r} f_{v}^{0}=0 \tag{A.1}
\end{gather*}
$$

The system can be reduced to two uncoupled Bessel differential equations. If u_{1}, u_{2} correspond to g_{v}^{0} and v_{1}, v_{2} to f_{v}^{0} we make the following choice of the solutions:
(i) $v=l, E^{2}-m^{2}=k^{2}>0$
$u_{1}=(E+m)^{\frac{1}{2}} \sqrt{\frac{\pi r}{2}} J_{l+\frac{1}{2}}(k r), \quad v_{1}=(E-m)^{\frac{1}{2}} \sqrt{\frac{\pi r}{2}} J_{l+\frac{3}{2}}(k r)$,
$u_{2}=-(E+m)^{\frac{1}{2}} \sqrt{\frac{\pi r}{2}} Y_{l+\frac{1}{2}}(k r), \quad v_{2}=-(E-m)^{\frac{1}{2}} \sqrt{\frac{\pi r}{2}} Y_{l+\frac{3}{2}}(k r)$.
(ii) $v=-l-1, E^{2}-m^{2}=k^{2}>0$
$u_{1}=(E+m)^{\frac{1}{2}} \sqrt{\frac{\pi r}{2}} J_{l+\frac{1}{2}}(k r), \quad v_{1}=-(E-m)^{\frac{1}{2}} \sqrt{\frac{\pi r}{2}} J_{l-\frac{1}{2}}(k r)$,
$u_{2}=-(E+m)^{\frac{1}{2}} \sqrt{\frac{\pi r}{2}} Y_{l+\frac{1}{2}}(k r), \quad v_{2}=(E-m)^{\frac{1}{2}} \sqrt{\frac{\pi r}{2}} Y_{l-\frac{1}{2}}(k r)$.
(iii) $v=l, E^{2}-m^{2}=-\kappa^{2}<0$
$u_{1}=(m+E)^{\frac{1}{2}} r^{\frac{1}{2}} I_{l+\frac{1}{2}}(\kappa r), \quad v_{1}=-(m-E)^{\frac{1}{2}} r^{\frac{1}{2}} I_{l+\frac{3}{2}}(\kappa r)$,
$u_{2}=(m+E)^{\frac{1}{2}} r^{\frac{1}{2}} K_{l+\frac{1}{2}}(\kappa r), \quad v_{2}=(m-E)^{\frac{1}{2}} r^{\frac{1}{2}} K_{l+\frac{3}{2}}(\kappa r)$.
(iv) $v=-l-1, E^{2}-m^{2}=-\kappa^{2}<0$
$u_{1}=(m+E)^{\frac{1}{2}} r^{\frac{1}{2}} I_{l+\frac{1}{2}}(\kappa r)$,
$v_{1}=-(m-E)^{\frac{1}{2}} r^{\frac{1}{2}} I_{l-\frac{1}{2}}(\kappa r)$,
$u_{2}=(m+E)^{\frac{1}{2}} r^{\frac{1}{2}} K_{l+\frac{1}{2}}(\kappa r), \quad v_{2}=(m-E)^{\frac{1}{2}} r^{\frac{1}{2}} K_{l-\frac{1}{2}}(\kappa r)$.
With thischoice the couples $\left(u_{i}, v_{i}\right)$ satisfy Eqs. (A.1) and, [8]

$$
\operatorname{det}^{-}\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|=1
$$

References

1. Kanellopoulos, E.J., Kanellopoulos, Th.V., Wildermuth, K.: Commun. math. Phys. 24, 225 (1972).
2. - Commun. math. Phys. 24, 233 (1972).
3. Darwin, C. G.: Proc. Roy. Soc. A 118, 654 (1928).
4. Mott, N. F.: Proc. Roy. Soc. A 124, 426 (1929).
5. -, Massey, H.S. W.: The theory of atomic collisions: $3^{\text {rd }}$ Ed. Ch. IX. Oxford: Clarendon Press 1965.
6. Ronveaux, A.: Am. J. Phys. 37, 135 (1969).
7. Parzen, G.: Phys. Rev. 80, 261 (1950).
8. Bateman Project: Higher transcendental functions, Vol. II, Ch. VII. New York: McGraw Hill Book Co. Inc. 1953.
E. J. Kanellopoulos

Th. V. Kanellopoulos
K. Wildermuth

Institut f. Theoretische Physik
Universität Tübingen
D-7400 Tübingen, Köstlinstr. 6
Germany

[^0]: ${ }^{1}$ For explicit expressions of $u_{j}, v_{J}(j=1,2)$ for every case see Appendix.
 ${ }^{2}$ We use the same notation as in Ref. [1].

