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Abstract. We study the grand partition function of a system of identical particles
interacting via a superstable potential in the presence of an external field depending on
a scale factor. We discuss the case when the scale factor increases to infinity (macroscopic
limit for the external potential) and we prove rigorously a link between the so obtained
pressure and the usual one (barometric formula).

1. Introduction

Many efforts have been devoted to the discussion of the thermo-
dynamic behaviour of macroscopic systems in a rigorous statistical
framework [1]. In this spirit the notion of macroscopic potential has
not yet been fully considered1. When a gas of particles is in thermodynamic
equilibrium in an external potential, the external field is considered
macroscopic if the following requirement is fulfilled: it is possible
to divide the whole space in subregions small enough for the potential
to be approximately constant in them, but large enough to consider in
each region statistically independent systems.

The aim of this paper is to discuss these topics in a quantitative
and rigorous way. We study the classical grand partition function of a
system of identical interacting particles in an external field depending on
a scale factor. The macroscopic limit for the external potential is achieved
letting the scale factor increase to infinity. As a result a link is found
between the so obtained pressure and the usual one (barometric formula).

We remark that the previous procedure can provide by a small
external field an explicit breakdown of the symmetry of statistical systems.

* Research partially supported by the Consiglio Nazionale delle Ricerche.
1 Recently a similar problem has been discussed for classical particles with an hard

core: see [2] and [3].
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It can also be useful for discussing the thermodynamic limit with not
rigid external walls. Finally sometimes it is possible to solve exact
models in an external field, and then come back to the pressure in the
thermodynamic limit with rigid walls [4, 5].

In order that this macroscopic limit exist the natural requirement
on the mutual interaction would be the stability; but to avoid anomalous
large fluctuations of the number of particles in finite regions, we shall
consider the particles interacting via supers table potentials2. As stressed
by Ruelle this is not a real loss of generality with respect to the class of
stable potentials [6].

The quantum extension of the previous results will be discussed in a
subsequent paper.

2. Notations, Assumptions and Results

We consider a system of identical particles interacting via a potential U
and moving in an external potential V. We assume

(D.I) Let V:1RV^[O, oo] such that exp[-V(x)] is a Riemann
integrable function in W. The external potential is then defined to be
V(yx) where y e (0,1].

(D.2) Let Φ: [0, oo] ->1R with Φ Lebesgue measurable. The inter-
particle configuration energy is then defined to be

U ( x 1 , . . . , x J = £ Σ l φ ( l l * i - * j l l ) Xi,...,xMeIR\

Note. For the sake of simplicity we have considered only pairwise
interactions; the results we obtain hold also in the general case.

(D.3) Classical stability: there exists B ^ 0 such that for all m, x l 9 . . . ,x m

(D.4) Weak-tempering: there exist Kγ ^ 0, α > v, x0 > 0 such that

Φ(x)^Kιχ-a for x^x0

It is now possible to define for our system the grand canonical
partition function and the corresponding pressure as

(D.5)

Zy(μ,β)= J - ( exp(βμn)-λ"

(2.1)

dxt ... dxn exp -β

2 Our results hold also for some not necessary superstable interactions, for instance
for free particles and in general for non negative potentials.
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where Aexp(βμ) is the activity.

Py(μ9β) = fβ-1\nZy(μ9β) (2.2)

We shall also use the pressure in absence of external fields both for
finite and infinite volumes

(D.6)

(2.3)

f l
Λ"

When the volume of the region A increases to infinity in the Fisher
sense [1] we define

)= lim P(μ,β,Λ) (2-4)

In the sequel we shall also need the two following further assumptions
on the interaction

(D.7) Superstability: let Φ = Φ' + Φ" where Φ' is stable and Φ" is a
continuous non negative function with Φ"(0)>0.

(D.8) Lower regularity: there exist i C 2 ^ 0 , α > v such that

Φ{x)^-K2x~a for x^O.

The main result of this paper is the following theorem, which proves
the existence of the thermodynamic limit of the pressure defined in (D.5)
and gives an explicit link with the rigid walls pressure of Eq. (2.4).

Theorem 1. Let Φ satisfy (D.2), (DA), (D.7) and (D.8) and V satisfy
(D.I) then

lim β~xf In Zy(μ, β)= J dx P(μ - V(x), β)

In the sequel we shall use the sets of cubes

Γt{r) = {x e W : (/ - \ ) I ̂ x ί < (rl + 1 ) / i = l , ...,v}, (2.5)

i i i i - « i = l , . . . , v } (2.6)

where leΈ+ and reΈv and 0 < R < ~ .

We shall also use the following notat ion

| x | = max \xl\ xeW, (2.7)
1 ^ i ^ v

J(a) = integer part of a , α e 1R. (2.8)
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3. Macroscopic Limit

In this section we give the proof of Theorem 1. First we prove two
lemmata which give a lower and an upper bound.

Lemma 1 (Lower bound). Let Φ satisfy (D.2), (D.3), (DA), then

lim inf 0 - y lnZy(μ, β) ̂  f dxP(μ - V(x), β).
y-0

0

Proof. We now sketch the main line of the proof. We follow the
physical ideas discussed in the introduction. We divide the space in
cells separated by corridors. For evaluating the interaction between
different cells we limit the density in each region. Then we perform the
macroscopic limit, so that the external potential becomes constant in
each cell. Succesively we prove that there exist a suitable way to go to
infinity for the cutoff on the density and the sizes of the cells and the
corridors so that the mutual interaction is eliminated and the pressure is
reconstructed.

We consider in 1RV the two sets of cubes {Γ^ή} and {Γt R(r)} defined
by Eqs. (2.5), (2.6) with the condition

R^xo (3.1)

and x0 is defined in (D.4). The set {Γt(r)} determines a partition of 1R\
the cubes Γt R(r) are obtained from the cubes Γ^r) subtracting a corridor
depending on R. By condition (3.1) particles belonging to different cubes
of the set {Γt R(r)} interact via the asymptotic form of the potential. If
less than M + 1 particles are in each of the cubes Γt R(r) an upper bound,
W(Γ| j R, M), can be easily given for the interaction of a cube with all
the others:

(3.2)

r Φ O

We obtain a lower bound for Zy(μ9 β) if we restrict the domain of
integration to the region (J Γt κ(r)clR vand further we impose that in

each cube no more than M particles are present. We have, using Eq. (3.2)

M

l+exp(-βKM2R~a) X (niy1 λn

n=1 ' /

V(r,/, y)]} j dx1 ... dxnQxp{ — j8U(x 1 ? . . . , xn)

where
exp[ —V(r,/, y)] = inf exp[ — V(yx)] . (3.4)

xeΓ,{r)
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Using the Hypothesis (D.I) that exp[ — V(x)] is a Riemann integrable
function we have

lim infylnZ r(μ, β) ̂  j dy\Γ,{0)\~* ^
(3.5)

We now perform in a suitable way the limit of Eq. (3.5) for M->oo,
l-^co,R->oo. We restrict the integral in Eq. (3.5) to a compact region
3 ClRv; we will see later that the bound is continuous in the volume \3)\
so that the good inequality will be reconstructed. If we use the relation

[Γ, β(0)]

Eq. (3.5) becomes

lim infyvlnZ7(μ, j8) ^ -1®| |Γ,(0)| KβM2R

J d x 1 . . .

dy P [ μ -

[i", «(0)Ί"

In deriving the second inequality in Eq. (3.6) we used the relation

l n ( α - f > ) £ l n α - l n ( l + b), ft^O, a^b+1,

• \ dxλ ...dxnQxpl-β\J(x1,...,xn)-].

a= £ (nlΓ1 λ»Qχplβn(μ-V{y))]

- J dxi...dxcexpl-βυ(xu...,xn)-].
LΓ,.Λ(0)j"
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Using the stability we can now bound from below the third term in
the r.h.s. of Eq. (3.6), and then perform the limit for M, /, R going to
infinity in a way that M^>1^> R. Namely chosen η verifying

we let M go to infinity and for every M larger than a fixed Mo we pose

l = Mv~'-\ R = MV~'-^.

It is easy to find that

liminfj8-yinZy(μ,j8)^ \ dyV{μ-V(y\β) (3.7)

We used the Lebesgue theorem noting that, by stability,

β?(μ-V(ylβ,ΓUR(0)) (3.8)

^ l ^ n ί O r M n j f jw!)-1 exp[jSn(μ-V(j>))] λπexp(j8Bn) |ΓIfJl(0)r

= λexp(j8B + βμ) e x p [ -

which is a summable function in IRV. This circumstance allows to perform
the limit in Eq. (3.7) for the region <3) invading 1RV so that the proof is
completed. Q.E.D.

In order to obtain the required upper bound we use the probability
estimates given by Ruelle [6]. From his results it is in fact possible to
deduce in a straightforward way the following lemma3.

Lemma 2. Let Φ satisfy (D.2), (D.7) and (D.8), then given a bounded
Lebesgue measurable region A, there exist a > 0 ξ > 0 such that for
every integer m ̂  0

£ )] f dx1...dxm \ dy,...dyn

• exp
i = ί

^(m!)" 1 exp(- βVΛm) ξmexp{-ocm2)Zγ{μ, β)

where

exp[-j8VJ=Jdxexp[-j8V(y*)]
A

Lemma 3. (Vpperbound). Let Φ satisfy (D.2), (DA), (DJ) and (D.8),
then

lim sup j8~y lnZy(μ, β)^\dx?{μ- V(x), ]8)

3 It follows from the proof of Theorem 0.1 Ref. [6] when we add to the usual measure
of the space the weight: exp[ —

11 Commun. math Phvs.. Vol 27
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Proof. We divide again the space in cells. The proof would be
trivial if there is no mutual attraction. The proof is still simple if the
local density is bounded (hard core); in this case in fact it is possible to
estimate the attaction between different cells, which otherwise could be
unbounded. In our case we divide the contributions to the grand partition
function in two parts: the first with a cutoff in the local density, the second
with large density. The latter contribution is controlled by means of
Lemma 2.

For every integer m > 0 we divide the configuration space lRvm into
two disjoint regions, W^1 and its complement [1R]^]C. In W^1 less than
M + 1 particles are present in each Γ^r). In IR]̂ 1 a lower bound, W(n, M),
can be given for the interaction of the particles in a cube Γ 2 n + 1 (r) with
all the others namely exists a ̂  0 such that

W ( n , M ) = - α M 2 n 2 v ~ α (3.9)

where α is given in (D.8). Using Eq. (3.9) and Lemma 2 we can write

Z>,j8) 1 - Σ Σ (mi)"

£ Σ {nrιexp{βμn)ldxx...dxn (3.10)

• exp
ί = l

where
exp( —j3V r l)= j dxexp[— j8V(yx)] (3.11)

We define
q(y) = goy , ^ 0 > 3. (3.12)

We can then write

Zy(μ,β)\ί- X £ (m!)- 1 ί "exp(-αm 2 )exp(-j8Ϋ r , 1 m)
[ reZ v m = M+l

= π

J
where B is defined in (D.3) and

exp(-VΓ > 2 n + i ) = sup exp[-V(yx)]
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We will choose in Eq. (3.13) the value of M in correspondence to
each value of y. There exist b such that for every MeΈ+ and ye(0,1]
the following is true

r e P m = M + 1

<bξMy-vexp(M~MlnM).

Then M(y) is chosen to be

(3.14)
b=l + c exp(l), c = (ξ + 1) (b + 1) exp(l).

With this choice of M(y) it can be verified that the l.h.s. of Eq. (3.13)
is always positive. Therefore we have

- Σ Σ (m!Γ1Γexp(-αm2)exp(-^Vr lm)

blLo yQXP y (3.15)

j dx1 ... dx^ exp [-

We used the inequality

v= f (NO
i V = 1

In the limit y -> 0 and n -^ oo

Eq. (3.15) becomes

μ,0)^j8 J P ( μ - V(y),
bl^βo

+ exp[iS(μ + B)] J
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By Eq. (3.8), using the Lebesgue theorem when g0->oo, the Lemma is
proved. Q.E.D.

By Lemmata 1 and 3 the following theorem is proved.

Theorem 1. Let Φ satisfy (D.2), (DA), (D.7) and (D.8) and V satisfy
(DΛ) then

lim/ryinZ y(μ,/?)= f dxP(μ- V(x), β).

Acknowledgments. We are indebted to G. Gallavotti for many helpful suggestions
and discussions.

Note added in proof. After this paper was sent to the review, it appreared a note by
K. Millard, a statistical Mechanical approach to the Problem of a Fluid in an External
Field, Journ. Math. Phys. 13, 222 (1972), in which a similar problem is discussed supposing
hard core.
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