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Abstract. We prove that, at low temperature, the line of separation between the
two pure phases shows large fluctuations in shape. This implies the translation invariance
of the correlation functions associated with some non translation invariant boundary
conditions and should be a peculiarity of the dimensionality of the model.

1. The Line of Separation

It has recently been conjectured that the surface of separation between
two pure phases is, at low temperature and for short range potential
models, rigid in the case of a 3-dimensional model and non rigid in
2-dimensional models [1, 2].

In this paper we prove the truth of the conjecture in the 2-dimensional
Ising model.

The precise meaning of what "surface of separation" and "rigid"
mean will be given below and has already been discussed in the literature
[3].

Let Ω be a N x N square lattice centered at the origin: let i — 1, 2,..., N 2

be a label for the center of each unit square composing Ω. We assume
that on each site i e Ω is located a spin σ{ — ± 1 and that the energy of
a spin configuration ρ = (σγ,..., σN2) is given by:

H N W = - i l > i f f j - i X σi + i Σ σs (1.1)
<ij> ϊed+Ω \ed~ Ω

where £ means, as usual, sum over the pairs of nearest neighbour
< i j >

couples of points in Ω and d+ Ω (d Ω) denote the points adjacent to the
upper half (lower half) of the boundary dΩ of Ω.

The physical meaning of (1.1) is that HN(σ) corresponds to the energy
of a configuration of spins interacting through a nearest neighbour pair
potential and, also, interacting with a set of external fixed spins adjacent

* This work has been partially supported by the Consiglio Nazionale delle Ricerche
(Gruppo Nazionale per ΓAnalisi Funzionale): CNR(GNAFA).

8 Commun math Phys., \ ol 27



104 G. Gallavotti:

*

A '

_

-

+ - - - + + + + + + - +

- - - + - + _ - - - + -

Fig. 1.

to dΩ from the outside: the spins adjacent to d +Ω being + 1 and the
ones adjacent to d~ Ω being — 1.

A picture of this situation is given in Fig. 1 where the boundary
condition is illustrated together with a possible spin configuration (in
the picture Ω is a 12 x 12 box).

As usual it will be much more convenient to describe a spin configura-
tion through the lines of separation between regions containing opposite
spins. To do so we draw a line on the lattice bonds which separate
opposite spins: the set of lines thus obtained splits into several connected
components and, at each vertex of the lattice will end 0, 2,4 lines with
the important exception of the vertices A, B (see Fig. 1) where 1 or 3 lines
will end.

For an example of such a construction see Fig. 2 where the lines
corresponding to the spin configuration of Fig. 1 are drawn.

- - -0- -
Fig. 2.
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We shall consistently call y1,..., yn the connected components of the
set of lines corresponding to a given spin configuration and which do
not contain the points A, B; we shall call λ the component containing
A, B (it is easily realized that the component containing A must also
contain B).

It is clear that there is a one-to-one correspondence between the
"contour configurations" and the spin configurations: a contour con-
figuration being a set y1? ...,yn9λ of (n-h 1) disjoint sets of lines in Ω
such that n of them (y1,..., yn) are "closed" (i.e. every vertex x e y{ belongs
to two or four lines of y) and the other λ is "open" with end points A
and B (i.e. every vertex xeλ belongs to two or four lines unless x = A
or x = B).

It is very important to notice that, if |)λ|, \λ\ denote the "lengths" of
yi5 λ, then the energy of a spin configuration σ = {yλ,..., yn, λ) is given by
(see (1.1)):

HN(σ) = C N 4 - μ | + _ Σ | 7 i | (1.2)

where CN is a suitable constant (i.e. a σ-independent object).
The grand canonical ensemble corresponds to assigning the con-

figuration σ = (y1, ..., yn, λ) the probability:

( L 3 )

where the normalization factor Z(Ώ, β) (gran canonical partition func-
tion) is:

X Σ (1.4)

At low temperature the system "exhibits long range correlations"
corresponding to the fact that there are two possible equilibrium states
[4]. The fact that the spins on the upper half of the boundary are fixed
to + 1 will favor the formation of the pure phase with positve magnetiza-
tion in the upper half of Ω while, for the same reasons, the negatively
magnetized phase will be favoured in the lower half of Ω.

These intuitive ideas are put in a precise form by the following
theorem: [5,9]

Theorem (Minlos-Sinai). // β is large enough then a configuration
σ = (λ,y1? ...,yn) chosen randomly out of the grand canonical ensemble
will have properties ij, ii), in) listed below with a probability approaching 1
as N—> GO (we use the notation \Ω\ = N 2J :
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ί) λ is such that

| | / l | - N | < ~ N for some C>log4. (1.5)

ii) ly^rgCologΩ for some C 0 > 0 . (1.6)

Hi) if m* denotes the spontaneous magnetization [6] and Mχ (M^)
denotes the total magnetization (i.e. the sum of the spins) above (below)
λ then:

where κ(/?)—>0 exponentially fast.

The contour λ will be called the "line of separation" between the
two phases: this line is almost straight, because of i), with very large
probability.

In the next two sections we introduce a more precise notion of
"straight line" and discuss other known results which will be the basis
for our investigation of "how straight" λ is.

2. When a Random Line is Straight

Denote Ω\ and Ωh

λ the regions above and below λ and put:

Zo(Ω(i> β) = V . exp - β Y \γ{\ i = a, b (2.1)

where the sum runs over the spin configurations above or below λ
(if i = a or b) described by contours y l 5..., yn with no points in common
with λ.

In terms of (2.1) one can write the probability pN(A) that the separation
line of a spin configuration coincides with λ as (see (1.3)):

, β) • (AZ)

λ'

We shall say that the phase separation line λ is "rigid" or "straight" if
the probability, after (2.2), that λ passes through a fixed point x does not
tend to zero as N—•GO for some x; in the opposite case we shall say
that the line λ is "loose" or "non rigid"

We stress that in the above definition of rigidity, the point x is held
fixed as N-+oo and, therefore, x is at a fixed distance from the center
OofΩ.

We shall prove that, in the model under discussion, the line λ is loose
at low temperature, therefore λ will pass "very far" from any fixed
region Q with a probability tending to 1 as N—»co. In other words we
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shall prove that there is a function D(N), D(N) N_>-> oo, such that the
probability that the distance d(λ, Q) exceeds D(N) tends to 1 as N—•oo.
The best choice for D(N) will roughly be proportional to j /N.

It is clear that the techniques used in Ref. [4] combined with such
a result will imply that the correlation functions <σX i,..., σXn}Ω will have
a limit as N—> oo, at fixed x1,..., xn, and

lim<σX i,. . .,σX n>Ω = i«σ X i , . . . ,σ X n > + +<σ X i , . . . ,σ X n >-) (2.3)
N ~* oo

where < >+,< >~ denote the correlation functions of the two pure
phases [4].

Hence the correlation functions associated with the (non trans-
lationally invariant) hamiltonian (1.1) will be translationally invariant
and, we observe, this phenomenon is quite remarkable since it is not
expected to happen in 3-dimensions.

The technique we use can be easily understood from a physical point
of view: we picture λ as a sequence of "jumps" each of which is interpreted
as a particle of a multicomponent one dimensional lattice gas. Thus a
line λ will be regarded as a gas configuration. We show that the gas in
question is almost perfect and reduce the problem of the rigidity to the
investigation of the fluctuations of an almost perfect gas. We prove, for
the needed fluctuations, a "local central limit theorem" following
Gnedenko's ideas (with appropriate modifications) [11] and the results,
properly reinterpreted, will mean that λ is not rigid.

A more clear and precise idea of the above scheme can be gotten
by reading the next two sections.

Our proof of the local central limit theorem can be transformed into
a proof of the local central limit theorem for Markov processes which
seems to be quite different from Kolmogorov's proof [12]: it is weaker
because it seems to need more conditions on the process but seems to
apply to more general situations. This remark will be clear to the reader
familiar with Gnedenko's and Kolmogorov's theorems and with Spitzer's
work on the isomorphism between certain Markov processes and
classical lattice gases [13]. We shall pursue this point in a subsequent
paper.

3. Technicalities

To proceed we need a more handable form for (2.2).
Let Jf be the family of all sets Γ = (yί,..., yn) of closed (in the sense

of § 1) lines lying on the infinite square lattice and such that the set
{7i}u{y2}u ••• u{yn} i s connected. Notice that we are not only con-
sidering sets Γ of overlapping contours but we even allow identical
contours to be part of the same Γ sJί.
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The knowledge of the statements of the following theorem will be
fundamental for understanding this paper:

Theorem 2. there is a function φτ(Γ) defined on.Λr such that:
1) φΎ(Γ) is translationally invariant,
2) if N(Γ) = (number of contours in Γ) then:

(-l)N(n~V(r)^0, (3.1)

3) there is a function δ(β) ^ ^ >0 exponentially fast such that:

Σ \φτ(Γ)\Sδ(β) (3.2)

where the sum is over the Γ eJί containing the vertex p.
4) there exists a function κ(β) tending to zero exponentially fast and

such that the following inequality holds:

Σ \φΎ(Γ)\^κ(β)n+1Q-^β]yl, (3.3)

N(Γ) = n + l

5) if p is a vertex of the lattice and Q is a set of lattice vertices at a
distance d(p, Q) from p then

Tap
ΓnQΦ0

6) Using definition (2.1) one has:

Zo(Ωfl β)Z0(Ωf\ β)

{3Λ)

Z.(Ω,» —P-Σ '(Π (35)
rcί2

where Γiλ means that {Γ} n 2 + 0.
7) L^ί Y = (yx,..., ym) be a set of distinct vertices of the lattice and

define

φo(Y)= Σ l^τ(Γ)l ( 3 6 )
ΓBY

where Γ 3 Y means that (yx, ..., ym) are vertices of contours in Γ, then one
finds:

ψ(β)=

(3.7)
ΦJY)SKdψ(β) with Ro = 100

YaO, diamY^d

and ψ(β)-+0 exponentially as /?—• oo.

The above theorem is proven with a slightly different notation in
Ref. [9] appendix A: the few necessary changes in the notations are
discussed in Appendix 1 of this paper.
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Clearly (3.5) allows us to write the probability distribution (2.2) in
the ensemble U(N) of the "lines*1 from A to B as:

- Σ φτ(Π
Γ\λ

Q TDΩ

P N ( A ) = (normalization) ' ( 3 > 8 )

We now introduce several auxiliary ensembles of "lines" λ starting
in A, ending in some point B' on the vertical line through B and lying
in the vertical strip with base the segment [A, B]. We remember that
"open lines starting in A and ending in B'" means a connected set λ of
lattice bonds such that every vertex p e λ belongs to two or four bonds
of λ except the vertices A, B' which must belong to one or three bonds
of A.

The auxiliary ensembles are:
I) The ensemble U0(N): it is the set of lines λ from A to B such that

| | A | N | N

where C is the constant introduced in Theorem 1. The relative weight
of λ e U0(N) will be, by definition:

Tiλ
ΓcΩ

Notice that, as set of lines, U0(N) is contained in lί(N) for large β.
II) The ensemble U^N): it consists of the lines λ starting in A and

ending at the point Bt at height i above B (i = 0, + 1,.. .)• We also require
that the elements AeU^N) lie in the vertical strip IN with base the
segment [A, B]. By definition the weight of λ e Uj(N) will be

#:(λ)=exp-j8μ |- £ φτ(Γ) (3.9)
Tίλ

ΓcIN
oo

III) The ensemble U(N) is, as a set, given by (J Uj(N) and the
^ i = ~" °°

relative weight of a configuration λ e U(N) is, by definition:

&(λ) = exp-β\λ\- Σ <PT(Π (3.10)
Ttλ

ΓcIN

(i.e. the same as (3.9)).
It is easy to prove from part i) of the Theorem 1 and (3.3), (3.4), that

the line λ is loose in U(N) if and only if it is loose in H0(N). The simple
proof of this fact can be found in Appendix 2.

From now on we concentrate in proving that λ is losse in ίίo(N).
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4. Geometric Description of λ e U (N)

This section is devoted to a detailed but purely geometrical description
of the elements Aeί ί (N): all the concepts introduced become very
clear if one checks, as they are introduced, what they mean for the
particular line of Fig. 3.

Fig. 3.

Let λ G U(N) (see Fig. 3). Consider the (N +1) vertical lattice lines
passing through the (N + 1) lattice points of the segment [A, B].

A vertical line will be identified with the point q e [A, B] through
which it passes.

A vertical line will have in common with λ at least one point (in
fact it will, in general, have in common with λ several isolated points
plus several disjoint segments).

Let qί,..., qt be the vertical lines which have in common with λ
more than one point; group q 1 ? . . . ,q t into clusters ξ1, ξ2,..., ζs'. a
cluster consists of a set of adjacent lines which intersect λ in more than
one point and such that any other vertical line drawn between the two
extreme lines of a cluster and not lying on the lattice will intersect λ in
more than one point (notice that such vertical lines intersect λ in an
odd number of points). In Fig. 3 we have drawn the the extreme lines
of each cluster.

A cluster ξ consists of a set of (k + 1) consecutive points
( q o , q o + l , . . . , q o + k ) k ^ 0 .

We denote 6fξ the "shape" of the part of λ above a cluster ξ.
Clearly the set of clusters ξί9...,ξs together with the associated

shapes 5^, . . . ,5^ s completely determine λ. Viceversa we can give
arbitrarily a set of disjoint clusters ξι,...,ξs and of associated shapes
£fξ,..., e$^s and uniquely construct a. line Λ,eU(N). This representation
for λ is due to van Beyeren [14].

It is important, in order to get a clear intuitive picture of λ, to remark
that a line λ can be interpreted as a configuration of a multicomponent
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lattice gas: the particles of the lattice are as many as the shapes above
the clusters; there is a hard core which forbids the overlapping of the
clusters.

Clearly there is a one-to-one correspondence between the lattice gas
configurations compatible with the hard cores and the lines λ e U(N).

To each "shape" ^ (or "particle" in the lattice gas language) we
associate several "form parameters" and other related notions:

1) The "first" and the "last" point of 6fξ: these points are marked
in Fig. 3 and their definition in the general case is easy to infer from
this particular case.

2) The "jump", denoted δ^ξ, which is the difference in height between
the first and the last point of a cluster ^ :

^ = 0, ± 1 , ± 2 , . . . .

3) The "basis length" \ξ\ of ξ is defined as \ξ\ = k if

4) The "vertical length" at qeξ (denoted by Vq(5^)) which is the
length of the intersection between λ and a vertical line qεξ. Remark
that if ξ = q0 then \δ£fξ\ = Vq o(^).

5) The "horizontal length" at q e ξ (denoted by hq(5^)) which is one
unit less than the number of intersections of <9̂  with any vertical line
between q and q -f-1 if q = q0 + i i = 0, 1,..., k — 1. For q = q0 + k we put

6) The "total vertical length" V(ί^) defined as

7) The "total horizontal length" h(5^) defined as

( 4 2 )

8) The "excess length" |5^ | q at q:

| ^ | q = h q ( ^ ) + V q ( ^ ) . (4.3)

9) The "excess length":

(4.4)

(4-5)

10) The distance of q e ξ from the extremes of ξ

Clearly if λ = (ξu ..., ξn,Sfξl,..., - ^ J we have:
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In the next section we push further the analogy with the multi-
component gas and show that the problem of studying the probability
distributions of λ in U(N) is equivalent to the problem of studying the
equilibrium state of the multicomponent lattice gas at certain component
activities and under the influence of suitable (many body) potentials.

5. Shape Potentials

Let X = ( £ 1 ? . . . , ξn) be a set of disjoint clusters and denote

i ^ n

As already mentioned we can interpret 5^x as a configuration of a
multicomponent gas. We denote \Sfχ\ = ]Γ |5^. .

i

If X = T u T ' and T π T ' = 0we shall also write, with obvious meaning
of the symbols, ^ x = S^ΎuT = .S^vS^..

Let X=(fx and interpret the quantity — £ φ τ ( Γ ) in (3.10) as a
Γiλ

potential energy of the configuration S x by writing:

Σ φ τ ( Γ ) = X φτ(Γ) + U(S x). (5.1)
Γiλ Γ*[A,B]

We wish to think U ( ^ x ) as a sum of many body contributions as:

U(^χ) = Σ φ(^τ) (5-2)
TCX

this is certainly possible and, as a matter of fact, the potentials
are given by the (rather useless) formula:

= Σ (-1) N ( X ) U(^ X ) (5.3)
XCT

(Mδbius inversion formula).
The potentials Φ(έ?Ύ) will be called, for obvious reasons, shape

potentials: they verify the following lemma:
Lemma 1. If β is large enough the shape potentials verify the following

inequality:

| ^ Φ 0 ( X ) | . ^ l (5.4)

where ξeX is either the first or the last cluster in X (i.e. is either to the
left of all the other clusters in X or is to the right of all the others).

Furthermore ΦO(X) is a translationally invariant function of X and

sup ΣφoW = ψ(β) (5.5)

XCT

where the sup is taken over the allowed (i.e. without overlappίngs) cluster
configurations T which contain ξo and, then, over ξ0. The function ψ(β)
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in (5.5) can be taken to be the same as the one in (3.8) (hence it tends to
zero exponentially as β—^coj.
Finally, for R o =100:

)d(^'^ιp(i5) (5.6)

where d(ξ0, ξλ) = distance of ξ from ξ0.
The above Lemma 1 is proven in Appendix 3 and is, if course, a basic

ingredient to our proof. In fact let us first remark that, because of (3.10),
(4.5), (5.1), (5.2), we can interpret the set of lines λe U(N) as a multi-
component lattice gas in which a component <¥'ξ has an activity

Zyξ = Qxp—β\yξ\ and in which the interaction between the elements
of the gas is described by hard cores and the shape potential: in fact
the weight (3.10) is proportional to

# (λ) oc exp - β\Sfx\ - Σ
TcX

Lemma 1 tells us that the potentials Φ(^τ) are small at low temperature
(see (5.5)) and have short range (see (5.6)). Furthermore at low temperature
the activities of the components become very small. Hence we can hope
that the gas of shapes is almost perfect at low temperature and we shall
relate this fact to the non rigidity of λ in U0(N).

We devote the next two sections to make more precise the statement
that the gas of shapes is almost perfect: we shall manage to do so with
the help of the generalized Kirkwood-Saltzburg equations and the
associated cluster expansions (see Ref. [7]).

6. The Gas of Shape Particles is Almost Perfect

We define, as usual (see Ref. [7]), if X = (ξl9..., ξn) and ξλ < ξ2 < < ξn

(in the sense that the clusters are numbered from left to right)

TCX
T9ξ!

Y) 0-YnX, YΦ0, (6.2)

R) YΦ0, Y n X - 0 (6.3)
RcY

Σ Σ ri(e-w (s'* s v-i) ifγ*0
n i l ( P , , . . . , P n ) i = l

u ' P i = Y (6.4)
1 Y = 0,
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here £ runs over all the n p l e s of different subsets of Y such
(Pl. .Pn)
U ! P , = γ

that U j P ^ Y (notice that we do not require P i n P j = 0iΦj) and such
that P i Φ 0 i = 1,2,...,n.

Define the correlation functions for the gas of shape-particles in
[A, B] as

(6.5)
normalization

where the sum over Y runs over the sets of clusters in [A, B] compatible
with X C [A, B] and non overlapping.

The correlation functions (6.5) verify (as in [7]) the generalized Kirk-
wood-Salsburg equations: let ^ e X then, if X(1) = (ξ 2,. . ., ξn) we have:

(6.6)

PnςiΦ0 ^p '

where all the sums run over sets of clusters in [A, B] and where P n ξί φ 0
means that either all the clusters in P have intersection with ξx or P = 0.
N(P) = number of clusters in P.

We now show that the Neuman series for the inhomogeneous
Eq. (6.6) (remember that ρN(0) = 1) converges for large jS's.

Let <% be the space of the functions f ( ^ x ) defined for X φ 0 and
without overlapping clusters and such that

X, 9X

we regard 8$ as a Banach space with the norm (6.7).
Define the operator ft : 3& —>• <%

(6.8)

p
Pnςi Φ0

where * means that the term X(1) = 0, P = 0, Y = 0 is omitted.
Let χN : J* —• 3$ be the operator:
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Finally let α e $ be defined as:

Ξ θ if N ( X ) ^ 2 l ' ;

Taking into account the definitions (6.8), (6.9), (6.10) and the Eq. (6.6)
and the fact that ρN(0) = l we realize that (6.6) can be written as an
equation on 0i\

It remains to show that ft is small: in fact we shall prove that
||ft|| <;k(/J)<l (the ||ft|| is the norm of the operator ft in the space St)
and k(/?)—»0 exponentially fast as β—+oo.
In fact, using (6.9)

A straightforward but very long calculation allows us to estimate
the curly bracket in (6.12) and the result is:

S ||f|| k(jϊ) (6.13)

where k(β) —> 0 as /} -^ oo exponentially fast. The details of the com-
putation leading to (6.13) are in Appendix 4.

Formula (6.13) implies

|| ft || ^ k(j8)<l for β large (6.14)

hence the Neuman series for (6.11) converges.
The reader familiar with the Mayer expansion and the proof of its

convergence ([10], p. 83) will immediately understand why the result
(6.14) can be called a proof of the fact that the gas of shapes is almost
perfect.

Unfortunately (6.14) is not quite enough for our purposes and we
have to use some more detailed results about the Mayer expansions.
The next section provides the additional results we need.
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7. Cluster Expansions for the Shape-Particles Gas

The "clusters" in the title of this section do not have any relation
with the clusters ξ associated with the shape particles. There should
be no confusion between these two concepts.

Consider the space g of the symmetric functions defined on the finite
ordered sets of configurations of shape-particles obtained by allowing
also the configurations not verifying the hard core condition [15].

If φ e g then φ associates to every ordered set £fχ of shape particles,
where X = (ξ1,..., ξn), a number φ(ffx\ We underline the fact that

is a set of shape particles, located in ξx,..., ξw not necessarily obeying
the hard core condition (we also allow the possibility that ξ{ = ξj for
some iΦj and 5 ^ = ̂ ) .

If φ E % we call

|φ | n = sup \φ(yξi,...,,¥J\ (7.1)
ζ\, •• S n

^ 1 ••." ^

n fixed

and we shall assume that |φ | n < -f oo for all n ̂  1.
It is interesting to introduce some operations on the functions

of S [10].
If φ1 E g, φ2 E g we define the convolution φx φ2 E g as

^ x ) = Σ ' Φi(^x>2(-^x 2 ) (7.2)

here X is a general set of clusters (in the sense of Sec. 4) and is determined
by the set of different clusters in X and by their multiplicities the £ ;

XiuX2= rX

is to be regarded as the sum over the ordered couples X 1 ?X 2 which
decompose X into two sets of ordered clusters (the couples (0, X) and
(X, 0) are allowed).

Let us now define the exponential of a function φ E^0 where

(7.3)

where φn is the n t h power of φ in the convolution product (7.2) and

we have put φ°(^x) = 1 (f/x) with

US,)-^° l f X + 0 (74)



The Phase Separation Line in the Two-Dimensional Ising Model 117

It is clear that 1 is the identity for the product (7.2). It is also clear
that, since φ e 5 0 formula (7.3) makes sense since it involves only a
finite sum.

The inverse function to the exponential is defined over the set
Si = {φilφi e ?5> Φi(0) = 1}; if Ψi s Si w e c a n uniquely write φ1 = l + φ
with φ e g o and therefore we can define

oo / i \n + 1

= Σ 1 V" Σ'
n = l Π XiuX2u. .uXn-X

since, again, the sum runs over a finite set of indices. Clearly Exp: So~*Si
and Log: 3^ —>g0. Furthermore it is easily checked that

Exp Log^j = φx Mφx e & . (7.6)

Define, on $, the operation D ^ :

(Όyχ'φ){£fΎ) = φ(SrxuΎ). (7.7)

This operation has the properties:

D ^ ξ ( φ Γ Φ2) = (Ό^ξΨi) -Ψi + Ψi ( D y ξ φ 2 ) , (7.8)

D ^ Expφ = ( D ^ φ) Expφ

/ 1 \ ( 7 9 )

Όu E x p r a = Y — Y D« <»...D« <» E x p φ .
X, Φ 0

Finally we find that the important formula below holds:

X £ (7.10)

provided ]Γ | φ ( ^ x ) | χ ( 5 ^ x ) | < + x and χ is multiplicative i.e. if

and provided the symbol £ is consistently given the meaning:

Σ •= Σ 4 τ Σ - Σ Σ - Σ (7.U)
x , ^ x κ = o -^ c! cn ^ ζ ] . r ξ n

A special / will be

ΠΛ) ( 7 1 2 )
where χ(N)(ξ) = 0 if ξ i [A, B] but χiN){ξ) - 1 if ξ C [A, B].
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So that

= e χ p Σ ΣΨ(^X) (7 1 3)
Xc[A,B] 9>χ

provided Σ Σ lφ(^χ)l < + °°
XC[A,B] ^x

Let βo be a large enough number in order that all the series written
below in this section converge. Let β be so large that β > β0 and ψ(β) < βo

where ψ(β) is the constant in (5.5). Consider the element φ e 5i

"^0 and ξ-,nξj = θ i + j otherwise

Φ(0)=1 ( 7 1 4 )

Since from (5.5), (5.4), (5.2) it follows

(7.15)

the condition (7.1) is satisfied φ and therefore φ e S i Let φ τ = Logφ1.
We shall also be interested in other elements φe f5i °f t n e tYPe

( 7 1 6 )

for some suitable real or complex λ{^ζ) such that \λ(tf ξ)\ ^ 1.
Clearly Logφ is such that, see (7.5):

φ τ (^ x ) = (Logφ) (^x) ={ Π λ(yΛφτ(<fx). (7.17)
UeX J

We now investigate the ff^ dependence of φτ(<fx).
Consider, for this purpose, the function φ~1e($ (i.e. the function

φ'1 such that φ'1 - φ = φ -φ~ι = 1: this function can be inductively
defined from (7.2) for all φ e 5i) Define

^.^ x (^γ) = (Ψ~l' Dpχφ) (SfΎ) (7.18)

for y γ arbitrary and ^ x such that X contains only non-overlapping
clusters.

Then we can write an equation for Δy (£fγ) along the lines of
Ref. [7,13].

We have (if Y\T means complement of T in Y):

TCY

PnςΦ 0
PcY\T
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where, as in (6.6), P n ξ Φ 0 means that all the elements in P intersect ξ
or P = 0. Eq. (7.19) is deduced in detail in Appendix 5.

From (7.19) one can deduce very strong results on φΊ(6fχ). Put

rrU'n^f N(Y) = m-n Y e

Then, using (7.19), at fixed X u ξ and 5 ^ u X :

y y
N(Y) + N(X) = n

Σ Σ Σ
N(X) + N(Y) = n

TCY
Tn(ξuX) PcY\T

Σ _Σ
T P ξ Φ(PuT)nX = 0 PnT

PnT=0 N(P)

Σ (7.21)

Σ y y ικ (^ y '
nX = 0 PnT=0 P u T

as we easily see after a calculation identical to the one leading to the
estimate of the curly bracket in (6.12).

Formula (7.21) says that

I n + 1 ^ k ( / ? 0 ) I n , i.e. I ^ (7.22)

In particular, since lι ^ e 2 and

9 Commun math Phys., Vol 27

(7.23)
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we find (since φτ(^ξ) = e~*° |5'«l):

m = l

β I 1 \ β i βn i ™ i rv ^

—4rl^ξ! l e / —Srl^ξl ——1^1 9e

If jβ has been chosen large enough.
A simple consequence of (7.24) is that, for β0 large:

Σ \φΎ(^x)\<+θD (7.25)
XC[A.B]

as it follows by combining (7.24) with the observation that the number of
shapes £fξ with a given \<7ξ\ does not exceed 3 2 ' ^ ' .

We shall be interested in choosing the arbitrary function λ(£fξ) in
(7.16) of the form δ&>ξ is defined in Sec. 4):

\\τδ9>ξχ(K){ξ) (7.26)

with t, τ real and χN(ξ) = 1 if ξ C [A, O], χN{ξ) = 0 otherwise.
We have now all the instruments to deal with the original problem

which is attacked in the next section.

8. Characteristic Functions for the End and Middle Point Displacement

Consider the characteristic function for the random variable
X δ^ξ defined for every line λ e U(N), λ = &x:

ςex

ξ ) _ XC[A,B] <fx ξeX

' ~~ y y e-u(^x) π
XC[A,B] 5^χ ξeX

Here we can apply formula (7.13) to the numerator and denominator of
(8.1); we get

e x p X Σφτ(yχ)e-{β-βo)^\(eitδ^ - I ) . (8 .2 )
XC[A,B] 5fχ

We now look for estimates of the sums in (8.2). The l.h.s. of (8.2) is periodic
with period 2π, hence it is enough to consider it for — π rg t ^ π. We divide
the interval |t| g π in three regions:
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ii) N * - * ^ |

iii) ε N ' * ^ | t | ^ π ,

and we estimate the sum in (8.2) in these three regions. The constant ε
is a numerical constant that will be chosen later.

Observe that, if X = ξ, | ξ \ = 0 and δ&ξ = j ς φ A, B we have

as it follows from the definition of the shape potential Φ(^ξ) and the
formula for it in Appendix 3. Hence the contribution to the sum in (8.2)
from the one-point clusters of height j = + 1 is:

- 'Ke" - 1) + (e ' 1 1 - 1) + &(e ~β)) (8.4)

where Θ(t~β) contains the end point contribution (ξ = A, B) as well as
the corrections coming from the term Θ(c~6β) in (8.3). In formula (8.4),
as well as everywhere in this paper, Θ(a) means #a where S is a function of,
a priori, everything possible but such that \S\ :g 1.

We estimate the contribution of the other clusters to the sum in (8.2)
by: (we use (7.24) and the fact that there are at most 3ι^ξl + ]ξl | !

different shapes over ξ with the same

XC[A,B] yχ

\srx\>ι

^2 Σ Σ^2{β~βo) Σ \ψΎ(
ξC[A,B] ^ X ' , ^ ,

3e~βo/2 (8 5)

where C(βo)—-»oo if βo is large enough.
Hence we have proven that

y) (8.6)

for all t e [ — π, π].
Clearly the estimate (8.6) is going to be good only in the region iii)

and for large β.
To obtain estimates of use in i), ii) we proceed as follows.
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Expand (elt(5t^x — 1) to third order using the Schόmilch formula for
the fourth order rest: we get

{ Xc[A,B] <Tχ

+ Σ Σ ΐ V x J e " ^ ^ *
XC[A,B] ^ x 24

where |θ| ^ 1 and we have used the fact that the first and third order terms
vanish for symmetry reasons.

Define σ(jδ) as

σ\β) = lim -1- Σ Σ W x ) e-tf-ω 5'*' (^ x ) 2 (8.8)
N^c» JN χ c [ A , B ] 9>χ

the existence of this limit follows from the fact that the functions φτ{^x)
are essentially translationally invariant. We have not dealt with this point
and we shall not do so but we leave it as an exercise to the reader. We
observe, however, that by taking into account separately the "unit jump"
contribution one finds that the sum Σ(N) on the r.h.s. of (8.8) is

2β)+Θ{e-β) (8.9)

and so
σ2 = 2e~β{l + Θ{e-β)) (8.10)

the real reason we do not insist on the existence of the limit (8.8) is that
(8.9) proves that

lim inf-^-^ - 2e~^(l + ̂ (e"0) and lim
N-+00 N N-*oo

and this would be enough for the rest of the proof (modulo minor
modifications).

An estimate similar to (8.9) yields

Σ Σ l^T(^x)le- (^-^>^χ!(^^ x)
4 = N2e-^(1 + ^(e-^))+ ^(e-^). (8.11)

XC[A,B] ^ χ

Hence using (8.7)-(8.9), (8.11) we find that, if 0 ^ |t| ^ N * " * :

tΣ
ξ

\e ξ / ^ exp - J (Σ(N) t 2 (8.12)

provided ε < ^ (say).
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It is now easy to compute (see also [11]) an expression for the
probability PN(k) that, in U(N), the line λ e U(N) ends in the point B' at
height k =

< /

P N M = T - ί \e
(8.13)

k2

i + πγN / i^Σδ^λ -iiJL e 2Nσ2 / 1

τ = f \e / e v x dt; = - 7 = = = - -f
2π]/N _ j ^ X 7 l/2?N

In particular

PN(0) =
| / 2 π σ 2 N

Using a completely analogous procedure we can estimate (see (7.26))

(8.15)

and deduce that the probability in U(N) that the end point of λ is at
height k and the last point of the last cluster in λ contained in [A, O]
is at height h:

_ fk2-2hk-f 2h 2 \ 2

N σ 2

hence if |h| ^ h(N) and -~-+0 as N-^oo

PN(O,h) 1

PN(0)
( 8 1 7 )

Since PN(0, h)/PN(0) is the probability in U0(N) that the last cluster
before O has the last point at height h formula (8.17) tells us that the
probability that the height h of this point is such that |h| ^ h(N) tends
to 1 as N—>oo in U0(N).

We now show that the probability, in U(N), that λ contains a shape

£fξ such that |<9ξ| > C logN tends to zero faster than /— if C is suitably

chosen. This fact will imply that (see (8.14)) not only in U(N) but also in
U0(N) the probability that in λ there is a ^ such that | 5 ^ | > C l o g N
tends to zero as N—>oo. Therefore since the height of the last point of the
last cluster such that ξ c [A, O] does not exceed h(N) with probability, in
U0(N), tending to 1 as N—->oo we can deduce that the line λ passes above
O at an height h(N) — C logN with a probability tending to 1 as N—»oo.
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It is obvious that, once it will have been proven that with probability
tending 1 as N—>oo no shape in λ is such that | 5^ |>ClogN, a simple
modification of the above argument will allow to prove that in H0(N)
the probability that the distance of O from λ is larger than N^~ ε tends to 1
as N—•oo at fixed ε > 0.

Therefore we are left with the proof that if

= (^,...,^^...^) then |< |̂<ClogN

with a probability tending to 1 as N—•» GO .
Call P(N, C) this probability: using (6.11), (6.7) and the estimate for

the number of shapes above ξ and with given |5^| used in (8.5):

Σ Σ
<*C[A,B] | y ξ | > C l o g N

< N T iίi y - — - — — ^ N y in y (8.18)
| ί | = 0 l ^ ξ | > C l o g N L M P J \ξ\=0 |5^ς|>ClogN

~-\ξ\

• 9e 7 "-? <N\9e
1 /

ί-k(β) l - 9 e 4 11-e

9
hence if C = — and β is large:

9 '= .Λ+l^9 Ί N '
(8.19)

Acknowledgements. I wish to express my gratitude to H. Van Beyeren for stimulating
my interest in the problem through many discussions and through the description of
some partial results which he got using a completely different and much simpler approach
[14].

Appendix 1

The basic setting of Ref. [9] is very similar to the one of this paper.
Here, for esthetic reasons, we have preferred a different definition of the
contours associated with a spin configuration.

What we essentially need are the results of Appendix A of Ref. [9]
and to obtain them one has to proceed, word by word, exactly through
the same calculations and steps with the understanding that the new
definitions of contours (and, therefore, of overlapping contours) are to
be taken into account to modify in the obvious way the interpretation
of the notation.
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Fig. 4.

We give, as an example, in Fig. 4 the contours associated with the
spin configuration of Fig. 1. The reader should compare Fig. 4 with
Fig. 2 in order to realize the difference in the definition of contours. We
remark that in spite of the difference in definition the number of con-
tours of length \y\ is still bounded by 3 | y | .

A mere "translation" changes the results (A.20), (A.19), (A.17), (A.21),
(A.24) of Ref. [9] into 1 ) - 5) of Theorem 2.

Furthermore (A.26) of Ref. [9], duly reinterpreted, can be applied to
write (in this paper we call Γ what was X in Ref. [9]):

Zo(Ω*\β)=exp Σ φτ(Γ), (Z.I)Σ
ΓcΩ(

λ

a)

ΓCΩΓ

ΓcΩ

(Z.

(Z.3)

hence, by taking the product of (Z.I) and (Z.2) and by comparing the
result with (Z.3) we find (3.4).

The last statement of Theorem 2 does not appear in Ref. [9] and we
provide here its simple proof.

Observe, from (A.20) of Ref. [9], that

φ τ (Γ):

where φΎ is ^-independent.
From (3.3) it follows that

Σ Γ/U/Ί|0T -fl

(Z.4)

(Z.5)

N ( Γ ) = n + l
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Let X be a set of distinct points on the square lattice and let
X = (x1,..., xn); denoting Γ 3 X the fact that the points of X are vertices
of contours in Γ we find

Φ O ( X ) = Σ \ψτ(n\= Σ
(Z.6)

ΓaX

Let Ro be an arbitrary large integer, fixed once for all (say Ro = 100),

thenif

OaX
R d i a m X Φ 0 ( X ) ^ Σ Σ Σ

n = 0 OeX ΓsX
N(Γ) = n

= Σ Σ Σ R d l a m X

n = 0 ΓaO XcΓ
N(Γ) = n + l X3θ

n = 0
Σ

N(Γ) = n

< 2R

( Z 7 )

and this formula holds for 1 ̂  R ^ Ro and β large enough. Taking
R = 1 and R = Ro (Z.7) prove statement 7 in Theorem 2.

Appendix 2

The ensemble H0(N), as a set of configurations in U(N), has a prob-
ability in U(N) approaching 1 as N—>oo (see i) Theorem 1).

Hence λ is loose in U(N) if and only if it is loose in UO(N).
For large β the distance of λ e U0(N) from the upper and lower bases

of Ω will be longer than N/2 hence, regarding λ as an element of U0(N),
the weights i^o(λ) and iΓ0{λ) are such that

and, using (3.4):

Σ IΦT(OI ύ Σ

Tiλ
Γ<tΩ

Σ κ(β) Ue

( z 8

(Z.9)

ΓcΩ Γn(basesofΩ)
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therefore, for large β:

where$\e 3 v 2 j = 9{λ, β, ...)e 3 v 2 and |9| g 1.

Furthermore the set U0(N), as a subset of U0(N), has in U0(N) a
probability that tends to 1 as N—>oo. In fact, since, using (3.2),

X \φτ(Γ)\ύ\λ\ Σ \φτ(Γ)\^Wδ(β) (Z.ll)
Γ*λΦ0 ΓsO

we have
y

P o o ( N , ( | U I - N | > j ) S lλl>iί+

where the denominator is a lower bound to the contribution to the
normalization constant to (3.9) coming from the single line λ— [A, B].

The r.h.s. of (Z.12) is bounded above as:

Q-βNQ-Nδ(β)

Cδ(β) \N ( Z 1 3 )

if C > log 4 and if β is large enough.
Hence lϊo(N), as a subset of UO(N), has in UO(N) probability tending to

1 as N—>oo. Clearly this fact combined with (Z.10) implies that λ is loose
in U0(N) (hence in U(N)) if and only if it is loose in U0(N).

Appendix 3. Theory of the Shape Potentials

Consider a configuration S^?

x = {ξ1,..., ξs, ^ l 5 . . . ,5^ ) (see Fig. 3
for reference).

We divide the sets of contours Γ e9l and lying in IN and intersecting
λ in three classes: to the first class belong the Γ's which have in common
with λ some points and which have a projection on the segment [A, B]
which does not have points in common with any of the vertical lines
through ξl7..., ξs. To the second class belong the Γ's which have inter-
section with some "shape" <?ξ. oϊλ. To the third class belong the Γ's which
do not intersect any of the i^'s but have a projection over [A, B] which
overlaps with some of the clusters ξί9..., ξs.

Call C i μ),C 2 (A),C 3 μ) the three classes and call Cί(ξ l 9 . . . , ξj the
set of Γ's which intersect the segment [A, B] and have a projection on
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[A, B] overlapping with some of the clusters ξί9..., ξs. We easily find:

Σ T/rΛ V k T/r<

φ (Γ)= >* φ (ΓTiλ
Γ C I N

Σ* φτ(θ+ Σ*
ΓeC2(λ) ΓeC3{λ)

X* φΎ(Γ)
Γi[A,B]

X* φΎ(Γ)+ X* φΎ(Γ)+ X* φτ(Γ)
ΓeCι(ξ'ί...ξs)

X
ΓeC2(λ)

X
ΓeC3(λ)

where the * reminds us that Γ CI N .
We recognize 11(5^) in the sum of the last three addends of (Z.14).
We now show that each of the last three sums in (Z.14) is of the form

X Φ ( i ) (^ τ ), where i = 1, 2, 3 is an index that labels the last three sums in
TcX

(Z.14). Furthermore each of the three functions
Consider first X* φτ{Γ): We have

ΓeC\(ξι...ξs)

τ) verifies Lemma 1.

Σ* >= Σ

- Σ

Hence, if we define

Σ* <ρτ(n
Y i si

(Z.15)

We have for some C 2 > 0, using (3.7) and \yξ\ ^ {\ξ\ + 1):

\Φw{£fx)\ S \yξι\ ψ(β) R 0 - * ( X ) | ^ J Φ?KX)

where δ(X) = distance between the first and the last cluster in X.
Hence if T is a set of non overlapping clusters:

X
X C T

rg ψ(β)
p = l

^ ψ(β).

Consider next X φΎ{Γ). Suppose λ = 6fχ (in the following we
ΓeC2(λ)

sometimes write λ = (X, 6fχ)) fixed; introduce the following symbols:

a) (5^): this symbol means sum of φΊ{Γ) over the Γ's which intersect
all the shapes of the line λ' = (P, ^ P ) .

The next symbols will be defined when the clusters of Q are between
the extreme clusters of P.

b) (^pIQ): this symbol means sum of the φτ(Γ)'s over the Γ's which
do intersect all the shapes with base P of the line λ" = ( P u Q , «9^uQ) but
do not intersect all the shapes ^ P in the case we considered only the line
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c) {Sfγ || Q): this symbol means sum of the φΊ{Γ'\ over the Γ's which
would intersect all the shapes of (P, y p ) but do not do so if the shapes 5 P̂

are considered part of a line λ"' = ( ^ P U Q , P U Q ) .

d) (^p)Q: this symbol means sum of the φτ(Γ)'s over the Γ's which
intersect all the shapes of 5 P̂ in the line

Q

Notice that
( ^ ) ( ^ ) (# IQ) - (^> || Q). (Z. 19)

T h e n w e c a n s a y t h a t iϊX = ξί

Σ φΎ(Γ) = (yξl) (Z.20)
ΓeC2(λ)

if X = {ξί9ξ2) and ξx < ξ2 (i.e. ξx is to the left of ξ2):

Γ6C2(A)

If X = (ξ x , ξ 2 , ξ 3 , < 4̂), ξ1<ξ2<ξi< U we find

and using (Z.19) we deduce:

ΓeC2(A)

-l^Jϊ+^Lύ-ξlξ2 ξ2ξl (z'22)

Therefore
Σ φτ(Γ) = (srζι) + (Sfξ2) + (srξ3)- (£fξιξ2) -(Sfξ2ξ3)

(Z.23)

ΓeC2(λ)

-(^iiξ4) - ( ί W { 2 - ( ^ . ί ^ ί s - (*U)fe (Z 2 4 )
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In general, as it can be seen by induction, if ξ < X < ξ' X = (ξ2,..., ξn-1)
we find:

+ Σ ( - i ) N ( Q ) [ ( ^ u P ^ I Q ) - ( ^ u P ^ I | Q ) ] }
PCX
QcX

P n Q = 0
QΦ0

it is clear from (3.7) that (δ(ξ9 ξ') is defined in (Z.17) or (5.6)):

/ ), (Z.27)

^ 1 , (Z.28)

^ Ί , (z.29)

clearly the role of ξ and ξ is symmetric and no similar inequalities hold
with ξ interchanged with ξf. Hence

\Φ(^ξuXuξ')\^δ{ξtξΊψiβ)KδiξtξΊ\^ξ\ (Z.30)

because ^ contains at most 4 δ ( ξ ' ξ ) terms.
PCX
QCX

Hence calling Φ{2)(ξuXuξ') the coefficient of |5^| in (Z.30) we find
(remember that Ro = 100).

XCT

It remains to deal with ^ φτ{Γ)' A method very similar to the
ΓeC3(λ)

case just treated works and, actually, one could find for this term much
better estimates (see sketch in Appendix 6).

Formula (5.6) follows from (Z.30), (Z.17) and the analogous result
for the contribution from C3(λ).

Appendix 4. Estimate of ||ft||

The starting point is the term in the curly bracket (6.12).
We remember that ξί is the first cluster of X = (ξu ξ2,..., ξm)

(ξί < ξ2 < ξ3 < ••• < ξm) looking from the left to right. Therefore, using
(5.4), (5.5), (6.1), we have

(Z.32)

Σ lWi(^x> ^)\ M^ξι\ + \^.})ψ{β) (Z.33)
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if all the sets P 1 , P 2 , . . . , P n are different and PjnX = 0. Therefore the
curly bracket in (6.12) is such that (using ea — 1 ̂  ae a for a ̂  0):

l « -

Σ Σ Σ e

Σ|Wi(^v|^_)| .

(-£+2ψ(β))\S?ξι\

"nξi*0

Σ Σ* Σ \«
n = 0

(Z.34)

where the * reminds us that Px,..., Pn, P are made with clusters taken out
of a configuration of non overlapping clusters (see (6.4), (6.6)).

The last two sums in (Z.34) can be written as, if P = (πί,..., π t):

oo

ΣΣ
t -yl^'J 00 1

. = 1 t = 0 π i . . . π t t = 1 \q =

GO CO

32e
r=0 q = r + l

where ψχ(β)-^O exponentially fast as β—>oo.
Hence

1l «

Σ Σ Σ
P ;nX=0

(Z.35)

ς J oo oo

Σ Σ Σ Σ Σ
n = 0 m = 0

" '"' ft (Z.36)

where ΊPitfξ1 means that the first cluster in Pj is to the left of ξ1 while
Qj^ξi means that the first cluster in Qj is to the right of ξί. Hence using

I^J Σ |Φo(TuQj)| (Z.37)
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and the property (5.5) and summing over the shapes associated with

clusters appearing in UjQj and not in uiVi we find from (Z.36) for β

large enough:

Σ Σ
n = 0 Pi . . P

Π

| oo

' Σ Σ* Σ U i
Pi . . P n 5^,j.p

" (Z.38)

since the sum over the shapes considered is ^ 1 for β large.

Let P l 5 . . . , Pn be an element of the sum in (Z.38) and call <5l9 ...,<5k

the different first clusters of P x , . . . , Pn. Since P x , P 2 , . . . , Pn are subclusters

of a set of non overlapping clusters, we have that δ^δ^ = 0 i φ j . Suppose

δt<δ2< ••' <δk<ξ1. Then the r.h.s. of (Z.38) can be rewritten as:

(- !
r.h.s. (Z.38)^\e

+ Σ Σ Σ Σ Σ' Σ
n = l k = l <5i< <δ\ί<ξι m + n2+ + n k = n ^ ύ p

•πί Σ
i = l VξieTc

where Σ ' runs over the sets of clusters P t , P 2 , . . . , P n such that P x , P 2 , . . . , P n i

contain δλ as first cluster, P n i + 1 . . . P n 2 contain δ2 as a first cluster,...

..., P n i + . . + n k _ l 5 . . . , P n i + . . . + n k contain (5k as a first cluster. We have again

used (5.5). Let us perform the sum over the shapes in U ^ other than

£fδί,..., -9?

δk we get (since the sum over these shapes is ^ 1 for large β):

(r.h.s.) (Z.39)^\e

co oo oo k

+ Σ Σ Σ Σ - Σ Π
k = l ^ i < < 5 2 < < < 5 k < ξ i % Γ . ^ k n i = l n k = 1 i = l

Σ'Π( Σ

Σ Σ L L
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If dx is the distance between δ1 and δ2, d2 the distance between δ2 and
5 3 , . . . , (see (5.6)):

X ΦO(T)^24(8RO-I)diφ( i8) (Z.41)

hence, using (Z.41) g 1 for large /? and n{ ^ 1:

(r.h.s.) (Z.40) ^ \Q I

l , o o \δ I + l , o o k

Σ Σ Π
m...nk | y ό l | . . . | y\ | \ = i

0, oo 1, oo

Σ Σ Σ
k \δ\\... )<5J d i , . . . , d k

k

Π
n5!

24(81^-

< le

k 3 2 ίπ —

00 0,00 1,00

1+ Σ Σ Σ
k = 0 | < 5 i | . . . ( c > k ( d i . . . d k

•24φ(/?)(8R;1)d

l - 3 2 e

<\e

(Z.42)

1+ Σ
l - 3 2 e 2

l - 3 2 e

8R;

< e

\ 1 - 8 R ; 1

= k(β)

1_3456. —5- V(/O

l - 3 2 e

and k(/?)—>0 exponentially fast as jβ—+00.

Appendix 5. Derivation of Equations (7.19)

^γ)= Σ'
Y,uY2=Y

V'*
(Z.43)

where the * remembers us that the clusters of Y2 can be assumed to be non
overlapping (see (7.14)).
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The chain of equations continues as:

Σ
Y i u Y 2 = Y

ΓT e - W i ( |
RcY 2

YiuY 2 =Y TcY2

TCY YiuY2=Y\T
= 0 Y2n(ξuXuT)=0

U l ( ^ ^ ) Σ K I ^ W ^ T ) (Z.44)
TCY

Σ ( -
PnςiΦ0
PCY\T

here the sum over T or P is over the subset of Y or Y\T regarded as con-
sisting of different elements.

Appendix 6

Let λ E U(N), λ = 5?x and X = (ξx,..., ξn).

Denote

1) (i,i + l,. . . , i + k)λ = Sum of φτ(Γ) over the Γ's in C3(λ) having
a projection on [A, B] which intersects only ξi9 ...9ξi + k.

2) (j, j + 1,..., j + k/j + k + 1) = Sum of φΎ(Γ) over the Γ's having a
preojection over [A, B] crossing the clusters ξv ..., ξ j + k and going, to the
right, beyond the first vertical line of ξ j + k + 1 and, finally, which would
be in in C3{λ'), where λ' is obtained by continuing λ horizontally to the
right of ξj + k.

3) (j,..., j + k/j — 1) = Sum of φΎ(Γ) over the Γ's having a projection
over [A, B] crossing the clusters ξp ..., ξ } + k and going, to the left, beyond
the last vertical line of ξ^_1 and, finally, which are in C3(λ") where λ" is
obtained by continuing λ horizontally to the left of ξy

4) (j,..., j + k/j - 1, j + k + 1) = Sum of the φΎ(Γ) over the Γ's having
a projection over [A, B] intersecting the clusters ξp . . . , ξ j + k and going
both to the right and to the left of the last vertical line of ξ } _ λ or the first
vertical line of ^ j + k + 1, respectively. Finally the Γ's are required to be
in C3(T") where λ'" is obtained by continuing λ horizontally to the right
and to the left of ξj+k and ξ-} respectively.

5) (j,j + l, . . . J + k ) = Sum of the φτ(Γ)'s which belong to C 3(Γ")
where λ"" is obtained by continuingλ horizontally before ξ-} and after ζ } + k.
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One then finds:

Σ <pΎ(n= Σ (i), n n

ΓeC3(λ) i = l

And using

( j , j + l , ...,j + k)A = (j,j + l, ...,j + k)-( j , j + l, ...,j + k/ j- l)
(Z.46)

- ( j , . . . J + k/j + k + l ) + O,...J + k/ j- l , j + k + l)

one gets from (Z.45)

n n — 1 n — 2

Σ ψ Ύ ( Π = Σ ^ i + Σ V > i , i + 1 + Σ Ψ i , i + l , i + 2 + + V l , 2 . . . n ( Z 4 7 )
ΓeC3(A) i = l i = l i = l

where (the meaningless symbols are to be set equal to zero):

l/j + k j)

Let d = distance between ξ } and ξ j + k = d(ξj, £ j + k ) and use the fact that
a line appearing in (j,...,j + k) or (j, ...,j + k—1/j + k) etc. must cross
a horizontal part of the line obtained by continuing horizontally to the
left and to the right the part of λ containing 5fξ. + 1 , . . . , 6fξ + k + 1. Then one
gets from (Z.48) and (3.7)

Hence if X = ξuRuξ and ξ<R<ξ from the Mobius inversion formula
one gets: (remark that ψjt...^+k depends only on £fξ ,..., ^ . f k , see (Z.48))

Φ(3)(^x)= Σ ( - 1)N(P)U(^>)= Σ (~ i f ^ V ^ R . r (Z.49)
PcX TcR

hence

(Z.50)

Notice that no |5^| appears in (Z.50) (as a priori forseeable) and this is
why we say in Appendix 3, that Σ g i γ e s much stronger results. One

ΓeC3(A)

could have avoided the |5^| also in |Φ ( 1 ) (^ X ) | with little extra effort but,
of course, this factor cannot be eliminated from \Φ

10 Commun math Phys., Vol 27



136 G. Gallavotti: The Phase Separation Line in the Two-Dimensional Ising Model

References

1. Dobrushin,R.L.: Functional Anal. Appl. 8, 302 (1968) (English edition, see p. 309).
2. Minlos,R.: Russian Math. Surveys 23, 137 (1968).
3. Gallavotti, G.: talk at the 1971 S.I.F. meeting. Internal report of the physics Dept.

of the Univ. of Roma n° 347. To appear in Riv. Nuovo Cimento.
4. — Miracle-Sole, S.: Equilibrium states of the Ising model in the two phase region.

Phys. Rev. 5 B, 2555 (1972).
5. Minlos,R., Sinai, Ya.: Math. Sbornik 73, 115 (1967).
6. See [4], see also R. B. Griffiths: Phys. Rev. 152,240 (1966) and A. Martin-Lof: preprint.
7. Gallavotti, G., Miracle-Sole, S.: Commun. math. Phys. 7, 274 (1968).
8. See [3].
9. — Martin-Lόf,A.: Surface tension in the two dimensional Ising model. Commun.

math. Phys. 25, 87—126 (1972).
10. Ruelle,D.: Statistical mechanics. New York: Benjamin 1969; p. 83 and p. 86; see

also [7] p. 285— 288
11. Fisz, M.: Probability theory and mathematical statistics III. edition, p. 211. New York:

J. Wiley.
12. Kolmogorov,A.N.: Selected translations in Math. Statistics and Probability. IMS

and AMS 1962 (translation of the AMS) p. 109.
13. Spitzer,F.: Am. Math. Monthly 78, 142(1971).
14. Van Beyeren, H.: private communication. To be published.
15. The functions φ and φ1 of this section are obviously not the same as the ones of

Theorem 2: there should be no confusion between them since they are defined on
completely different spaces.

Giovanni Gallavotti
Istituto di Matematica
Universita di Roma
Piazzale delle Scienze
1-00187, Roma, Italy




