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Abstract. A covariant canonical formulation of the motion of a rigid test body in a
curved space-time is obtained from a suitable Cartan form θ on the tangent bundle T&
of the bundle of Lorentz frames & over the space-time manifold V. The form θ (essentially
equivalent to a Lagrangean) is chosen in close analogy to the corresponding 1-form in the
classical Newtonian model of a rigid body and is very simple in terms of the natural
geometrical structure of 0*. The presymplectic manifold (T&, dθ) then serves as evolution
manifold of the system. One obtains the equations of motion and also a uniquely defined
Poisson bracket on the set of observables defined as real valued functions on the manifold
of motions. The rigid body interacts with the space-time curvature only via its spin in the
same way as a spinning particle. Quadrupole and higher multipole interactions with the
space-time curvature are not considered in this model.

1. Introduction

The equations of motion of spinning particles, gyroscopes and rigid
test bodies in curved space-time have been extensively discussed from
different points of view (see mainly Suttorp and de Groot [25] and
Dixon [5] for a historical review of the earlier literature). They have
received added interest recently in view of the proposed gyroscope
experiments ([21, 8, 17, 18]).

These equations have first been obtained by various generalizations
of classical Newtonian equations which were, however, always somewhat
arbitrary and lead to many controversies. Then Papapetrou [20] derived
them from the conservation law for the stress-energy tensor of an ex-
tended body, an approach that was improved by Tulcyjew [27], Taub [26]
and others until Dixon [5-7] and later more elegantly Madore [16]
obtained a new and consistent set of equations, after the question of
existence and uniqueness of a center of mass worldline was settled
(Beiglbδck [3]).

In this paper it is shown how Dixon's equations (specialized to a rigid
test body freely falling in an exterior gravitational field, with quadrupole

* Supported in part by the National Research Council of Canada.
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and higher moments neglected) can be derived in a Lagrangean way.
This may serve as a confirmation of the equations from a different point
of view. The main purpose, however, is to show how in the modern
framework of canonical dynamics (generalized Hamiltonian dynamics)
the natural geometrical structures over space-time, like the principal
bundle of Lorentz frames, with its given connection form and canonical
form, can be used to find the general relativistic analogue of the classical
rigid body system.

The modern theory of canonical dynamics is implicitly contained in
several recent books on differential geometry and mechanics ([1, 9, 11]),
particularly in Souriau [23]. The precise definitions used here are given
in [15]. For similar approaches and more details see [22] and [14].

Section 2 reviews the classical theory of the force-free rigid body in
the modern formalism, following partly the treatment of Arnold [2]. The
Cartan 1-form θ of the evolution manifold $ = TSO(3) xlR is expressed
in terms of left invariant 1-forms on SO (3) and the rotational energy.

In Section 3 it is argued why the bundle of Lorentz frames 0> can
serve as an (extended) configuration manifold for the relativistic rigid
body. Since there is no convenient fibre coordinate system on ,̂ but on
the other hand & is totally parallelizable (i.e., there is a natural iso-
morphism of T3P and 0* x 1R10), we do not seek on T^ an explicit Lagran-
gean, but only the corresponding Cartan 1-form 0, This can be done
in close analogy with the classical model of Section 2. Since the Lorentz
group and hence any subgroup SO(3) acts on the fibres of ̂  we let the
Killing vector fields of this action take the place of the left invariant
vector fields on SO (3), and similarly replace the left invariant 1-forms by
the corresponding components of the connection form on ̂ . The Cartan
form 0 on & can then be made to look formally almost the same as the
one on SO(3). Its exterior derivative ω:= dθ defines a presymplectic
structure on the 20-dimensional manifold T0*9 which is now chosen as
the evolution manifold of the system.

The rest is straightforward computation. It is seen that kerω has di-
mension 8 such that the dimension of the motion manifold Jt: = T^/kerω
becomes 20— 8 = 12 as is expected for a rigid body system. Moreover,
the leaves of the foliation kerω on Ύ& have well defined projections
into & and space-time i^, which are easily described by the tensorial
equations of the total and the translational motion, respectively. These
equations agree with those of Dixon [7] for a dynamically rigid body
provided quadrupole and higher multipole interactions of the body with
the gravitational field are neglected. Note that the worldline of (the center
of mass of) the body appears only at this stage. Contrary to many earlier
other approaches our method does not use the 4-velocity in the defini-
tion of the configuration of the system.
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An attempt of a systematic study of the dynamical symmetries is
made in Section 4, partly in order to note some other aspects of the
formalism, partly to better interpret certain quantities physically.

2. Canonical Form of the Classical Rigid Body System

We consider in this section only the rotational motion of a rigid body
in a framework similar to Arnold's [2]. This reformulation will give some
guidance in the choice of the Cartan form in the relativistic case of the
next section. The configuration manifold is the Lie group ^ = SO (3) and
the motion as well as the symplectic structure of the force-free system
are obtained from the Lagrangean

L .T9^ R:(a,v)^L(a,v):= Trot:= $Ia(υ, v)

where / is a positive definite left invariant Riemannian metric on ,̂ i.e.
satisfies Ia = /*- 1 Ie where Ie is the bilinear form on the Lie algebra g = TeG
and la denotes the left translation by a e ̂ . Classically / is the tensor of
inertia of the rigid body. We shall also consider Ia as a linear isomorphism
of Ta$ onto Tfl*^.

If, following the notation of Sternberg [24], we introduce the fibre
derivative of the Lagrangean,

& : T9-+T*V : (α, v}^L P = ~ = /

the fundamental 1-form Θ0:= — pada* on T*^ and the canonical
symplectic form ω0 := dθQ9 then the pullback of ω0 by X defines a sym-
plectic structure on T^.

However, since the tangent bundle of a Lie group is parallelizable in
a natural way, it is more convenient not to work with the fibre coordinate
systems (αα, υa) and (αα, pα) but rather with (αα) and

Ω : = / * - ι t ; e g (2.1)
or

S : = / * p = /ί/ f l W = / β(Ω)eg*, (2.2)

respectively. Eqs. (1) and (2) exhibit the isomorphisms between T$ and
^ x g and between T*^ and ̂  x cj*, respectively; Ω is called the angular
velocity and S the spin angular momentum or spin of the rigid body.

More explicitly, let {EA} be a basis of 9, {EA} the dual basis of g*
d

and EA = EA — — and EA = EAdaaί the generated left invariant vector

fields and 1 -forms on ,̂ respectively. Then, if we use the components
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ΩA and SA of Ω and S with respect to this basis, we find

L=Troi=±IABΩ
AΩB, (2.3)

^:(a«,ΩA)-^(a«,SA = IABΩ
B),

θQ=—paEBE = — SAEa E*BE
B = — SAE

and finally

θ:= <e*θQ = -<e*(SB)EB=-IABΩ
AEB,

where (IAB) is always the constant symmetric positive definite (3x3)-
matrix of the components of the tensor of inertia with respect to a body
fixed frame1.

Expressions for the symplectic forms on ̂  x g and ̂  x g* follow by
means of the Maurer-Cartan equations

dEA= -^CA

CE
BAEC , (2.4)

where CBC are the structure constants of the Lie algebra g, i.e. CBC = εA

BC,
the alternating symbol, in the case $ = SO(3). One finds

ω = i SABE
A Λ EB + T^F4 Λ dββ , (2.5)

considered as a 2-form on ^ x g although the tensorial spin

SAB:=εAB

cSc = εAB

cICDΩD (2.6)

has been introduced for notational reasons.
The transition to the relativistic system will be somewhat easier if we

first consider the corresponding contact structure on T$ x R For our
time-independent Lagrangean system the Cartan form is

where pr1 : T^xlR-^T^ is the canonical projection, and the presym-
plectic form is

ω := dθ= ^SABE
A /\EB + IABE

A /\dΩB + SAdΩA Λdt. (2.7)

In this framework, the motions of the system are obtained as the set of
leaves of kerώ on T^ xR In terms of ΩA one finds the classical Euler
equations, namely, Λ ~Λτj

dΩA/dt=-IABSBCΩ
c (2.8)

where (IAB) is the inverse of (IAB). In a principal frame for the tensor of
inertia Eq. (8) become

έ/Ω1/dί = /1"
1(/2-/3)Ω2Ω3

and the cyclically permuted equations for the other components.
1 Capital latin indices will always run from 1 to 3 and their upper or lower position

have no other meaning than to recall the summation convention.
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3. A Relativistic Model

For the freely moving rigid body in the non relativistic theory the
total configuration manifold is !R3x5O(3) and one chooses normally
(see, for example [1, 11, 23 or 24]) as evolution manifold

(f = !RxT(lR 3xSO(3))

with the Lagrangean

L: (f-+IR: (t x, α; v, Ω) t-> \ mv2 + £ IABΩ
AΩB .

The corresponding Cartan form θ on <ί is then

0= -mvAdxA-IABΩ
AEB + ±(mvAv

A + IABΩ
AΩB) dt (3.1)

and it is easily verified that dθ has rank 12 thus defining a contact
structure on the 13-dimensional manifold S.

For relativistic systems it is well known that the formalism is more
elegant if a so-called "extended" configuration manifold is used that
includes the time among its dimensions. We generalize this idea somewhat
as follows.

Let the space-time if be any time-oriented 4-dimensional Lorentz
manifold. A first choice for an extended configuration manifold for the
rigid body in if would seem to be any SO(3)-bundle over if. However,
no particular such bundle is distinguished, nor would it seem to exhibit
any features of relativistic covariance.

On the other hand, the rotational configuration of a rigid body can
also be described by a triad of orthonormal spacelike vectors {eA},
thought of as directions of three body fixed axes at the center of mass
of the body. Such a triad, at any x E if, however, determines precisely
one future oriented Lorentz tetrad {e0,eA} at x. In this sense there cor-
responds to every configuration "event" of the rigid body exactly one
point (x, er)

 2 of the bundle of Lorentz frames (for short, Lorentz bundle)
£P over if. Since 3P also has a lot of geometrical structure, closely related
to the space-time geometry it seems a good choice for the configuration
manifold. Note that this approach avoids involving the 4-velocity of the
body in the definition of its configuration which always seemed some-
what inconsistent.

As a principal fibre bundle & is totally parallelizable; in fact, there
is a natural isomorphism between T3P and & x 1R4 x g where g now stands
for the Lie algebra of the Lorentz group. To make this isomorphism
explicit let {Eab, a<b} be a basis of g. (If g is represented by (4x4)-

2 Small Latin indices run from 0 to 3 and are raised and lowered with respect to the
Minkowski metric η:= (ηab) = diag( — 1, 1, 1, 1).
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matrices A satisfying A η + η Aτ = 0 then (Eab)kl = ηakδbl — δalηbk] Then

alS° E = - ± ε rsE=-±εBCE andF =E

(where εabcd and εABC are the tensorial alternating symbols in Minkowski
space and 3-dimensional Euclidean space, respectively) form a basis of
g and the EA generate a Lie subalgebra so(3) of g. The corresponding
Killing vector fields EA and FA on P of the group action together with
the four standard horizontal vector fields er (horizontal with respect to
the connection induced by the Lorentz metric on i^} then form a basis
of Tp & for every p e & 3. If we denote the (real valued) 1-forms of the
dual basis by {Θr, EA, FA} the Revalued canonical 1-form 0 and the
g-valued connection form ω on & are explicitly 0 = (0°, 01, Θ2, 03) and
fn _ ft A p i fA p
ω — & &A + Γ ΓA-

The arbitrary vector X e Tp 0> can now be decomposed uniquely in
the form X = vr er + ΩA EA -f UA FA and if we choose (if, ΩA, UA) as co-
ordinates in Tp & we are in fact identifying T0> with & x (IR4 x g) via
the above mentioned isomorphism.

At this stage, noticing the similarity between the vector fields EA of
this section with those of Section 2 (they generate an SO (3) in both cases)
we assume that expression (2.3) for the rotational energy in the body
fixed system is still valid,

where we interpret the positive definite constant matrix (IAB) again as
the given tensor of inertia of the body and ΩA as the components of the
angular velocity with respect to the body fixed frame {eA}. Similarly we
would expect the second term in (1) to carry over unchanged in notation.

As to the translational part of the Cartan form, the guessing is some-
what more difficult. As differentials we expect only the space-time co-

ordinates to enter, that is only the 1-forms θr. Note that, in the fibre

coordinate system (x", e"), θr = θr

adxa with 0α^ = <5f, gaβe
a

re
β

s =ηrs and
d , d \

er = e* ---— —Γβye
l

rel — — . We make the simplest possible choice (in

our formalism) that reduces to the Newtonian case for flat space and
small velocitites, namely we let the Cartan form be

Θ = MΘ°-IABΩ
AEB (3.3)

where M := m+ Trot, m being interpreted as the mass of the body as
measured by a comoving observer when there is no rotation. This choice

3 See, for example, Kobayashi/Nomizu [13], Chapter 3
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seems also quite reasonable in view of the fact that Θ° = dt if ί is the
"proper" time of the frame {eA}. We adopt now $ = Ί& as evolution
manifold.

To find the induced presymplectic form ω := dθ the structure equa-
tions of the connection 3 can now be used in place of the Maurer-Cartan
equations. They become, if the structure constants of the Lorentz group
are used,

dθ° = θAΛFA, (3.4)

dθA = θ° Λ FA - £A

BCΘ
B Λ Ec , (3.5)

dEA = \ £A

 BC( - EB Λ Ec + FB Λ Fc - \ RBC

 rsθ
r Λ θs) , (3.6)

dFA =-εA

BCE
B AFC+ l

ΊR
Avrsθr Λ θs . (3.7)

From (3) to (7) and dM = IABΩ
AdΩB = SAdΩA it then follows that

+ i SAB(EA Λ EB - FA Λ FB) + IABE
A Λ dΩB ,

where SAB is again introduced by means of (2.6).
The next step is to investigate the kernel of ω. Let

Z = v' e,. + P*EA + QΛFA + ξr ~7+ΦA ~j^ + ΨA -^pc

be any vector of Tqέ", then

- (1A BΦ
B + SAB PB] EA + (MvA + SAB QB) FA (3.9)

+ (IABP
B~v°SA)dΩA.

Therefore, Z e kerω iff

PΛ = v°ΩA, (3.10)

ΦA= -v°ϊABSBCΩ
c, (3.11)

MvA=-SΛ

BQ
B, (3.12)

MQA=-±RA

rMNv'SM\ (3.13)

0 = R0rMNVSMN. (3.14)
Eq. (12) implies

SX = 0. (3.15)

Then substitution of (13) into (12) and use of (15) yield

(3.16)
provided

- D * Q . (3.17)
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Then (14) is trivially satisfied. The kernel of ω therefore consist of vectors
Z e Tq(o whose components VA, PA, QA and ΦA are given by (16), (10, (13)
and (11), respectively, in terms of v° and

q = (x, βr; υ
r, ΩA, UA) e 0> x (IR4 x g) - δ,

while v°, ξr and ΨA are arbitrary. Thus, kerω has dimension 8. Since
kerω is an integrable differentiable system it defines a foliation of $. If
this foliation is regular4 the quotient set Ji : = £ /ker ω is a 1 2-dimensional
symplectic manifold, the "manifold of motions" of the rigid body system.

We now show that the projections of the leaves of kerω into^ and
y are well defined curves, the trajectories of the body in space-time and
of its rotational motion. Let λ be the parameter of an integral curve of
a vector field Z in kerω. Then

v*:= dx*idλ = Z-+dx" = Z-i(ea

rθ
r) = vre* (3.18)

is the tangent vector of the worldline of the body in space-time. If
: = yα VΛ denotes the covariant derivative along this worldline we find

from

that
el = e«AQ

A (3.19)
and

e*A = <%QA-8AB

cP?<rc, (3-20)
and similarly

dΩA/dλ = Z-^dΩA = ΦA. (3.21)

Introduce now the tensor components of Ω and S by

Ω«:=e«AΩ
A, S*:=e«AS

A (3.22)

and note that then

S«β:=SABe*AePB = ̂ yδelSδ. (3.23)

Similarly let Ωaβ:= εaβγδe
y

0Ω
δ. Now (18)-(21) are readily brought into

completely tensorial form by substituting from (10), (11), (13) and (16).
Thus the full set of equations of motion becomes

μv4S' lv] ϊ (3 24)

(3.25)

(δ«β + e«0eoβ)eβ

A=-vQΩ«βeA (3.26)
and

(3.27)

4 A global condition, not verifiable for a general space-time, see Palais [19] or
Dieudonne [4].
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where ϊaβ = IABe«Ae
β

B, and ΩΛe*0 = Q = e%eAΛ has been used. The time
development of Sa is determined by

(δ*β + e%eQβ)Sβ = Q (3.28)

since again
Sa4 = 0. (3.29)

It is easy to verify that the spin magnitude s: = |/S*S^ and Trot and
hence M are constants of motion. Noting that δΛ

β + ea

0eoβ is the projection
operator into the "rest space" spanned by {eA} makes it clear that (26),
(27) and (28) are natural general relativistic analogues of the correspond-
ing Newtonian equations. Together with (25) they are the equations
found by Dixon [7]. Eq. (24) turns out to be a consequence of (25), (28)
and (29). Clearly v° is determined by (24) if λ is chosen to be the proper
time along the worldline.

Finally, note that the condition (17) puts a limit on the spin mag-
nitude for a given non zero space-time curvature. As remarked in [15],
however, this is of no physical significance since the concept of test body
is not valid for such large spins. Mathematically, it means that whenever
space-time is not flat the evolution manifold is only some open sub-
manifold of

4. Observables and Symmetries

While all real valued functions on the motion manifold Jί
can be called observables or dynamical variables ([23,14]) the only ones
that can be readily and invariantly interpreted physically are those that
arise from well defined group actions on S via Noether's theorem. One
version of the latter states that when the vectorfield A on g leaves the
Cartan form θ invariant, that is, satisfies

&AΘ = Q , (4.1)
then

fA:=A^Θ (4.2)

is an integral of motion, i.e. the pullback fA = π*/A of a function fA on
Ji. Since the group of all symmetries of θ, being infinite dimensional, is
too big to study and to interpret physically we confine ourselves to those
vectorfields A on $= T0> that satisfy (1) and have projections in & and
in space-time "f. They clearly form a Lie algebra, generating what
Hermann [10] calls the "obvious" symmetry group. This group turns
out to be finite dimensional. In most cases it will coincide with the
isometry group of space-time.
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Let A be a general vectorfield on $, again written in the form

A = v'er + PAEA + QΛFA + ξ'-^r+ΦΛ-^Γ + ΨA-^c. (4.3)

Then A has a projection in 2P provided /, PA and (λ4 do not depend on
ur, ΩA or IK Substituting (3) into (1) gives

SABQ
B + M(FA -J dv°) - S^ ̂  dPβ) = 0 , (4.4)

dvQ) + SB(EA-*dP*) = 0, (4.5)

+ i- J^ΓM* VSM" - Mfe -i Jv°) + Ssfe* -J dPB) = 0 , (4.6)

dv°)-^(e0^^P^)^0. (4.7)

Thus, the part ξrd/dvr + ΨAd/dUA remains completely arbitrary, but
since this vector field is in kerω its projection into Jί vanishes and it
does not contribute to the integral of motion fA. The Φ^'s are determined
by (5) in terms of the components of τ^,*A Substituting them into (7)
we find

A B - ± r M N A ^ v ° + e0^dv°)

0.

Eqs. (4), (6) and (8) now constitute the conditions on τ&,A that must be
satisfied for arbitrary ΩΛ. Setting the coefficients of all powers of ΩA equal

to zero leads to ,vo = ρχ_v^ (4.9)

and
dPA = ί εΛUNRUN

ryθ> + KABE
B-εABCQ

BFc , (4.10)
where

(4.11)

where KD is still undetermined.
The condition that A projects into i^ means that vr = vα (x) θr

a, in
terms of a fibre coordinate system. It follows that

dv°=rrv°θr-vAF
A (4.12)

and
dvA = Vrv

Aθr -v°FA + εA

BCv
BEc (4.13)

where Vrv
s are the tetrad components of the tensor Vav

β on 1^. From (9)
and (12) we see that F0v° = 0 and

PAv° = QA. (4.14)

Now take the exterior derivative of (9) and use (13) and (14) to find that

F(rV 4 ) = 0, (4.15)

that is, A must project onto a Killing vector field of the space-time metric.
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There remains to check the integr ability conditions of (10), namely
that the exterior derivative of the right hand side of (10) vanish. A longer
calculation yields

dKA=- ϊεABMIB

NRMN

rsv
rθ*-λΛBE

B-εABlMI»}Q
MFN, (4.16)

KAB=VBvΛ (4.17)
and

0 = εWWμ

MV t+ P°vMR0

NJ+ $RABr,PB

\LjCjD0B c nEnMN j jf ΏBC ^ ' '
~T~41A1B^ MNbCDEΓ Λ r s~~MB Λ C Λ rs

where
ι _ 1 jC 0 nD i ! ~ jC τ)D 1 rC rD rE 0 pF

AAB~ 2 1A^CBDΓ ~T~ 2 }^AC[B1D]Γ ~~~ 4 LA *B 1DbCEFΓ

, 1 jKM rLP TNQpR (ά]Q\
~r~ 4 bAKLLBMN* 1 bPQRL Γ \+-ιy)

+ £ABcK ~^A^(BεQ)CD^

But from (11) and (17) we have

KA=i£ABCI
B

D?cvD. (4.20)

The exterior derivative of (20) has the same coefficients of 9s and FN as
(16), but instead of λAB the coefficient

J — i 17 υc 1 -i P M]VP -^^^Γ 17 υ ί4 71 ΊΛylJ5— ~ 2 YAV 1BC~ 2&A εβ 1MKyJVN' V^ Zi;

Equating /l^^ with i^β is best done in a principal frame of IAB. Whenever
the tensor of inertia is not isotropic, i.e. IABφIδAB it follows that

(4.22)

In the isotropic case PA remains undetermined by this equation. However,
(16), (17) and (10) imply in this case that d(PA + IKA) = 0 whence

(4.23)

where PA are three arbitrary constants. With all these results (18) now
presents no further restriction.

The integrals of motion fA associated to these symmetries of the
Cartan form are computed according to (2) and become

fA = M v° - SA P
A - M v° - i SAB VA VB - SA P

A . (4.24)

Thus the conclusion: The symmetries of the rigid body system that are
lifts from the space-time i^ and the Lorentz bundle & are those which
induce isometries of space-time in the non isotropic case. In the isotropic
case there are three additional symmetries corresponding to the gen-
erators of the rotation group acting on the fibres of .̂ The integrals of
motion are

fA=-Mv^0-^Sxβ^vβ
3 Commun math. Phys., Vol. 27
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where v — v*d/dxa is a Killing vector field on y. In the ίsotropic case the
three additional integrals of motion are the components SA = SΛeA of
the spin vector.

For a Killing vector v that is covariantly constant, that is, satisfies
Ϋolvβ = Q the corresponding integral of motion is fA= — MV^CQ. If such
an infinitesimal isometry can be considered as a generator of translations
fA would be interpreted as the appropriate component of the 4-momen-
tum. There is therefore some justification in calling p* = Mea

0 the
4-momentum vector of the rigid body, as has been done by Dixon [5, 7]
and other authors from considerations involving the energy momentum
tensor of an extended body.

5. Conclusion

We have confirmed Dixon's version of the equations of motion of
a gyroscope in curved space-time from relatively simple, purely me-
chanical and geometrical considerations. New is the explicit construction
of a symplectic structure on the motion manifold of this system.

In an earlier paper [15] the same aim was achieved for a spinning
particle — a system with only four degrees of freedom. If one is only
interested in the precession of the spin axis, rather than the whole rota-
tional motion of the body — like in the case of a gyroscope rotating fast
about an axis of symmetry - this previous model is good enough. Here
we have shown that, in fact, as far as the motion of the spin axis is con-
cerned the full rigid body model gives no new result.

While it is likely that the symplectic manifold of motions (,/ ,̂ ώ)
obtained here is the only reasonable relatίvistic analogue in curved space-
time of the Newtonian rigid body system, the choice of T& as evolution
manifold is quite arbitrary. One can, for example, try to make g no bigger
than necessary, that is restrict dim^ to 2n + 1 if n is the degree of freedom.
An alternative approach that yields such a 13-dimensional evolution
manifold with a contact structure by an application of the Dirac con-
straint algorithm is briefly outlined in an appendix, since, although less
elegant, it has proved more useful in an application to the constrained
motion of the rigid body.

Appendix

An Alternative Approach

The starting point is again Ύ& equipped with the Cartan form θ as
in (3.3). But we now require that a motion shall necessarily be an integral
curve of a second order equation on the configuration manifold ,̂ that



Rigid Test Body in Space-Time 35

is of a vectorfield Z on T0> of the particular form

For such a vector field the equation Z —' ω — 0 cannot be solved on all
of Ύ&. From (3.10) to (3.14) together with (1) we immediately find the
conditions

Σ°: = υ°-l = 0, (A.2)

ΣA : = MυA + SA

BU
B = Q , (A.3)

'+ ? R A r M N t f S M N = Q , (A 4)
and

The seven functions Σr and TA turn out to be independent, while the
last condition is a consequence of the other seven. Thus the vectorfield Z
is only defined on the 13-dimensional subbundle Jf of T3P, given by (2),
(3) and (4). For consistency Z must be tangent to ,/K, i.e. it must satisfy
Z—' dΣr = Q = Z-JdTA. These new seven equations are just enough to
uniquely determine the components ξr and ΨA up to the arbitrary factor
χ(ΦA is still given by (3.11)).

Thus Λf can now be considered as the new evolution manifold of the
system. According to a general theorem on such degenerate Lagrangean
systems [14] the integral curves of Z must coincide with the leaves of
the foliation of kerω^ on Jf, where ωy. = ϊ*-ω is the induced pre-
symplectic form on the submanifold.

It is easy to verify that these integral curves are contained in the
foliation defined by kerω on T0> if they are considered as curves in T3P.
Thus the two quotient manifolds T^/kerω and t/1^/kerω4 are diffeo-
morphic. Similarly the projections of the integral curves on ,Jf into &
and i^ satisfy the equations obtained in Section 3, and also the study
of the obvious symmetry group carries over almost literally.
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