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Abstract. Within the framework of general relativity the Dirac equation for the hydro-
gen atom is given in case of a spatially isotropic and homogeneous expanding space-time
(Robertson Walker metric). In the special case of the static, closed 3-dimensional spherical
space (Einstein Universe) we get a continuous energy spectrum for the H-atom.

Introduction

In Einstein's gravitational theory the existence of so-called standard
measures (standard rods, standard clocks) is assumed, which allow to
measure explicitly the structure of the 4-dimensional space-time. In
general, one supposes that the rods and clocks of the microphysics
represents such standard measures.

On the other hand, one should emphasize that also the microphysic is
embedded in the space-time and hence is influenced by its structure.
Nevertheless, the above assumption seems to be justified in so far as in
general a noticeable disturbance of the microphysical standard measures
by the metric field is to be expected only if the gradients of the metric
inside the system are comparable with the interaction forces. But this
will be the case only under extreme conditions.

However, these considerations should be taken carefully. Peres [1],
[2], and Callaway [3] have analyzed the influence of the space-curvature
on the hydrogen spectrum caused by the mass and charge of the hydrogen
nucleus. They got a continuous spectrum for the H-atom with normalized
wave functions until today, the resolution of this paradox has not been
found.

Furthermore, an influence of the topology of space-time on the micro-
physics and therefore also on the microphysical standard measure
should be expected. Already 1936 Taub [4], 1938 Schrodinger [5] and
1946 Infeld and Schild [6] have shown that in the case of free electrons
embedded in a closed 3-dimensional space of positive curvature there
exist differences in the solutions of the Dirac equation for the spherical
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and the elliptical space. In case of the bounded electrons 1932 McVittie [7]
has analyzed the energy spectrum of the hydrogen atom on the basis
of the general relativistic Dirac equation using a perturbation method.
In case of an expanding, closed or open universe he has found that the
energy levels of the hydrogen atom are only slightly influenced by the
expansion or contraction of the universe. Recently, Dautcourt [8] has
investigated the influence of the topology of space-time on the energy
spectrum of the hydrogen atom with the help of a perturbational approach
starting from the general relativistic Schrodinger equation. In case of the
static Einstein universe he finds a discrete energy spectrum which differs
however from that of the hydrogen atom in the flat space. This seems not
too much surprisingly because in the last both cases the perturbation
methods start from the well-known results for the flat space.

In contrast to this, in this paper the influence of a cosmological
metric on the hydrogen atom will be treated exactly. The hydrogen atom
is embedded in a spatially isotropic and homogeneous expanding space-
time (Robertson Walker metric) and the corresponding general relati-
vistic Dirac equation is discussed neglecting the reaction of the H-atom
on the structure of the space-time. Restricting ourselves to the static
cosmos we analyze the energy eigenvalue spectrum of the Dirac equation
with a method developed by Weyl and Titchmarsh. In case of the spherical
space (Einstein universe) a continuous spectrum for the H-atom follows
in the total range of the energy spectrum in contrast to McVittie's and
Dautcourt's results. Analogously to the results of the free electrons
mentioned above one should expect a difference in the energy spectrum
of the H-atom between the spherical and the elliptical space. But in the
latter case our analysis of the eigenvalue problem of the hydrogen atom
did not succeed. In case of the hyperbolic space one gets a discrete energy
spectrum just in the flat space.

1. Dirac Equation in the Friedman Universe

For the description of the hydrogen atom, we use the Euler-Lagrange
equation for the classical Dirac field in a curved space-time, which takes
in the 4-spinor-formalism the form:

(1.1)

(A, JB, ... = 1, 2, 3,4 spinor indices; μ, v = 1, 2, 3,4 tensor indices). Aμ

means the electromagnetic vectorpotential according to the general
relativistic Maxwell equations; yμ^ represent the generalized Dirac
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matrices defined through the following commutation relation:
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and hfρ) describe a orthonormal tetrad ((ρ) tetrad index) following from:

/-I 0

— 1

- 1
Uσa ~~ n(Q)σn(μ)Λb > b ~ n<x n ~

0 4-1

Furthermore, the covariant derivation of the Dirac spinor ψB is

in which Γ£μ means the spinorial connection coefficients given by:

f.D. (i 7)

The Robertson-Walker lineelement underlies Friedman's spatially
isotropic and homogeneous expanding cosmological models. In angular
coordinates this lineelement is

ds2 = -R2(t) {dχ2 -f ξ2(χ)dΩ2} + dt2 ,
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(1.8)
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in which

and

sinχ

χ

1 ^ X = K spherical 3-dim.space
]ύlύ π/2 elliptical space

i ̂  χ :g oo flat space-time

hyperbolic 3-dim.spacesinhχ 0 ^ χ :g oo

(1.9)

(1.10)

stands for the element of the spherical angle. The "radius of curvature"
R(ί) is to be determined by the field equations of gravitation.

Chosing for the tetrad h^Q) the tangential vectors on the coordinate
lines of the metric (1.8) (which are orthogonal together) the generalized
Dirac matrices are according to (1.3):

—
R

Rξ
.(2) Λ . 3 _ . 1 ,(3) Λ , 4 _ , (1.11)

Correspondingly, the spinorial connection coefficients results according
to (1.7) in:

1 dR
1 " 2 dt

2 dχ 2 dt
y(4) (2)

- i sinθ -^- / 3 ) γ ( 1 ) + — cosS/ 3 )y ( 2 ) ξ) y ( 2 ) -

(1.12)

Furthermore, for the treatment of the H-atom, the knowledge of the
vectorpotential Aμ for the Coulombfield of the proton is necessary. Under
the assumptions, that the observer being at rest relatively to the material
substrat of the Friedman universe perceive no magnetic but only a central
symmetric electric vacuum-field (field of a point charge at "rest"), one
gets (uniquely to gauge transformations) by integration of the covariant
Maxwell equation:

Aμ = (0,0,0, V),

v =

-fctgZ for ε =

for ε - 0

- 1) for ε = - 1 .

(1.13)
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in case of spherical space (ε = 1), the potential V has at the position
χ = 0 a singular positive and at the position χ = π a singular negative
source. Therefore, the electric field Eμ has a behavior just as at the point
y = π a negative point charge would be situated (ghost charge); one gets

In case

source
1 — π a negative

from (1.13):

e, the electric held tμ has a behavior just as at the point
point charge would be situated (ghost charge); one gets

Rξ2
(1.14)

2. Separation of the Generalized Dirac Equation

Now, we are able to specify the Dirac equation for the hydrogen atom
embedded in the Friedman universe. With respect to (1.13) we obtaine
from Eq. (1.1):

o = O, (2.1)

in which with regard to (1.11) and (1.12)

3 1 dR

2 R at
y< 4 >

Rξ dχ

1 cosθ

~2~Rξsm$
(2.2)

It is easy to show, that the second term in (2.1) can be removed by the
substitution

For ΦA one gets the simplified differential equation:

With the help of the ansatz

(2.4)

Φ = - (2.5)

/F(χ,t) u(9,φ)

F{χ,t) υ(8,φ)

iG(χ, t) • v(9, φ)

\iG(χ,t)-u(9,φ)/

Eq. (2.4) can be separated in the differential equations for the generally
time dependent radial parts F and G and the angle parts u and υ. One
finds:

δχ

ot

ot he
V\G =

(2.6)
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and
. du j 1 dv ^
ι-—- + ku r—^-—— = 0,

dv smy dφ
. dυ . 1 du
I-—- -kv r-ηr-T— = 0.

oS sm# dφ

(2.7)

The system (2.7) for the angle parts of the wave function don't differ from
that in the flat space-time as a consequence of the symmetry of the metric
(1.8). Therefore, the angular momentum eigenfunctions and the eigen-
values belonging to them are the same as in the flat space and shall not be
studied furthermore.

3. Stationary Systems

In the following we are interested in stationary solutions of the
differential equation (2.6). Therefore, we make the separation ansatz:

? f = f i ή #

The necessary and sufficient condition for realizing the separation (3.1) is

jR(ί) = jR0 = const, (3.2)

i.e. the universe is static. Therefore, in case of an expanding universe no
stationary solutions in the sense of (3.1) exist for the hydrogen atom.
With the restriction (3.2) the system (2.6) passes in view of (3.1) into

d

H

(3.3)

with the reciprocal compton wavelength ° , the energy eigenvalues E

e2

and the fine structure constant α = -—. In case ξ = Roχ one gets the
he

well-known Dirac equations of the flat space. For ξ = sinχ and ξ = sinhχ
the equations pass into the Dirac equations of the flat space only for
χ <ξ 1 of course.

In case of the flat space the energy eigenvalues will be caused by the
requirement of the quadratic integrability of the wavefunction ψ which
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demands φ(χ-> oo)->0 for the behavior in the infinity. From this the well-
known energy eigenvalues result:

m°cl , = , (3.4)

1 +
]/k2-a2

in which n = 0,1, 2,... mean the radial quantum numbers and k = ± 1,
± 2 , ± 3,... the angular momentum quantum numbers.

However, in case of the spherical space the circumstances are entirely
different from those in the flat space, because the spherical space is finite
and closed. In the following we will demonstrate that in this case the
Dirac equation possesses no discrete but a continuous energy spectrum.
In case of the hyperbolic space one gets a discrete energy spectrum in the
same energy range as in the flat space.

4. Theorem of Weyl and Titchmarsh

For the determination of the properties of the energy spectrum of the
hydrogen atom in case of the spherical and hyperbolic static space we
don't integrate the differential equations (3.3) but use a theorem for the
eigenvalues spectrum of systems of differential equations, which H. Weyl
and later Titchmarsh [9] for differential equations of the second order
have given and which Titchmarsh [10] and Roos and Sangren [11-13]
have extended on systems of differential equations of the first order.
The explicit integration of the differential equations (3.3) in case of the
spherical and hyperbolic space is not yet succeded until today.

The theorems of Weyl, Titchmarsh, Sangren, Roos contain the
following theorem:

It is given the system of differential equations of first order

dxι{r)

^ + Uc(r)+J(r)}x 1 (r) = 0.

In this λ is a complex constant and a, b, c, d are real-valued functions of r
in the interval 0 ^ r ^ oo, which are sectionally continuous and from
which a and c are positive. Furthermore, the following boundary con-
dition at r — 0 may be valid:

dr
(4.1)

ι(0) xx{0) + sinjSK(O) x2(0) = 0, (4.2)

where K(ή = {a(r)lc(r)γ and β is a real constant.
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Now, from the functions a, b, c, d the following auxiliary functions are
defined:

(4.3)

(4.4)

(4.5)

A(r) = J {[λa(ή + ft(ί)] [λc(ή + d(t)]}*dt,
o

F(r, λ) = \_λa(r) + ft(r)]* [λc(r) + d(r)] " J ,

F(r)

If S(r) is simply integrable, the following theorem is valid:
ίx \

The real A-values associated to the solutions X — \ 1 of the systemw
of differential equations (4.1) and (4.2) by which any quadratically inte-

grable function H = M can be combined by superposition belong to
\. 2/

(a) a continuous /-spectrum, if S(r), F(r), A(r) are simultaneously
real-valued,

(b) a discrete A-spectrum, if S(r) and A(r) are imaginary and F(r) isίx \
complex. In this case the solutions X = I 1\ are already quadratically

\X2/

integrable.
Therefore, it depends on the coefficients a(r\ b(r), c(r), d(r) of the

system of the differential equations (4.1), if the case of a continuous or a
discrete spectrum is realized. With the help of the two quotients

b(r) d(r)

c(r)
(4.6)

one can distinguish with regard to the mentioned theorem the following
cases because of the asymptotic behavior of q^r) and q2(r) for r->oo:

(A)

1)

2)

for — oo < λ < oo point spectrum

(B)

1)

2)

q2->cc
for — oo < λ < oo continuous spectrum



Hydrogen Atom in the Friedman Universe 329

(C)

P)

(E)

1)

2)

1)

2)

for

for

with —oo < Qi < Q2 < oo.

0 <

point spectrum

continuous spectrum

continuous spectrum

point spectrum

— oo < λ < Qx continuous spectrum

for Qi < λ < Q2 point spectrum

Q2 < λ < 00 continuous spectrum

5. Energy Spectrum of the Hydrogen Atom

Now, we apply the above theorem to the system of differential
equation (3.3). For this we set it into the form of the system of differential
equation (4.1) carrying out the following transformation of the dependent
variables:

dy

ξ(y)

dy

ξ(y)

(5.1)

Herewith the system of differential equation (3.3) passes into ' =
\

-2kι l
ξ(y)ί (5.2)

which has already the structure of the Eqs. (4.1). For the immediate
applicability of the theorem in the several cases of the spherical, flat and
hyperbolic space a suitable transformation of the independent variables
is necessary. In case of spherical and flat space (ε = 1, 0) we carry out the
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following transformation:

sinχ for ε = 1,

χ for ε = 0.
(5.3)

Herewith the system of differential equation results in:

dx, (r/2Roy
2k ( E moc V(r)

dr

dx2

~dr~

1 + ε
he

2k f β

n
= 0,

4R2

0

1+ε-
ftc oc

V(r)
= 0 .

The comparison from (5.4) with (4.1) yields:

E
λ=Tc~'

a(r) =
(r/2R0)

-2k

1+ε-

V(r)\ (r/2R0
,-2k

c{r) =

1+ε-

4R2o

V(r)\ (r/2R0)
2k

1+ε
4R2

0

moc .

(5.4

(5.5)

(5.6)

in which μ = —-— is the reciprocal Compton wave length. From this the

quotients qι and q2 are calculated accordingly (4.6) to

V(r)
(5.7)

in which in view of (1.13) and (5.3)1

V(r) '
— ε (5.8)

1 The application of the theorem of § 4 assumes that the function S(r) (cf. (4.5)) is

integrable. This is only the case if the electric field has a behavior as ξ~2δ with δ > 1 (cf.

(1.14)).
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For the well-known case of the flat space (ε = 0) it follows from (5.8)

F(r->oo) 1
• 0 (5.9)

and therefore according to (5.7):

(5.10)

With respect to case (E) of the theorem we get (cf. (5.5)) a discrete spectrum
in the energy range —m0c

2<E<m0c
2, and outside of this interval a

continuous spectrum in accordance with the well-known results.
In contrast to this in case of the spherical space (ε = 1) one obtains

from (5.8)

and according to this

2R2

0

q2(r —• o o ) —• GO .
(5.12)

Corresponding to case (B) of the theorem (cf. (5.5)) a continuous spectrum
results in the total energy range — oo < E < oo.

In case of the hyperbolic space (ε = — 1) we start immediately with the
system of Eqs. (5.2). Calculating in (5.2) the integrals and putting in the

potential V(χ) accordingly (1.14) for ε = — 1 one gets with λ = ——

dχ

x\ - R o t g h

x'2

- 2 k

= 0.

(5.13)

The comparison from (5.13) with (4.1) yields for the functions a,b,c,d
after the identification of χ with r:

2 ' ={μ+ - |^

c = i?otgh2

2 '

(5.14)
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Herewith the quotients q1 and q2 become accordingly (4.6):

q2 = -

(5.15)

For the asymptotic behaviour one finds:

1

According to case (E) of the theorem we obtain (cf. (5.5)) a discrete
spectrum in the energy interval —m0c

2<E< m0c
2, and outside of this a

continuous spectrum. Consequently, the range of the discrete energy
spectrum is identical with that of the hydrogen atom in the flat space.

Obviously, one obtains a result differing from that in the flat space
only in case of the space with positive curvature which is topologically
distinct from the flat space. Therefore, in case of a static spherical space
(Einstein Universe) the hydrogen atom cannot be used as a standard
clock. Thus in general, the hypothesis that the clocks of the microphysics
represent always "good" standard clocks cannot be maintained.

Acknowledgements. 1 should like to express my thanks to Professor H. Dehnen for his
guidance in the preparation of the paper.

References

1. Peres, A.: J. Math. Phys. 5, 720 (1964).
2. _ phys. Rev. 120, 1044 (1960).
3. CallawayJ.: Phys. Rev. 112, 290 (1958).
4. Taub,A.H.: Phys. Rev. 51, 512 (1937).
5. Schrόdinger,E.: Acad. Pontificio, Commentationes, vol. II, No. 9.
6. Infeld,L., Schild,A.E.: Phys. Rev. 70, 410 (1946).
7. McVittie,G.C: Monthly Notices Roy. Astron. Soc. 92, 868 (1932).
8. Dautcourt, G.: Gen. Rel. and Gravitation 2, 97 (1971).
9. Titchmarsh,E.C: Eigenfunktion Expansion, Part One. Oxford: Oxford Univ. Press.

10. — Proc. London Math. Soc. 11, (3), 159—168 (1961).
11. Roos,B.W., Sangren,W.C: Proc. Ann. Math. Soc. 12, 468 (1961).
12. J. Math. Phys. 3, 882 (1962).
13. J. Math. Phys. 4, 999 (1963).

Ekkehard Nowotny
Lehrstuhl f. theoretische Physik
der Universitat
D-7750 Konstanz, Postfach 733
Germany




