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Abstract. The vacuum line element inside an infinitely long rotating hollow cylinder
is the usual flat space line element. It is fitted in a most general way to the general cylindrical
vacuum field outside at the singular hypersurface Ro = const, representing the infinitely
thin hollow cylinder. With the use of the jump conditions at Ro = const the surface densities
τx

μ, of which the energy-momentum-stress tensor τ^ of the shell consists, are calculated.
The physical properties of the cylinder, as derived from the eigenvalues and -vectors of
τj, and the generated gravitational field are discussed in full detail.

1. Introduction

Recently we have shown [1] (in the following cited as I), that the
general stationary cylindrical vacuum field, found by Davies and Caplan
[2] is static, whereafter, it is identical with Levi-Civitas general static
solution [3]. Hence any stationary (rotating) cylindrical matter distribu-
tions generate a static cylindrical vacuum field. As far as we know the only
rigorously treated example for this class of matter distributions is the
rotating cylinder of Van Stockum [4], consisting of incoherent matter.

In this paper we present the general solution for the uniformly
rotating infinitely thin hollow cylinder. The general-relativistic procedure
of constructing the gravitational field of such surface distributions has
been given by Lanczos [5], Israel [6], Treder [7] et al. The main results,
which we shall need in this paper, are: Choosing natural (Gaussian)
coordinates in which the metric tensor is continuous across the (singular)
hypersurface xι = a = const, we get the line-element in the form

ds2 - - dx12 + gikdx{dxk (i, fc = 2, 3,4). (1.1)

The energy-momentum-stress tensor Γμ

v has the surface-density structure1

T ^τlδiXi-a). (1.2)

According to the definition of the ^-function Einstein's field equations

of gravitation Rμv=-(Tμv-^Tgμv) (1.3)

1 Greek indices run from 1-4, latin indices (except i, k) from 1-3.
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In order to apply this method to the rotating hollow cylinder, we shall
proceed as follows: Firstly, we join continuously the vacuum solutions
inside and outside the shell in the most general way. In I we have shown
that, if the interior field is free of singularities, the spacetime inside the
cylinder is (at least locally) flat, distinguishing three topologically
different cases. Here we shall restrict ourselves to the case of the simply
connected spacetime inside. Secondly, we calculate the surface densities
τv

μ and determine the eigenvalues and eigenvectors of τv

μ, which describe
invariantly the physical properties of the shell.

The results are discussed in Chapter 3. We find particularly that
the sum of the eigenvalues of τv

μ vanishes necessarily, i.e. τv

μ is tracefree.
This implies the nonexistence of a rotating hollow cylinder consisting
of incoherent matter.

Finally we investigate the gravitational effects caused by the rotation
of the cylinder. Gravitational effects of rotating bodies were first regarded
by Thirring [8] in 1918. Since that time many other contributions about
this subject have been published, out of which we cite only a few [9—18].
However in all these papers approximation methods are used. In contrast
to this we discuss in the following the infinitely long rotating hollow
cylinder rigorously. Certainly this example is far away from being
physical, but it is interesting under the aspect of the Thirring effect,
which is coming out particulary clear.

2. The Fitting Procedure

The general cylindrical line element satisfying the vacuum field
equations is according to I, (3.2)

ds2=-[dR

+ R [Λ2 + 3!dT2.

The condition of fmiteness of the eigenvalues of the Riemann tensor at
R = 0 causes for the field inside the cylinder the restriction on the cases
A= ±1,A= ±co; hence (2.1) results in:

4 = + l : ds2=-(dR2 + R2dΦ2 + dZ2) + dT2, (2.2a)

A=-U ds2=-(dR2+dΦ2+dZ2) + R2df2, (2.2b)

A=±oo: ds2=-(dR2+dΦ2 + R2dZ2) + df2. (2.2c)
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Herein the asterisks denote the coordinates appropriate to the interior
line element.

In (2.1) and (2.2) the variables Φ, Φ are regarded as generalized angle

coordinates. So we still have to introduce for Φ, Φ the periods P, P. The

remaining coordinates have the following regions of validity: — oo ^ T{T)

^ -h oo, — oo ^ Z(Z) ^ + oo and R according to Table 1. This determines
the different topological structure of spacetimes given by (2.2 a-c). In the
cases Λ= — 1, yl = ± oo the circumference of the 2-dimensional spacelike
hypersurfaces T = const, R — const (cylinders) is independent of R.
In case of A — + 1 it is proportional to R.

We shall discuss only the case A= +1. This restriction is required
by the condition that the spacetime is simply connected. Obviously,

for A = -f- 1 (cf. (2.2 a)) we must choose the period P to be 2π, in order
to avoid a singular structure at R = 0. In contrast to this for A = — 1 and
A = ± oo the spacetimes are not simply connected and R = 0 does not
define an axis of rotation. However we wish to point out that the whole
fitting procedure, presented in this paper, could analogously be performed
also for these cases.

In the following we will join continuously the fields (2.2 a) inside
and (2.1) outside at the singular hypersurface R = Ro defining the hollow
cylinder of radius Ro.

With the transformations

= df-R0

the line element (2.1) (outside) takes the form

ds2=-ldR2 +

+ ιAy(ίa..,2
• ) •

ίR

Uo

dΦ2

γ(i -A
]df2.

(2.4)

Ro

If we identify the coordinates R, Φ, Z, T and R, Φ, Z, T, the connection
with (2.2 a) gives, as we shall see, the static case of the non-rotating hollow
cylinder. Hence in the general non static (stationary) case we have to
perform a coordinate transformation before the connection of (2.2 a)
and (2.4).

Global cylindrical symmetry of the field implies the existence of
appropriate coordinates, in which the metric tensor is dependent on
the radial distance R alone. These properties are given by the line element



Table 1. The line element inside and outside the cylinder in the different cylindrical coordinates

Coordinates Interior and exterior line element Region of validity of coordi-
nates,
Period of the angle coordi-
nate

* * *
a) R, Φ, Z, T 0: ds2 = - *,. *.

R \-2

-2(1 dΦ df

R \i

R
dZ2\ +

42 + 3 ~b2R2 ίκU^#)
dT2

b) Λ, Φ, Zs f R^RQ- ds2 = - (dR2 + ί/Z2) - [(1 + b2 R2) R2 ~ b2 Rf] dΦ2 - 2b(l + b2 R2)* (R2 - R2) dΦ df

+ [(1 + b2 R2) - b2 R2-] d f2

c) R,Φ,Z,f ds2=-{dR2 + R2dΦ2+dZ2) + 2-^^-γ^dΦdf+[\-[~^r-r\R2\df2

i f ϊ + 3 / ^ :

R

\+b2R2J\R0

° l b2R2

l+b2R2J °

(l+b2R2)*

O^R^ +oo

A<0:

0<Φ<2π
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outside (cf. (2.4)) in the coordinates R, Φ, Z, f as well as inside (cf. (2.2 a))
* * *

in the coordinates R, Φ, Z, T. In order to preserve these properties the

coordinate transformations between Φ, Γ and Φ, Γ must be linear .
Taking into acount the condition of continuity of gμv at R = Ro, we get:

* _ . Φ=-bf
Z = Z f = {l+b

with the inversion

* Φ = bT + (l+b2Rl)>Φ
* (2.JD)

In the coordinates R, I , Z, f and R, Φ, Z, f the region of validity of JR
does not extend from R = 0 to R = + αo (see Table 1). For v4^0 we
can introduce further coordinates R, Φ, Z, T, valid in the whole region
O^R^ + oo, which are given by:

Φ ~ Φ (l + fc2^)- z = z ( Λ ! ) C )

As to be seen from (2.4) and (2.3) or Table 1 the gravitational field
of the hollow cylinder is dependent on the three parameters A, b and Ko,
corresponding to the three physical properties of the cylinder, i.e. the
surface density of matter, the rotational velocity and the radius. The
relations between A, b and these properties are established in the following
through the jump-conditions (1.4).

3. The Physical Properties of the Hollow Cylinder

The invariant physical properties of the hollow cylinder are determined
by investigation of the eigenvalues and eigenvectors of τv

μ. If we regard
the timelike normalized eigenvektor uμ as the 4-velocity of the mass
elements of the cylinder, the eigenvalue μ belonging to uμ is the proper
(surface) density of matter. The three eigenvalues to the three orthogonal
spacelike eigenvectors (orthogonal to uμ) mean the stresses occuring in
the cylindrical shell. As to be seen from the general relations (1.4) the
eigenvalue to that spacelike eigenvektor, being orthogonal to the
hypersurface ,R0 = const, vanishes, i.e. the stresses are lying in the shell,
as expected from the surface density structure of matter.

We emphasize that this interpretation of the eigenvalues and eigen-
vectors is unquestionably not necessary but the most simple one. It
includes a certain (e.g. elastic) structure of matter of the cylinder. Heat
flow for instance is excluded. But nevertheless the eigenvalues and

2 A Z-dependent transformation is not admissible for symmetry reasons.
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-vectors contain invariant informations which are independent of the
special model of matter being regarded. Hence the results of this chapter
are valid in general, only the expressions "surface density of matters",
"motion" etc. are related to a special model and could be replaced by
other names.

a) The Static Case

First we discuss the most simple case b = 0, in which the coordinates

I , Φ, Φ and f, f, f are identical (cf. (2.5)). The surface densities τ μ v

follow from (1.4) in view of the linelement of Table 1 to be

Ro

(3.1)
{1~A)^R τ - ί 1 " ^ 2 ^ 1

K 0 > τ 3 3 ~ . 2 , Q D

τ μ v = 0 otherwise

The normalized eigenvectors of (3.1) are

δμ

uμ _ Zμ hμ — a

V ~ 9
with the nonzero eigenvalues

(1-Λ)2^ ' , . • > . , <

According to uμ (cf. (3.2)) the mass elements of the cylinder are at rest
relative to the reference system, defined by the hypersurface orthogonal

δμ

time-like normal vector field vμ(xa)= ——=-. In this sense we charac-
1/044

terize the cylinder to be non-rotating.
With the relations (3.3) we can express in (2.4) (outside) the metric

tensor by the radius Ro, the surface density μ and the stresses σ(φ), σ(Z).
Hence the linelement inside and outside of the cylinder is:

Ro: ds2 = - (dR2 + R2 dΦ2 + dZ2) + df2

2σ{Z)Ro * \ / D \2μR0

RoJ I \R0
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Apart from the factor 2π the dimensionless quantities μR0,σ{φ)R0,
σ{Z)R0 describe line densities with respect to the Z-axis. Hence the limit
case of the infinitely long rod (JR0 = 0) is included, taking the line element
in the form (2.1). From (3.3) we find the following relations between the
eigenvalues of τv

μ

 3 :

μ + σ(φ) + cr(Z) = 0

(μR0)
2 + (1 + σ(φ)R0)

2 + (σiZ)R0)
2 - i .

Thus hold the restrictions:

-±Sσiz)R0S+l (3.6)

Therefore solutions for the non-rotating infinite hollow cylinder exist
only for mass densities in the interval — ̂ g μ R 0 ^ l . However for
physical reasons the mass density may be restricted to positive values.

b) The General Stationary Case

In the general case b φ 0 the nonvanishing components of τμv following
from (1.4) with the use of the linelement Table 1, line a) are 4 :

* -
— z

* 1

01

b2

I1-

-A

? ί\ Λ

«(-.

\ 1

ί-,2 n 2
- Ό J\Q

AA

A2+ 3

2

] I

2 I

AA

4 2 + :

+ ( -
) 2\1 /

(3.7)

C 2 2 Γ

• 3 3 - U 2 + 3 J Λ 0

It is easy to see, that as in the static case holds:

τ{ί = 0. (3.7 a)

Furthermore the spacelike eigenvectors bμ

R) and b^j are the same as
in the static case, cf. (3.2). For finding the remaining eigenvectors bμ

φ) and
uμ we make instead of solving the eigenvalue equations for τ μ v the follow-
ing ansatz for the timelike normalized eigenvector uμ, which is suggested

3 (3.5) are just the relations known from the Kasner solution (see I, (3.3)).
4 = indicates, that the equation is valid only in the coordinates R, Φ, Z, t.
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by the Minkowskian structure of the interior region:

According to this the condition of orthogonality yields for the normalized
eigenvector bμ

{φ)\

1 * 1 * ? * 1 A. * β

b — b = 0 b = ί? — ii_ (3.8 b)

Herein the parameter β has the following simple invariant meaning: it is
the absolute value of the 3-velocity of the mass elements of the cylinder
with respect to the inertial system in the flat space inside defined by

υμ ^ (54μ . (3.9)

The eigenvalue σ(Z), describing the stress in Z-direction, is in view
of (3.7) as in the static case:

iJ Ra '
Using the ansatz (3.8) the eigenvalue equations of τ μ v result in:

The relations (3.10) and (3.11) represent the reduction of A and b on the
physical quantities μ, Ro, β, σ(φ) and σ(Z); one finds:

A2= 1 + 3 σ ^ R \ (3.12a)
1 R

with

(3.12b)

= (l+σ,Z)R0-3σ?Z)R
2

0).
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Apart from the special case μ = σ{φ) (cf. Chapter 3 c) it follows from (3.12b)
that b = 0 (static case) exactly if β — 0 (non rotating cylinder).

On the other hand only three physical properties of the cylinder are
freely available, e.g. μ,R0 and β. The five relations (3.10) and (3.11),
between which the dependence (3.7 a) exists, allow to determine uniquely
the dependent four quantities A, b, σ(φ), σ(Z). Thus one finds in addition
to the Eqs. (3.12a) and (3.12b):

/ β2

4/iΛ0 μ K o - T " ^
^ ' i (3.13a)

1-jB2

σ(Z) — ~ (μ + σ(Φ)) (3.13 b)

Herewith also the validity of the ansatz (3.8 a) has been shown.
We emphasize that the passage to the limit Ro = 0 in (3.12) and (3.13)

can be performed (as in the static case) so that the line element (2.1)
describes the field of an infinitely long rod with spin. Finally we note,
that (3.13) agrees with (3.5) in the static case b = 0.

c) Detailed Discussion

In Fig. 1 the dimensionless quantities σ{φ)R0, σiZ)R0 are drawn as
functions of μR0 for different values of β. The four shaded sectors I
(0 ̂ Λ ^ 1), II (+ 1 ̂ A ^ + 3), III (+ 3 ̂ A g + oo) and IV (A gO) are the
regions, in which solutions for the stationary rotating hollow cylinder
exist.

First, we discuss the physically most interesting sector I with
μ Ro g 0, - ^S σ{φ)R0 S + τ ( s e e a l s o Fig- 2) T n e s^n °f t n e stress term
σmR0 depends on the rotational speed β and the mass density μ. It is
negative, if the "gravitational attractive forces" are greater than the
"centrifugal forces" and inverse. According to the relation (3.13 a) σm

β2

vanishes for μR0= l~—-^ , i.e. the two forces compensate each other.

For \β\ ^ \ the centrifugal force dominates for all possible values of μR0.
It is remarkable, that for the mass density μR0 exists an upper limit
depending on the rotational speed β. It varies between +§(/J = 0) and
+ !(/?-• 1); all physically relevant densities ly far below this limit.

The behavior of negative rotating masses (sectors II, III) is completely
different from that of positive masses. The tangential stress term σ(φ) JR0

is negative for all possible values of μ and β. Hence, as to be expected,
the centrifugal forces are directed inward as well as the gravitational
forces.
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A=

Fig. 1. The stresses σ{φ) and σ(φ) as functions of μ for different values of the rotational speed/?

Furthermore in Fig. 1 we have marked some special values of A. For
the cases A = + 1 and A = + 3 the lines A = const degenerate into points,
and the eigenvalues of τj are independent of β. While the case A = + 1
results in the flat space with vanishing τj and b = 0, in the case A = + 3
the Riemann tensor (outside the cylinder) is of degenerate type D (see I).
Particularly we get from (3.12) and (3.13) μR0 = σ^φ)R0 = - % and from
(3.12b) b = 0 as well as for A = + 1. Thus the gravitational field and the
nonvanίshίng eigenvalues of τμ

v are independent of the rotation β of the
cylinder. However this curious case A = -f 3 lies in a physically non
relevant region.

Sector IV seems to be ofless interest. For /? —> 1 we findμR 0, |σ ( φ )# 0 |-> oo.
We renounce to a further discussion of this sector.
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Fig. 2. The course of the tangential stresses in sector I

Finally we give in case of the sectors I and II approximate values of
σ(φ) and σ(Z) for small mass densities μR0. We get from (3.13):

σ ~μβ2 σ ~ — μ(l-{-β2). (3-14)

In [18] we have calculated the energy-momentum-stress tensor of the
hollow cylinder in special relativistic approximation. (3.14) agrees with
these results, if we choose the constant of integration σzz occuring in
[18], (2.2.6) to be - ( 1 +β2)μ. The value of σ(φ) in (3.14) represents the
usual centrifugal term.

4. Thirring Effect

From (2.1) and (2.2) follows immediately that the field is static inside
as well as outside the cylinder, i.e. it admits inside and outside a hyper-
surface orthogonal timelike Killing field ημ and ξμ respectively:

ημ£δϊ, (4.1a)

ξ"±δl. (4.1b)

Both fields are continuous across the singular hypersurface JR0 = const.
But the vector field ημ is hypersurface orthogonal only inside and ξμ only

outside the cylinder. The hypersurfaces are T = const and T = const
respectively. As it is easy to see, the gravitational field does not admit
(for fe + 0) a timelike Killing field, which goes continuously across the
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surface Ro = const and is hypersurface orthogonal inside as well as
outside. This behavior of the field of the rotating cylinder can be given
the following physical interpretation: We define two reference frames
(one inside and one outside) by the congruences of the timelike world-
lines given by (4.1). The tangent normal vector fields to these con-
gruences are:

vμ±δί for R^Ro (4 2a)
and

wμ = -β=- for R = Ro . (4.2 b)
1/044

Using Table 1 and (2.5) we find for the absolute value of the 3-dimensional
relative velocity ι;relt at R = R0 between the reference frames given by
wμ and vμ: ,

p"' = ω * ° = ( i + fc'V ( 4 3 )

ω is the angular velocity between the two reference frames. This effect,
which was first established in linear approximation by Thirring [8];
is known as the "dragging of inertial frames by rotating bodies", which
causes the appearance of "Coriolis (magnetic-type) forces" [19].

From (4.3) follows that signω = signb and ω = 0 if and only if b = 0.
Hence the Thirring effect is an immediate consequence of the rotation of
the cylinder. From (3.12) and (4.3) we find ωR0 as a function of the
physical quantities: / _ 1

\ωR0\ =
1,

(4.4)

For the sign of ω one gets:

s i g n ω = s i g n { β ' ( μ - σ ( φ ) ) R 0 Λ ) . (4.5)

5. Final Discussion

In Fig. 3 we have drawn ωR0(μR0) for different values of the rota-
tional speed β. The main results, as to be seen from (4.4) and Fig. 3, are:

The maximum value \ωR0\ = l, i.e. α=-f-oo, is reached for the
limiting cases of maximum rotational speed

|0| = 1 and Λ = 0 (σ{Z) Ro = - i S = 0),

i.e. maximum (negative) stresses in Z-direction (see also Fig. 1).
The sign of ω is according to (4.5) determined by the direction of

the rotational speed /?, the sign of (μ — σ{φ))R0 and A. Hence in sector I
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Fig. 3. The relative rotation ωR0 of the reference frames vμ and wμ as a function of the mass
density for different values of β

of Fig. 1 (1 ̂  A ^ 0, μR0 ^ 0, σ(φ)R0 ^μR0) the reference system outside,
given by wμ, rotates with respect to the reference frame vμ inside in the
same direction as the cylinder. In sector II (negative mass density,
(μ — σiΦ))R0 :g 0, 3 ^ A ^ 1) it rotates in opposition to the cylinder as well
as in sector IV (μR0^0, (μ — σ{φ))R0 ^ 0 , ^4^0), while in sector III
(+oo ^ , 4 ^ 3 , μRo<0 but (μ —σ ( φ ))jRo^0) the absolute value of the
stress term σ{φ)R0 predominates μR0 and we get a behavior as in sector I.

A consequence of the Thirring effect is, that observers in the reference
frame wμ outside, placed nearly at R = Ro, will measure a rotational speed
β{a) of the mass elements of the cylinder, which is different from the speed
β measured by the observers in the reference frame vμ inside. Performing
the same procedure as described in Chapter (3.b) in the coordinates
R, Φ, Z, T we finally get the following relation between β and βia).

β
(\-β2

4A
(4.6)

The sign of β and β{a) is the same in the sectors I—III of Fig. 1{A^ 0), but
opposite in sector IV (A g 0). Together with (4.4) this yields the curious
result that for A < 0 the relative rotation of the frames vμ and wμ is "faster"
than the rotation of the cylinder.

I thank Prof. H. Dehnen for discussions. This work was supported by the Deutsche
Forschungsgemeinschaft.
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