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Abstract. In this paper we intend to analyze the geometry underlying the various
representations of the relativistic scattering amplitudes. More precisely we consider the
direct-channel expansion, its euclidean contraction and the crossed-channel representation.
In all these representations one can distinguish the factors which express the dynamics
from those which reflect the symmetry; starting from the latter, one can try a geometrical
interpretation of the harmonic analysis of the scattering amplitude on the Poincare group.

I. Introduction

In the last decade, many authors [1-5] contributed in making clear
the role played in particle physics by the harmonic analysis of the
scattering amplitude on the Poincare group. Consider the elastic
scattering of two scalar particles of equal mass m and denote with
T(s, t) the scattering amplitude, where 5 and t are the usual Mandelstam
variables; i.e. s is the energy squared and t the momentum-transfer
squared. In a paper which appeared in 1962 Joos [5] considered the
relativistic phase-shift analysis in the so-called s-channel. In this case
one takes s > 0 fixed and the scattering amplitude is decomposed in

It
functions of z = cosS = lH — τ \ i.e. the cosine of the scattering

s - 4m2

angle in the center of mass system. These functions are the Legendre
polynomials and the little group is the rotation group. However one can
also invert the situation and take t < 0 fixed and decompose the scattering
amplitude in functions of s obtaining in this way the so-called ί-channel
(or crossed-channel) phase-shift analysis. In the latter case, instead of
the center of mass system the convenient system is the brick-wall system
[4] and the little group is the non-compact group 50(2,1). One of the
great advantages of these decompositions is that the scattering amplitude
is thereby separated into its dynamical part, contained in the partial-
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waves, and its symmetry part which is expressed through the various
types of higher transcendental functions which appear in the represen-
tations.

Furthermore, quite recently, several mathematical schools [6-7]
reconsidered the theory of special functions of mathematical physics
and succeeded in giving a group-theoretical foundation to a large part
of the enormous amount of properties of these functions. Moreover,
Helgason [8] introduced in this framework the powerful methods of
differential geometry of Riemannian manifolds. Therefore, many re-
lationships among the algebra of Lie groups, the Riemannian geometry
of manifolds and the theory of higher transcendental functions were
discovered. Along these lines one can also generalize and give a founda-
tion to a Fourier-analysis on a manifold of constant negative curvature
[9], in a sense which we will clarify later on. From this point of view,
it seems reasonable to try a geometrical analysis of the various expansions
of the scattering amplitude which we have mentioned above. More
precisely the main aim of the present note consists in indicating how
the factors which express the symmetry of the scattering amplitude are
related to the geometry on manifolds of constant, positive and negative,
curvature. The mathematical tools which are needed in order to perform
this analysis are essentially given by Helgason in Refs. [8] and [9];
therefore, we must borrow some of the methods and theorems which
are proved there. Finally, this paper is the continuation and completion
of a previous short note [10] where we have analyzed the ί-channel
representation from the point of view of the non-euclidean Fourier-
analysis; this problem is here reconsidered in Section III while Section II
is devoted to the s-channel expansion and its euclidean contraction.

II. The Direct-Channel Expansion and Its Euclidean Contraction

In order to introduce the notations, let us write the direct-channel
and the crossed-channel expansions. The usual s-channel expansion in
its symmetrical from can be written as follows:

T ( M ) = Σ ( 2 / + l)/I(s)[PI(cos9) + P ί (-cosθ)] (1)
z = o

where Pt are the Legendre polynomials, I denotes the angular momentum,

cosθ = lH — τ is the cosine of the scattering angle in the center
s — 4m

of mass system (as we mentioned above) and finally s = {p1 + p2)
2,

t = (p1 — p'ί)
2, pί and p2 being the momenta of the incoming particles,

p\ and p'2 the momenta of the outgoing particles.
21 Commun math Phys , Vol. 26
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The crossed-channel or Joos expansion [3] can be written as follows:

T(s, t) (2)

_ 1 γdλλf(λ,t)\ I 2s \ I 2s

~ J f \ ί + +^ \ ii o cosh(πA) [ 2 + ιλ \ t-4m2 ) ι + ιλ \ t-4m2

where P_^ + iλ are the so-called conical functions (see Ref. [11], Vol. 1°,
p. 174).

Now we come to the geometry. Let M be a Riemannian manifold
of dimension m and (φ, %) be a local chart on M; i.e. φ'.q-+ {x\{q), . >xm(<?))
is a coordinate system valid on an open subset °UCM. We define the
functions gip gιj, g on °U by:

where g denotes the Riemannian structure on M (see Ref. [8], p. 386).
Therefore the Laplace-Beltrami operator can be written in the following
form:

4 Λ ( ) «). (4)
More precisely we must work on manifolds of dimension 2 and constant
curvature. On these spaces which are the euclidean plane, the 2-sphere
S2 and the hyperbolic plane H2 we want to introduce a system of geodesic
polar coordinates. We consider firstly the 2-sphere S2, i.e. M = S2.
Strictly following Helgason (Ref. [8], p. 403) we denote with o the
north-pole on M and with L a semicircle on M joining o to the south-
pole. If (φ,r) are ordinary polar coordinates on the tangent space Mo,
then we regard (φ, r) as geodesic polar coordinates at oeM. They are
valid on S2 — L. In terms of these coordinates the Riemannian struc-
ture on S2 is given by the differential form:

dr2 + {sinr)2dφ2. (5)

We have also: gn = 19^22 = (sinr)2 gί2 = g2i = ^l ^"=(sinr)2 and there-
fore from (4) we get for the Laplace-Beltrami operator the following
expression :

δ2 I d yg d 22 d2

δr2 yg δr δr δφ2

δ2 cosr δ 1 δ2

+dr2 sinr dr (sinr)2 dφ2
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Now, consider the quotient group G/K where G = SO (3) and K = SO(2).
Let Φ be a spherical function on G/K. Then Φ(p) = ψ(d(o,p)) where d
denotes distance and ψ(r) is a function which satisfies the differential
equation:

d2w cosr dw

d r sinr d r
(0<r<π), (7)

α being a complex constant. If α = — n(n -f1) where n is an integer ^ 0,
a well-known solution of (7) is given by:

1 2 π

ip(r) = Pn(cosr) = —— f (cosr + i sinr cosu)ndu , (8)
2π o

where the r.h.s. of (8) is the Laplace integral representation of Legendre
polynomials. Therefore we can conclude with the following Proposition
(Ref.[8], p.403):

Proposition. The spherical functions on G/K are precisely the functions

Φn(p) = Pn{c0S(d(0,P))) (9)

where Pn are the Legendre polynomials of degree n.

Now, if we identify cosr = cos# = l + — — - — = - , where 9 is the
s — Am

scattering angle in the cm. system, and if n acquires the meaning of the
angular momentum /, then the polynomials (9) give precisely the basis
of the direct-channel expansion (1). Recall that the Legendre polynomials
form a complete orthogonal system in the space L2 with respect to the
interval [ — 1, + 1 ] . Observe, also, that the operator (6) coincides with
the angular part of the operator (3.5) of Vilenkin-Smorodinskij [12] 1.

Next we want to consider the contraction of the expansion (1)
to its euclidean limit2; this implies the transformation of the 2-sphere
S2 into the euclidean plane R2. We proceed heuristically as follows.
Consider the following limit:

Λ. , . I in sinr COSM\"
lim (cos r -f-1 sin r cos u) = lim cos r H (10)
ι ->0 > ->0 \ '

1 These authors analyze the Laplace operator on the Lobacevskij space of the rela-
tivistic four-velocities; then introduce various coordinate systems and through the "ori-
sphere" method work out expansions of the scattering amplitude which are generalizations
of (1) and (2).

2 More precisely hereafter we will consider the euclidean contraction of the following
expansion
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then for large / and small $ we have

n sinr = I sin& -> b]/^! (11)

where b is the impact-parameter of the collision process. Therefore we
get:

ίΓ.°
and from (8) we obtain:

j V d M J o
zπ 0

which is a Bessel function of order zero and it must be a solution of the
following differential equation:

d2ψ 1 dψ

dr r dr
14

Now we can observe that the l.h.s. of (14) is the radial part of the following
operator:

Δ =
dr r dr r δφ

which is the Laplace-Beltrami operator corresponding to the differential
form:

dr2 + r2dφ2 (16)

which gives the Riemannian structure onM — R2. In this way we have re-
obtained the well-known Wigner-Inδnύ contraction [13].

Now let us recall the standard formulae of Fourier analysis on Rn.
For feLι(Rn) put:

f(v)=ϊf(x)e-i(x>v)dx (17)
Rn

(,) denoting the usual inner product on Rn. Then if feC™{Rn)\

1

Let us introduce polar coordinates as follows (see Ref. [9], p. 7): v = λw,
λ^O and where w is a unit vector. Then from (17), (18) we get:

f{λw)= j f(x)e~iλ^w)dx (19)
Rn
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and

ί fiλvήeW-^λ^-Vdλdw. (20)
ι(iπ) R+ Sn~

Let us suppose that f(λw) is a function of λ alone and take eιλ{x>w)

^giby^tcosu t ^ j s a m o u n t s to consider a two-dimensional momentum
transfer vector k and a two-dimensional impact parameter b in the
plane perpendicular to the incoming beam, such that

Moreover u denotes the angle between k and b. Finally we obtain from
formula (20), for n = 2

= 7ΓT ί bdbmMbY^t)
yzπ) 0

which gives the impact-parameter representation for the scattering
amplitude, that is widely used in high-energy scattering (see, for instance,
Ref. [14]).

Remark. Before going to the next section, where we want to analyze
the expansion of the scattering amplitude into the imaginary-mass
representations of the Poincare group (corresponding to ί<0), it is
better to make clear that in the present note we do not discuss what we
could call the t — 0 problem. Any way it is convenient to recall that in
the case of equal mass scattering, the little group at ί = 0 is S0(3,l).

III. The Crossed-Channel Expansion

Let M be a manifold of constant negative curvature equal to —1.
In geodesic polar coordinates (φ, r) say at the point i e M, the Riemannian
structure on M is given by (see Ref. [8], p. 405);

dr2 + (sinhr)2dφ2. (23)

More precisely the expression (23) is the elliptic form of the ds2 for a
pseudo-spherical surface (see Ref. [15], Vol. I, p. 224). The corresponding
Laplace-Beltrami operator is given by:

d2 coshr d 1 d2

/j i i (24)
r2 sinhr dr (sinhr)2 dφ2Br2 sinhr dr (sinhr)2 dφ2
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This operator coincides with that part of the operator (3.11) of Vilenkin-
Smorodinskij [12] which works on the coordinates b and φ following
the notation of Ref. [12]. The spherical functions on M have the form
Φ(p) = ψ(d(i, p)) where the function ψ(r) satisfies the differential equation:

d2ψ coshr dtp x , ^
Ψ + ^ a ψ (r>0) (25)dr sinhr dr

for same complex α. The general solution of this equation is given by:

w(r) = Pn(coshr)= —— f (coshr -f- sinhr cos ufdu (26)
2π S

where ρ satisfies ρ(ρ + 1) = α (see Ref. [8], p. 406).
Remark, Up to now we have analyzed the Laplace-Beltrami operator

its eigenfunctions and the corresponding integral representations; we
have worked essentially with the tecnique of the separation of variables.
However there is also a purely algebraic approach to the problem,
which makes use only of group invariance properties. With the latter
methods, one can derive the integral representations of the Legendre
functions, the associated Legendre functions, the Bessel functions and
so on; for these methods see Ehrenpreis (Ref. [16], p. 379).

Next we want to introduce the Poincare model of hyperbolic geometry.
As it is well-known, this model can be built in the unit disc D, whose
boundary will be called the horizon and denoted with B. Now let us
write:

x = tanhl —I cosφ,
V ' (27)

y ^ t a n h l —-1 sinφ,

from which we get:

(28)

where: z= \z\ eιφ. With easy computation we have:

[ i - W 2 ] 2

which is exactly the form (23). Moreover it turns out that the shortest
distance between the center of the unit discD and the point z is given by:

d(o,z) = l o g 4 ± 4 (30)
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In the hyperbolic geometry the "oricycles" play a fundamental role.
Their euclidean images in \z\ < 1 are circles tangent to the horizon \z\ = 1
from within, in a point w = eiχ. The oricycles orthogonally intersect the
pencil of parallel "straight-lines" (arcs of circles orthogonal to the unit
circle and lying in its interior) passing through the point w = eίχ.

Now let us write the Poisson-Kernel:

where z = \z\ eiφ and w = eiχ. One of the properties of the Poisson-Kernel
P(z,w) is that its level lines3 are the circles tangent to the unit circle
at the point w = eiχ; the euclidean images of oricycles (see Ref. [17], p. 7).

Furthermore P(z, w), being the real part of— , is a harmonic function
w — z

of z and \_P(z,w)Y, μe(C, is an eigenfunction of the Laplace-Beltrami
operator on D [9]. Finally P(z,w) is invariant with respect to any
transformation that preserves the unit disc.

Therefore we can say that:
1 _ l τ | 2 1M

(32)
+ | z | 2 -2 | z | cos(φ-χ)

is the non-euclidean analog of the plane-wave. In fact P(z, w) is constant
on each oricycle of normal w, it is an eigenfunction of the Laplace-
Beltrami operator on D and finally <z, w> gives the non-euclidean geodetic
distance from the center of the unit disc to the oricycle with normal w
and passing through z((z, w) is negative if the center of the unit disc o
falls inside the oricycle). All these facts allow an extension of the Fourier-
Transform to manifolds of negative curvature; this generalization can
be performed through the following theorem due to Helgason [9].

Theorem. (Helgason). For fe Cf(D) set:

f(lw)=$e(-ίλ+ίKz>w>f(z)dz; λeR, weB, (33)
D

where dz in the volume element on D. Then

f(z)= —!-2- J $e(iλ + ̂ <z>w>f(λ,w)t<inh(πλ)λdλdw, (34)
(2π) R B

where dw in the usual angular measure on B4.
3 In order to be more precise, it is better to exclude the infinitely distant tangent point

which belongs to the horizon.
4 This theorem is the simplest case of more general results, due to Harish-Chandra

[18] and Helgason [9] concerning the Fourier-analysis on symmetric spaces of the non-
compact type.
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The formulae (33), (34) can be reduced to the classical formulae of
Mehler-Transform (see Ref. [11], Vol.1, p. 175, and Ref. [9]). In fact

ί r\
recalling that |z|= tanh — we have:

(35)
\z\2 — 2\z\ cos(φ — χ) coshr — sinhrcos(φ — χ)

Furthermore the Jacobian of the transformation (27) is given by:

i t a n h ( τ )
J = — —r^τ- and therefore the volume element dz in the co-2 γ

cosh I —

2

ordinates (φ,r) becomes: dz = (sinhr) drdφ. Then recalling formulae
(26), (32) and (35) we obtain from formula (33):

2π J F(r)P_i+ ί λ(coshr) sinhrdr, (36)
o

where we have supposed that f(z) = F(d(o,z)\ F even. In a similar way
we obtain from (34):

+fλdλF(λ) P_ i + ί λ(coshr) tanh(πλ), (37)
0

where we have used the eveness of P-± + iλ with respect to λ and the fact

that/(A, w) is supposed to be an even function F(λ) of λ alone. Formulae

(36) and (37) are the classical formulae of Mehler.

Now concerning the expansion (2) one can start (as Joos [3] has
done) from an unsubtracted dispersion relation for the scattering ampli-
tude at fixed, negative, momentum-transfer. The absorptive part of the
dispersion integral, let say /(s, t), is expressed through the product of
the current operators j(p1) j{ — p\). If Pi and p\ lie on the mass shell,
then the product j(pi)j( — p\) transforms under the Poincare group
according a product representation (m2, 0, +)®(m2,0, —) (recall that
we are considering spin-zero particles). Now through the technique of
the Clebsh-Gordan-Coefficients, one can decompose this product in
"irreducible field operators" corresponding to irreducible tensor operator
with respect to the Poincare group. Then it turns out that the reduced
matrix element f(λ, t) of the "irreducible field operator" is the Mehler-



Harmonic Analysis 299

Transform of the absorptive part f(s, ί); i.e.:

f(λ,t) = itanh(πλ) j d(coshr)P_ έ + ί λ(coshr)/(s, ί) (38)
o

with the inversion:
+ 00

f(s,t) = 2 J λdλf(λ,t)P_i+iλ(coshr), (39)
0

2s
where: coshr = — 1 —y. In other words one obtains for /(s, ί) a

non-euclidean Fourier-expansion. Finally substituting the expression (39)
into the dispersion integral one obtains:

T(s,t) (40)

= — f
λdλf(λ,t)

cosh (π λ)
ί - i + ii l

which is the Joos expansion (2). Another way of getting the represen-

tation (40) consists in applying directly the Mehler-identity to the de-

nominator of the dispersion integral [4]; i.e. to — where
z — z + is

t — Am
At this point, it should appear clearly how the expansions of the

relativistic scattering amplitude are related to the geometry on mani-
folds of positive and negative constant curvature. It is better recall that,
in the present note, we have considered only the term which corresponds
to the principal series of the 50(2,1) group; this term is related to the
so-called "background integral" of the complex angular momentum
representation (see Refs. [19,20])5. On the other hand, the principal
series does not complete the class of unitary representations of the 50 (2,1)
group; one must consider also the discrete series and the supplementary
series. Moreover, if one uses the analogue of the Peter-Weyl theorem,
then every square-integrable function over the group manifold can be
expressed as a sum of terms which correspond to the principal series
and to the discrete series respectively. However if one considers scattering
of spin-zero particles, as we have done, then no term of the discrete
series will appear [4]. Finally, in order to incorporate more general
amplitudes, the expansions must be generalized to non-unitary repre-
sentations. In the present note, we have avoided these questions in order
to make more transparent the analysis of the geometries underlying
the expansions which we have considered; we will eventually return to
these problems elsewhere.

5 This relationship has been recently reconsidered by Cronstrom and Klink [21].
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