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Abstract. It is shown that under rather general conditions two K.M.S. states ωί and
ω2 of systems S^ and 52, respectively, can be simultaneously extended to a K.M.S. state
ω of a system composed of Sί and S2, provided both systems have equal temperatures.
This result gives further support to the conjecture that K.M.S. states are equilibrium
states. In the second part, a model of thermal coupling is constructed which satisfies the
assumptions of the first part, thereby showing that the result is also valid in the interesting
case of systems St and S2 in thermal contact.

I. Introduction

During the past three years, there appeared an increasing number of
papers on the Kubo-Martin-Schwinger boundary condition strongly
supporting the assumption that a state ω of a general quantum statistical
system is an equilibrium state if and only if ω satisfies the K.M.S. condi-
tion [1-6]. It is understood that the systems under consideration do
not contain adiabatically closed subsystems of different temperatures.
There are proofs of this conjecture for special cases [1—4], but, to my
knowledge, no general proof exists. This paper is intended to give
further support to the above conjecture.

If we consider two systems S^ and S2 described by the respective
algebras of observables ^, 512 and the states ωλ and ω2 which satisfy
the K.M.S. condition, we may ask whether ωv and ω2 have a common
extension to a K.M.S. state ω of a system composed by S± and S2, provided
S^ and ,S2 have equal temperatures. If K.M.S. states are equilibrium
states, we expect this to be true. In the next section, we shall give a proof
of this conjecture using rather general assumptions. In Section III, we
shall exhibit a model of thermal coupling of two finite quantum systems.
Finally, we shall deal with the infinite volume limit and show that the
systems are continuous in the coupling parameter, and, in addition, we
shall argue that the states of the infinite systems are essentially the same
as those of the uncoupled systems if the temperatures are equal. The
results of Sections III and IV are intended to show that the assumptions
of Section II are reasonable even in the presence of thermal coupling.
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II. Simultaneous Extension of KMS States

Let 91 be a C*-algebra, αf e Aut9I a representation of the group of
time translations as automorphisms of 9ί. The K.M.S. condition can be
stated in the following form :

Definition 2.1. ω is a K.M.S. state over 9ί with respect to αt belonging

to the inverse temperature β = ~r=r, if far all A.Be^l
K, i

'

(i) ω(AoίtB) is a continuous function of ί,
(ii) j f ( t - iβ) ω(AatB) dt = j f ( t ) ω(((ttB)A)dt for all f(t)

with Fourier transform J^/ e ̂ , where 2 denotes the set of
infinitely differentiable functions with compact support.

Define the algebra of holomorphic elements of 9ί by

Definition 2.2.91 = {A e 91; atA is a holomorphic operator-valued
function of t}.

91 is not empty; if, for instance, «^/e ̂ , then § f(t] atAdt e 91. If we
restrict ourselves to elements of 91, there is another formulation of the
condition (KMS):

ω(AaiβB) = ω(BA\ Aε^Betyί. (KMS')

From (KMS'), we cannot conclude that ω is a K.M.S. state unless 91
is dense in 9ί. However, for A e 91, B e 91, the conditions (KMS) and
(KMS') are completely equivalent [7]. Norm-density of 91 in 91 is
implied by strong continuity of αt, i.e. Hα^ —>4|| -^^ 0 for all ^4e9I.
But there is a result by Takesaki and Winnink [8] stating that in case
of a strongly continuous group of time automorphisms on a von Neumann
algebra 91 the existence of a K.M.S. state over 91 implies that 9ί is of
finite type. Therefore, we shall not assume strong continuity of αt and
use condition (KMS) to define K.M.S. states. In addition, we shall use
the equivalence of (KMS) and (KMS') on the subset 91.

We consider two quantum statistical systems. Let 91̂  and 9ί2 be the
respective C*-algebras of observables. We need the following assumptions:

(A) 9ίt and 912 are embedded in a larger C*-algebra 9ί0 so that we
can define 9ί12 as the C*-algebra generated by 9ίt and 9Ϊ2.

(B) 9It and 9ί2 commute elementwise.
(C) For any A e 9ίj, and any B e 912 we have AB Φ 0 whenever A =t= 0,

These assumptions seem reasonable. Let us consider, for instance,
two infinite regions Al9A2 with /!1uyl2 = lR3, Aίr\A2 = &•

Let Lj, i = 1, 2, denote two Hubert spaces of functions with supp f{ CΛ{,
fi e L;, and let 9t be the corresponding representations of the C*-algebras
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91;, ί= 1, 2, of the canonical commutation relations (CCR). Then 9I12 is
the representation of the CCR corresponding to L = Li®L2. It is then
clear, that (A) and (B) are fulfilled.

Furthermore, for any representation of the CCR we have [9,10]

πOtti) £ πίΦi)® 1, π(9Ϊ2) £ 1 ® π(9ϊ2),

and thus (C) is valid.
To give another example, we may construct, following Ruelle [11],

a quasilocal algebra 91, starting with <ΆΛ =
 <β(^fΛ) = von Neumann-

algebra of all bounded operators on fflA. fflA denote Hubert spaces with

! whenever Λ^C A. With 9lf = \J 91̂ , i = 1,2, we have

and our assumptions are fulfilled. This example refers to the case of
bosons; for fermion systems one has to use the "even" algebra 9Γ
(cf. [11], p. 178).

We have to make two further assumptions:
(D) There exist two groups c4,α2 of automorphisms of 9IA and 9I2,

respectively: α^ c9If, which are representations of the time translations.
We expect this to be true of separated systems. As to systems in

thermal contact, we refer to the discussion in the next sections. Our last
assumption is a technical one:

(E) The automorphisms αj and αt

2 can be extended to automorphisms
αt of 9ί12.

Assumption (E) will be shortly discussed later. Now let us consider
K.M.S. states ωv and ω2 of our systems and ask whether there exists a
K.M.S. state ω on 9ί12 whose restrictions to 91; equal ωf, i= 1,2. Re-
garding K.M.S. states as equilibrium states we expect a positive answer
if ωί and ω2 belong to the same β.

Indeed, we have the following

Theorem 2.3. Let 9I1? 9I2 be C*-algebras for which the assumptions (A)
to (E) are satisfied, and let ω1 ?ω2 be K.M.S. states over 91̂  and 9I2,
respectively, belonging to the inverse temperatures β1 and β2. Then there
exists a K.M.S. state ω over 9I12 which is a common extension of ω^
and co2 if and only if β± = β2.

Proof. The "only if direction is trivial: the restrictions on 9Ϊ; of any
JB-K.M.S. state ω are /J-K.M.S. states, too.

In the following, we suppose that ωl and ω2 are β-K.M.S. states. It
is known [12] that the assumptions (A), (B), (C) imply that 9^ and 9ί2

are statistically independent, i.e.

11 Commun. math. Ph^s , Vol. 26
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(i) there exists a homomorphism Φ : 9^ 2 — > ̂  ® α 9X2 , where 2^ ® α 9I2

denotes the closure in the α-norm [13] of the direct algebraic product

(ii) there exists a common extension of any two states ω1 ?ω2 over
^ and 212 respectively, to a state ω over 2ί12, given by ω = ωί ®ω2 ° Φ.
We shall show that ω is a β-K.M.S. state.

On the set

the norm-closure of which equals 2I12, the homomorphism Φ is actually
an isomorphism, given by

φ
finite finite

On ϊti 0^2^ we define automorphisms α,1 Oαt

2 by

clearly, we have

on (1)

Let us compute the α-norm of αj Oαt

2.

2ce?Θ^

1/2

where the supremum is to be taken over all states φ1 over 9Il5 all states φ2

over 9I2, all C;- e 3Ϊ! and all Dj e 2ί2,

Σ Σ <Pι[Cf(αt

1X})*(«t

1/lϊ)C/]φ2[Df(α?Xj)*(«,2Λ2)0I]
i , / = ! j,k = l

1/2

Let £(91) denote the set of states over 2ϊ. We define automorphisms of
£(81) by

α e Aut $1.
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Using this notation, we continue the above equation :

Instead of taking the supremum over all φi e £(2ϊi), i = 1, 2, and all Cj
D;e2ί2, we may take it over all α^-eE^), all (α,1)"1 Cj e 2I1?

(αf

2) ~ 1 D,. e 2I2 , and we get

Hence α* O ί̂2 is norm-preserving and can be continued to an auto-
morphism group αj ® αr

2 of 91! ®α2ϊ2. Due to the continuity of Φ, Eq. (1)
can be extended to 2^ 2 :

. (2)

Our main task will be to establish

Proposition 2.4. Lei ωf be β-K.M.S. sίαίes oi er <2I/ with respect to α|',
i= 1, 2. T/ιen ω t®ω2 is α /J-K.M.S. state over 2lι®α

<2ί2 wιί^ respect to
α^α2.

With the help of this proposition, the proof of Theorem 2.3 is easily
completed. Consider ω = ω1 ® ω2 ° Φ. The continuity of ω(,4 αf £), >1, B e ̂  2 ,
is a trivial consequence of (2) and Proposition 2.4. Furthermore, for all
A, B e W12 and all / with J^/e ̂ , we have

J /(ί - ij8) ω(AatB)dt =

= f/(ί-i j8)ω 1

where we again made use of Eq. (2) and Proposition 2.4. Therefore, ω is
a β-K.M.S. state over 3ί12.

Remark 2.5. It would be desirable to define rather than assume the
existence of an automorphism group α, on 9I12. It is easy to define α,
on Sli v ̂ 2 by

or, equivalently, by

αί = Φ~ 1α t

1Oα ί

2Φ

with the help of the isomorphism Φ : Slj v 2I2 — » 2^ O 2Ϊ2
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Unfortunately, it is not known whether Φ"1 is α-norm continuous
and can thus be extended to an isomorphism of 9I1®α9I2 onto 9112,
thereby allowing to define αt on 9I12. Of course, if we assume that the
composed system is described by 91 1 ®α9I2 then (A) and (E) are trivially
fulfilled.
Now let us prove Proposition 2.4.

In the following, 91, 9^ , 9Ϊ2

 etc always denote C*-algebras with
time automorphisms α, , αj, αr

2 . . . and states ω, ω1 , ω2 . . .
πω denotes the cyclic representation of 9ί given by ω, αt

ω the corre-
sponding representation of the time automorphisms αί5 unitarily
implemented by l/ω(ί)

ΦA e J>fω is a vector of the representation space J^ω, defined by the
equivalence class [A] of ,4 e 91. Ωω is the cyclic vector such that
ω(A) = (Ωω,πω(A)Ωω).

Extensions of the state ω and the automorphisms α^° onto the von
Neumann algebra 93 ω generated by πω(9t) will be denoted by

To shorten the notation, we write &?l = &\9U(0i(t)=Ui(t\&(0i = SBi.
In short, the proof of Proposition 2.4 is as follows: We consider the

representations πωι of 9ί£ given by the K.M.S. states ω f. The extensions ώf

are K.M.S. states over Sί = πωι(9lf)
//. Let ®f denote the holomorphic ele-

ments of 93 f. Due to the continuity in ί of ωf(>4αjβ), αj are weakly continuous
automorphisms of 33; and therefore, (i) Sμs weakly dense in 93ί9 (ii) the
direct algebraic product *&ί QS2 ^ weakly dense in (93i ® S2Γ ̂  ® ώ2

fulfills the condition (KMS) on S tO®2; due to the weak density of
»! O S2> ωx ®ώ2 is a K.M.S. state over (93! ® 932Γ. However, (®! ® 932)"
^(πωι(9I1)®πc02(9ί2))" is isomorphic to π^^^®^)^ and hence
ωi®ω2 is a jS-K.M.S. state over ̂ ^^2 .

Lemma 2.6. Lβf ω(v4αrβ) ί>e α continuous function in t for arbitrary
A, Be 91. T/zen αf zs weakly continuous in t: |(Φ, αf C!F)|-^rό^O/or arbitrary

Proof. l/ω(ί) is given by C7ω(ί) Φ^ - Φ^, ̂  e 91. Any Φ, y e JTω can
be approximated by ΦAn and ΨBm, respectively, with ||φ^|| = ||Φ||,

g |(Φ - ΦX n, (t/Jt) - 1) «P)| + \(ΦAn, (Uω(t) -ί)(Ψ- ΨB

+ \(ΦAn,(Uω(t)-l)ΨBJ
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for sufficiently large w, m and sufficiently small ί. Thus Uω(t) is weakly
continuous. It is also strongly continuous because it is unitary; and this
trivially implies weak continuity of α,C= (7ω(ί)Cί7co(ί)"1, Ce93.

Lemma 2.7. Let 23 denote the holomorphίc elements of 93 = πω(2l)". //
α, is weakly continuous, 33 is weakly dense in 93.

Proof. For all /(ί) with Fourier transform J^/6 ®, we have

and there exists tj fa) such that

<ε l 5 if

Let us choose a sequence /r(ί), ̂ fr e £$, such that fr ^ 0, j /r<iί = 1, fr con-
verge to the (5-function. Then tfr(ε^B) can be made arbitrarily small
(% fixed). Due to the weak continuity of α f,

|(Φ,(αt- l)BΨ}\<ε2, if ί <ί0(82; Φ, ,̂ β).

Choose r large enough such that tfr (ε1? β) < ί0( ε2^ Φ? ̂  ̂ X then

Φ, j /r(ί)α fβdί-B/rpPΦ,(β- j fr(t)&,Bdt
-to

Q.E.D.

Lemma 2.8. //23 ί? i = 1, 2, are weakly dense in <Ά1 and S2» respectively,
then S1QS2 is wβa/cίy dense in (

Proof. ®! and S2 are *-algebras, so we can use the density theorems
of von Neumann and Kaplansky in order to conclude that any B1 e 93,
and any B2e932 can be strongly approximated by nets 5 lαeS1 and
£2/?e»2, respectively, with ||βlα|| ^ \\Bt\\, \\B2β\\ ^ \\B2\\. Any Φ,
can be approximated by vectors of the form

Σ n
Φl i

f inite
i> Vn= Σ Ψlj®Ψ2jl

f ini te

; \\Φn\\ g ||Φ||, \\ψn\\ g
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Therefore,

ΦJ ||B1®B2-β lβ®B2/l | | HP-SMI
Φn, (β, - βlα)®#2 Ψn)\ + \(Φn, B1Λ®(B2 - B2β)Ψn)\

«P-«Pj) 2|β1|| ||β2||
\\φ»2ί\\ \\B2\\ \\Mj\\

+ Σ H Φ n |( ||*ι || bull \ ( φ Λ 2 t , ( B 2 - B 2 β ) ψ " 2 j ) \ ,
ij

and this expression can be made arbitrarily small because the sums are
finite. Hence any element Bl®B2 and thus any element £ Bli®B2i

finite

of BiOSi can ^e weakly approximated by elements of S1QS2; of
course, St O ®2 is weakly dense in (»x ® ®2)

/;. Q.E.D.

Lemma 2.9. Lei ώi and ώ2 be j^-K.M.S. states over ^B1 and 5B2 wiί/z
respect to the automorphisms αj, α,2, respectively. Then ώ = ώ1®o}2 fulfills
the condition (KMS') on ^1Q'S2 with respect to the automorphisms

Proof. (KMS) implies (KMS'), thus for B{, Ci e Bf we have

Take arbitrary elements ^ Bίk®B2k, £ C l i®C 2 leS 1OS 2 5

 then

f inite f inite

ώ1®ώ2

k

Q.E.D.

Proposition 2.10. Let ω1 ?ω2 ί?e jS-K.M.S. states over Sl^^
respect to αj and a2. T/τβ extensions of a^ and aj on Sf = πωι(Slf)" wi
denoted by ώt and a}. T/ien ώ = a^ ® ώ2 is a j5-K.M.S. sίaίe oί er (93
wiί/z respect to ar = a,1



On Quantum Systems in Thermal Contact 1 57

Proof. It is well known [1] that ώj are β-K.M.S. states over 95, with
respect to αj. Therefore, we have, due to Lemma 2.9 and due to the
equivalence of (KMS') and (KMS) for holomorphic elements,

ω(JBαfC) is continuous in t, ^ C e S O ^ , (3)

lf(t-iβ)ώ(BδίtC)dt=$f(t)ω((άtC)B)dt, PfefyB.Ce^Q^. (4)

(i) The ώj fulfill (KMS) (i), thus, according to Lemma 2.6, αj are weakly
continuous in ί. The same is true for α, :octB= U(t) BU(— t\ where
[7(ί)= ί/j(ί)(χ) l/2(ί) is unitary and strongly continuous in ί since the
U^t) are strongly continuous. This implies that at is weakly continuous
in ί, and ώ(BatC) = (Ω, M.CΩ) is continuous in ί for all £, C e (93! ® 932)",
Ω = Ωωι ® Ωω2 i.e. (3) is true for all J5, C e (93 j ® 932)

w.

(ii) Choose Ce(S1(χ)»2Γ,Be»1θS2 According to Lemmas 2.6-2.8,
C is an element of the weak closure of S^QS^ an^? since 3$ιQ$$2 ^s

an involutive algebra, also an element of the strong closure due to
von Neumann's density theorem. Let CαeS 1O®2 converge strongly
to C. Define

La(t) = f(t - ίβ) ώ(BαtCJ, L(t) = f(t - ίβ) ώ(MtC) ,

RΛ(t) = f(t) ω((αf CJβ), R(ί) - /(ί) ω((atC)B) .

Then

I f L(ί) dt - J Lα(ί)dί| ̂  J \f(t - iβ)\ \ώ(Bat(C - Cjdt

β*Ω|| | |(C~Cα)Ω||<ε

for sufficiently large α.
A similar estimate holds for J (R(t) - RΛ(t))dt because of (4), J LΛ(t)dt

- J JRα(ί)dί, and therefore, (4) holds for all B e 2^ QS2, C e (95X ®932)".
Repeating the argument with respect to J5, one realizes that (4) holds
for arbitrary B, C e (Si ® 932)". Q.E.D.

Proposition 2.11. πωι(2I1)®πω2(2I2)^πωι0c02(2I1(χ)α2r2).
(On the left hand side, "® " denotes the norm-closed tensor product, the

norm is the operator norm in 3?ωι®^ω2.)

Proof, (i) Define

tfi = {A e % (Oft^M) - 0} , i = 1, 2
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015 ®2> ® are dense in J^ - JTωι, Jf2 - JTω2, JT - ^ωι(x>ω2, respectively.
We introduce the mapping /: &ΊO&2-+& by /f£^ l k®^2 k^l

I k /

= ΦΣΛ l k<g>yi2 k 5 where Φc denotes the equivalence class of C. / is well
defined: take Bik e Jf^, z = 1, 2; then

with

and therefore,

Moreover, / is isometric:

lk^

Clearly, / is a 1 —1-mapping of Q)^Q^2 onto .̂ Its domain and its
range are dense in J^ ® $?2 and 2tf, respectively, hence it can be extended
to an isometry /: J^ ® Jf2 —> j>f.

(ii) Now define the mapping g: πωι(^ί1)Oπω2(2ί2)-->πωι ̂ ^(
by

Σ π

ω ι(Λk)® 7ϋω2μ2k)\ - πωιΘ£02(Σ A

Clearly, g is a 1 — 1-mapping which respects the ^-algebraic structure.
g is isometric: It is fairly easy to see that for Φ,Ψe@1Q@2

} = (f(Φ),g(A)f(Ψ)), (5)

and therefore,

\\AΨ\\2 (Ψ,A*AΨ)

(f(Ψ\g(A*A)f(Ψ))
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Thus g can be extended to the norm closure of πωι(2ί1) Θπω2(2l2)> and
we get an isomorphism

9 ' πωι(8lι)® πω2(9ί2)->πωι0ω2(9l1 ®α2l2) . Q.E.D.

Remark 2.12. (i) Eq. (5) holds for arbitrary Φ, <Fe J^®^, and
arbitrary ^ e π^Sl!)® πω2(9I2) because both / and g are isometric.

(ii) By construction of/, we have /(Ωωι®Ωω2) = Ωωι<g,ω2.
(iii) By construction of g and due to its continuity, we have

Combining the results of the preceeding propositions we can easily
achieve the

Proof of Proposition 2 A. For any A.Be^ ®α2ί2

 :

®^)-^^^^
and, according to (5) and Remark 2.12:

= ώ1 ® ώ2 (A' αj ® α?

2 £')

with 4' = 0->ωι(g>ω2(,4)), ^^^"1(πωι®ω2(^))e(»1(x)932r. Proposition
2.10 tells us that ώ1(χ)ώ2 fulfills the condition (KMS), therefore,
ω1®ω2 is a K.M.S. state over ^L1®a^2 Q.E.D.

III. Thermal Coupling of Finite Quantum Systems

It cannot be seen from the formalism of the last section, whether or
not the systems under consideration are coupled thermally. In classical
thermodynamics, thermal contact of two systems is an interaction of
the systems, which allows energy transfer without particle exchange,
without momentum transfer and without a change of the volumes of
the systems. We have to show how in the case of quantum systems
thermal coupling can be introduced in such a way that the assumptions
of Section II remain unchanged if the thermal interaction is switched on,
provided the temperatures of the systems are the same. However, to
achieve this goal it is necessary to deal with a less abstract situation.
We shall regard our systems as limits of finite systems in finite boxes
and try to construct an interaction satisfying the above requirements.
We shall disregard the momentum transfer which, in our model, will be
zero at least at equal temperatures.



160 H. Roos:

Especially, we want to preserve the property αJ2ϊf C 2ϊj, ί = 1, 2. The
easiest way to achieve this is the use of a classical system Sc interacting
with both quantum systems S^ and S2, representing a heat transferring
part of the walls of the boxes. This may be justified by remarking that
heat exchange is normally a very slow process compared to processes
on an atomic level.

We start with finite quantum systems Sf1 and S2

2 in finite regions
Λί and A2 respectively, Λίr^A2 = 0. The Sfl shall be described by
Hamiltonians Ht acting in Hubert spaces J^, i= 1, 2. The Hubert space
of the composite system is ̂  = ̂  ® J 2̂ ( We identify Hί with H^®12 and
H2 with li® Jfi2.) Sc is given by a classical Hamiltonian Hc(pc, qc\ where pc

and _gc denote finite sets of canonical variables. To formulate the inter-
action we use the Schrodinger picture. The total Hamiltonian is

H = HJpi, qj + Wi(p l 9 q^pc, qc] + H2(p2, q2) + W2(p2, q2 pc, qc)
(Ό)

qc) l,

where qi9i= 1,2, are finite sets of variables, pt= — — Wt acts in J^,

and 1 is the identity in ffl. To prevent unnecessary complications, we
assume W{ to be self-adjoint bounded operators, ||̂ || <^c. This ensures,
with the aid of Kato's Theorem [14], that H is self-adjoint.

The equations of motion are

Ϊ2> 0 ' (7)

_ _ 1<̂ 1, (8a)
^c dqc

~j-qc= —^ - = -̂  — + — ̂  - , (8b)
dt - dpc dpc dpc

with (Ay = (φ,A\p) denoting the expectation value of an operator A in
the state determined by Eq. (7), W=W1 + W2.

Eq. (7) admits a product solution

-i I Hc(pc(t'),qc(t'))dt'

where the ψt obey Schrodinger equations with Hamiltonians H^W^
This separation of variables corresponds to our requirement that

α}Slf C Slf. Eqs. (7) and (8) are time translation invariant, hence <ίf > is a
constant of motion (but this is no longer true for the operator H !). This
can be checked by direct computation.
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From (7) and (8) we calculate

~dt

d /τj W\_yrτj rr W^ι\ ^ (Wk^ dqc

at x * k/ ^L"'"fc ' "*J/ ' dqc dt dpc at

By these equations it is shown that, in general, neither <ff fc> nor </4 +
are constant, therefore, the interaction admits energy transfer from one
quantum system to the other, provided Wk and Hk do not commute.

The classical system Sc represents the "wall" between the quantum
systems through which the heat exchange can take place. In classical
thermodynamics, it is understood that the wall itself does not contain,
or store, energy. In order to approximate this situation, we have to
consider a special case: we sandwich Sc between like quantum systems
with opposite signs of the interactions:

Λί=Λ,Λ2 = Λ + a such that

(9)

; (10)
with

V(pc> 3c) = v(Pc ~ £o, qc ~ 3o) I1 1)

Here p0,qQ are solutions of the unperturbed classical system given by
Hc; in W1 and W2 we have suppressed the respective variables pl9qι and

P 2 > ? 2

Preferring to describe Sx and S2 in the Heisenberg picture, we
have to look for the automorphisms αt of time translations and put

< > = ω(αf ).

Since H generally depends on t through the time dependence of pc

and qc, at is not a group of automorphisms. Formally, we can write

t
i fH(t')dt'

<xtA = U(t)AU(tΓΐ , U(t)=Te°

the symbol T denoting time ordering.
In order to introduce the temperature, we consider Ŝ  and S2 as

canonical ensembles. In the unperturbed case, their equilibrium states
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ω1 and ω2 are given by density matrices

the unperturbed time automorphisms are

alA = eiH*tAe-ίH*t, ϊ = l , 2 .

Now let us switch on the interactions W1 and W2. A general solution
cannot be given here. We are interested in a special one which leaves
the systems essentially unchanged. As long as β1 = β2, such a solution
exists :

atA=U(t)AV(tΓ

(e~βHι are trace class operators, and so are e-β^H^ + w^ due to the bounded-
ness of W^)

This is a solution since

ω(αf( Wi + W2)) = ω(Wl + W2) = 0

due to (9) and (10), and hence pc and qc obey the unperturbed classical
equations given by Hc. This in turn leaves V^(pc,gc)= V^(p0,g0) time
invariant according to (11), so that αt is indeed given by the above ex-

pression. As a simple consequence we have -r- <(ffk + Wky — 0.

Of course, what is done here, is neither a proof that systems in thermal
equilibrium must have equal temperatures, nor a complete model of
heat exchange. This would require a theory describing how a system
approaches its equilibrium state. Our point is to give an argument that
the assumptions of Section II can be maintained in the presence of
thermal contact in the case of equal temperatures: we have put forward
a simple model of thermal interaction and given a solution of the desired
type such that the assumptions (A) to (E) can be satisfied.

IV. Coupling of Infinite Systems

We are interested in thermally coupling infinite systems, so let us
consider the infinite volume limit
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of our model systems, where Vt = volume of the region Λt, nt = number
of particles. The properties which are important for applying the theorem
of Section II, namely the existence of uncoupled solutions

ω — ωl ® ω2, α, = αj ® αt

2

modified only by replacement of Ht by Ht + Wi with constant Wί if βί = β2,
are evidently not affected by taking the limit. But we have to assure
ourselves that switching on and off the thermal coupling acts continuously
on the systems and can be interchanged with the infinite volume limit.
Therefore, let us consider a set of systems (9ίyl,ωf, a.?(λ)) with

The following questions have to be answered:
1) Is aΛ(λ) continuous in λ at λ = 0 ?
2) Does continuity hold in the limit A— > oc?
3) Are the states ω\ continuous in λ and what about the infinite

volume limit ?
4) How is the limit state ω affected by the introduction of the inter-

action W ?
Since W is intended to represent the interaction of the system with

parts of its boundary, we assume
(F) W is given by m-particle potentials, m= 1, 2, ...m0, with support

in the region A0, || W || ̂  c.
ΛQ will be held fixed in the infinite volume limit. Therefore, neither

the temperedness nor, for sufficiently small c, the stability of the total
potential will be disturbed by switching on the interaction, if the particle-
particle-interactions in H(Λ) are given by tempered and stable potentials.

1. The first question is answered by

Proposition 4.1. Let the automorphism group at(λ) of the operator-C*-
algebra 9ί be implemented by e

l(H + λW}\ where H and W are self-adjoint
operators, W bounded. Then αt(λ) is strongly continuous in λ for fixed t.

Proof. Theorem IX.2.1 of [14] tells us that e

i(H+λW}t is, for fixed ί,
an entire function of λ and therefore norm-continuous in λ. Hence

\\at(λ)A - at(λ')A\\ ^ \\(e^
H + λW^ - e

i(H+λ'w^ <} Ae-i(H + λW»\\

if |/l — λ'\ is sufficiently small. Q.E.D.
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Especially, we have continuity at λ = 0.

2. To answer the second question, we have to replace H by H(Λ\
We write aΛ(λ) to indicate the Λ-dependence of the automorphisms,
defined as above. Now let us suppose that, for fixed λ, the limit
lim aΛ(λ) = cιt(λ) exists and defines a group of automorphisms of the

Λ-+OO

global algebra 2ί of observables. There is no general proof for the
existence of this limit. Robinson [15] has given a proof for the case of
quantum lattice systems with sufficiently nice potentials. The class of
those potentials is large enough to be invariant under the addition of a
"thermal" interaction potential as specified by (F). We can expect that
to be true whenever one can exhibit a class of nice potentials and show
the existence of the limit lim αj1 for λ = 0.

Λ-* oo

From the next proposition, we see that αf(λ) too is continuous in λ.

Proposition 4.2. Let (x.t(H^ λ\ IE I, be a set of automorphism groups of
21 implemented by e

l(H^ + λw^^ Ht self -adjoint, W self-adjoint and bounded.
Then αf(Hj, λ) is strongly continuous in λ for fixed t uniformly in I E ! .

Proof. It suffices to show that the norm-continuity of e

l(Hl + λW}t

9

established in Theorem IX.2.1 of [14], is uniform in i. Looking at the
proof of this theorem, we see that e

i(Hl + λW}t can be written as

where the ί/'s are rc-linear in λ W and bounded by

. (14)

In general, there are two additional factors M" + 1eyι ί on the right hand
side of (14), Ml and yt depending on the class ^(M^yJ to which z/ίt

belongs (for the notation compare [14]). But for all self-adjoint operators
and hence for all H19 1 e I, we have

± iff, e #(1,0).

Due to (14), the series (13) converges uniformly in i for fixed t and so we
get uniform continuity of eί(Hl + λw}t. Q.E.D.

3. Let us consider states ω<J as defined in the third question. It is
tacitly assumed that e~βH(Λ} is a trace class operator. Because of the
boundedness of W, the same is true of e~β(H(Λ^+λW\ Let us introduce
the abbreviation E^(β) = e'β(H(A) + λW)'9 and let H . . . ^ denote the trace
norm defined by \\A\\ί=Ύr((A*A)ί/2). Then we get

Lemma 4.3. \\EΛ

λ(β)\\^eβ^c\\EA(β}\^ i f λ i s real.
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Proof. Recall that W is supposed to be self-adjoint. Let ε^(λ) be the
m-th eigenvalue of H(A) + λ W(in increasing order and repeated according
to multiplicity). || W\\ ^ c implies

Now we want to establish

Proposition 4.4. The state ω* defined by ω*(A) =

E^(β) as above, ^W\\^c, depends norm- continuously on λ.

Proof. The essential point is to show the trace-norm continuity in
λ of E*(β). For fixed A, E^(β) can be considered as an element of the
semigroup {Eo(£)>£>0}> generated by H(Λ\ Since H(A) is self-adjoint
and bounded below, H(A) ^ — yΛ, we have

\\Et(ξ)\\£e^. (16)

Introducing the bounded perturbation λW, we get another semigroup
[Eΐ(ξ)9ξ>0}mlh

\\E^(ξ)\\^e(>yA + ̂ c)ξ

9 (16'}

compare Theorem IX.2.1 of [14]. According to the proof of the cited
theorem, E*(ξ) satisfies the following integral equation:

EΛ

λ(ξ) = E*(ξ) - j EΛ,(ξ - ξ') λ WEΛ

λ(ξ')dξ' .
o

Therefore,

o
ξ/2

^ f \\EΛ

0(ξ-ξ')l\\λW\\ \\EΛ

λ(ξ')\\dξ'
o

+ I \\E^ξ-ξ')\\\\λW\\\\EΛ

λ(ξ')ldξ'.
ξ!2

Using Lemma 4.3 and inserting (16) and (16') we get

ξ/2
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with
ξ/2 ξ/2

j£= J \E%(ξ-ξ')\ιe*^'dξ'= } Σe
0 0 m

Since ε^ + yΛ ^ 0 because of H(Λ) ^ — γΛ, the integrand reaches its
maximum for ξ' = ξ/2; hence

JΛ ^ eyΛξ £ e

m

| |Eί(ξ)-.E2(ξ)||ι^Wc 2ξe'"'4'2 11^(5/2)11! (17)

for sufficiently small λ.
Now we can compute

, A(Λ. Λί ,Λ I _ Tr JE?
\ωλ(A) - ω0(A)\ -

Ύΐ Ef(β) Ύr EA

0(β)

-

= ωλ

and

|ωf μ) - ω$(A)\ g 1 r l£ί^ ~ £o(«||ι < 1^1 ,̂ ̂  = const , (18)
I I ^ Ό v P J l l i

according to (17). Therefore, ωf is continuous at λ = 0. Taking E*Q(ξ\
with arbitrary but fixed λ0, instead of E^ξ) as unperturbed semigroup,
and introducing a small perturbation λW, we can repeat the above
arguments and thus get continuity of ωf at λQ. Q.E.D.

eyΛβ/2 \\p'Λ(
Unfortunately, the constant VΛ = 4cξ\\A\\ - " ,°, l in (18)

is not independent of A, and it seems to be no easy task to prove uniform
continuity.

4. In our simple model the states of the quantum systems are changed
by the thermal coupling even in the case of equal temperatures. We
assert that for βί = β2 in the limit At-^cc the partition functions remain
the same, and in this sense the states are unchanged. Our arguments are
necessarily indirect ones, and we do not claim to give an exact proof.

We let y l f , ΐ = l , 2, increase in such a way that AίπA2 = &. Let us
consider one of the systems and omit the index. Following Ruelle
([11], p. 65), we define the quantum microcanonical partition function
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where
_ _ , . f l i f x<0
δ {x)={o if *>o,

Hn(A) is the π-particle Hamiltonian of the unperturbed system. Let ε^
and ε*(λ) be the eigenvalues of Hn(Λ) and Hn(Λ) + λW, respectively.
Because of || W\\ ̂  c, we again have for λ > 0

Ω equals the number of eigenvalues of Hn(Λ) below E; hence

£) (19)

The entropy of the system is given by S(Λ,n,E) = logΩ(Λ,n,E) and
Sλ(Λ, n, E} = logΩλ(Λ, n, E\ respectively. Eq. (19) implies

S(Λ, n,E- λc) ̂  Sλ(Λ, n, E) ̂  S(Λ, n,E + λc}. (20)

For our discussion it is natural to require that the limit

lim —S(Λ) = s(ρ,ε)

E n
exists when »ε, >ρ, V denoting the volume of Λ.

Since λc is fixed, it is clear that we can replace E by E + λc without
changing the result of the limiting procedure; thus we conclude from
(20) that

s(ρ, ε) = sλ(ρ, ε) - lim — S λ ( Λ ) .

For the rest of the argument we again refer to Ruelle [11], where it is
shown that different ensembles in the limit A—> oo yield the same physical
quantities.

As we have seen, it is possible to introduce thermal interactions of
certain infinite systems S1, S2 by considering the thermodynamic limit
of finite systems with suitable interaction. Our model is very simple but
it supports the conjecture that even for systems in thermal contact
certain assumptions can be fulfilled which allow us to establish the
existence of a common K.M.S. extension of two K.M.S. states of the
respective systems.
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