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Abstract. It is shown that under rather general conditions two K.M.S. states w; and
w, of systems S, and S,, respectively, can be simultaneously extended to a K.M.S. state
o of a system composed of S; and S,, provided both systems have equal temperatures.
This result gives further support to the conjecture that K.M.S. states are equilibrium
states. In the second part, a model of thermal coupling is constructed which satisfies the
assumptions of the first part, thereby showing that the result is also valid in the interesting
case of systems S, and S, in thermal contact.

I. Introduction

During the past three years, there appeared an increasing number of
papers on the Kubo-Martin-Schwinger boundary condition strongly
supporting the assumption that a state w of a general quantum statistical
system is an equilibrium state if and only if w satisfies the K.M.S. condi-
tion [1-6]. It is understood that the systems under consideration do
not contain adiabatically closed subsystems of different temperatures.
There are proofs of this conjecture for special cases [1-4], but, to my
knowledge, no general proof exists. This paper is intended to give
further support to the above conjecture.

If we consider two systems S; and S, described by the respective
algebras of observables U, , A, and the states w, and w, which satisfy
the K.M.S. condition, we may ask whether w, and w, have a common
extension to a K.M.S. state o of a system composed by S; and S,, provided
S, and S, have equal temperatures. If K.M.S. states are equilibrium
states, we expect this to be true. In the next section, we shall give a proof
of this conjecture using rather general assumptions. In Section III, we
shall exhibit a model of thermal coupling of two finite quantum systems.
Finally, we shall deal with the infinite volume limit and show that the
systems are continuous in the coupling parameter, and, in addition, we
shall argue that the states of the infinite systems are essentially the same
as those of the uncoupled systems if the temperatures are equal. The
results of Sections 11T and IV are intended to show that the assumptions
of Section II are reasonable even in the presence of thermal coupling.
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I1. Simultaneous Extension of KMS States

Let 2 be a C*-algebra, o, € Aut2l a representation of the group of
time translations as automorphisms of . The K.M.S. condition can be
stated in the following form:

Definition 2.1. w is a K.M.S. state over A with respect to o, belonging

to the inverse temperature ff = 7(17’ if forall A,Be

(1) w(Aw,B) is a continuous function of t,

(ii) | f(t—ip)w(Aq,B)dt= | f(t) w((e,B)A)dt for all f(t)
with Fourier transform 7 [ € &, where 9 denotes the set of
infinitely differentiable functions with compact support.

(KMS)

Define the algebra of holomorphic elements of A by

Definition 2.2.9(={4eA; oA is a holomorphic operator-valued
function of t}.

91 is not empty; if, for instance, 7 f € &, then [fDo,Adte A If we
restrict ourselves to elements of 2, there is another formulation of the
condition (KMS):

o(AwyB)=w(BA), AeW,Bell. (KMS))

From (KMS'), we cannot conclude that w is a K.M.S. state unless A
is dense in A. However, for 4 e, Be 9, the conditions (KMS) and
(KMS') are completely equivalent [7]. Norm-density of A in A is
implied by strong continuity of a, ie. |aA— A =0 for all A€
But there is a result by Takesaki and Winnink [8] stating that in case
ofa strongly continuous group of time automorphisms on a von Neumann
algebra 2 the existence of a K.M.S. state over 2 implies that 2 is of
finite type. Therefore, we shall not assume strong continuity of «, and
use condition (KMS) to define K.M.S. states. In addition, we shall use
the equivalence of (KMS) and (KMS’) on the subset 1.

We consider two quantum statistical systems. Let 2, and 2, be the
respective C*-algebras of observables. We need the following assumptions:

(A) A, and A, are embedded in a larger C*-algebra A, so that we
can define 21,, as the C*-algebra generated by A, and A,.

(B) 2, and A, commute elementwise.

(C) Forany 4 € A,, and any B € 2, we have 4B+ 0 whenever 4 = 0,
B=+0.

These assumptions seem reasonable. Let us consider, for instance,
two infinite regions A,, 4, with A, U, =R3, A,n A, =0.

Let L;, i=1, 2, denote two Hilbert spaces of functions with supp f; C 4;,
fi€ L;,and let 2, be the corresponding representations of the C*-algebras
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9, i=1,2, of the canonical commutation relations (CCR). Then 2, , is
the representation of the CCR corresponding to L= L;® L,. It is then
clear, that (A) and (B) are fulfilled.

Furthermore, for any representation of the CCR we have [9, 10]

() =) @1, 7(A,) 2 1@ 7(2A,),

and thus (C) is valid.

To give another example, we may construct, following Ruelle [11],
a quasilocal algebra U, starting with A, =B(#,)=von Neumann-
algebra of all bounded operators on #,. 5#, denote Hilbert spaces with
Hy = Aoy, @H,, whenever A, CA. With W, = () U,,i=1,2, we have

ACA,

QII2=QI=UQIA, QII.;Q»Il@l, 912%1@9[2,
A

and our assumptions are fulfilled. This example refers to the case of
bosons; for fermion systems one has to use the “even” algebra ¢
(cf. [11], p. 178).

We have to make two further assumptions:

(D) There exist two groups «;, «? of automorphisms of 2, and A,,
respectively: ol U, CAU;, which are representations of the time translations.

We expect this to be true of separated systems. As to systems in
thermal contact, we refer to the discussion in the next sections. Our last
assumption is a technical one:

(E) The automorphisms o and «? can be extended to automorphisms
o, of Ay,

Assumption (E) will be shortly discussed later. Now let us consider
K.M.S. states w; and w, of our systems and ask whether there exists a
K.M.S. state @ on A, whose restrictions to 2; equal w;, i=1,2. Re-
garding K.M.S. states as equilibrium states we expect a positive answer
if o, and w, belong to the same f.

Indeed, we have the following

Theorem 2.3. Let A,, A, be C*-algebras for which the assumptions (A)
to (E) are satisfied, and let w,,w, be K.M.S. states over WU, and A,,
respectively, belonging to the inverse temperatures 3, and f,. Then there
exists a K.M.S. state w over A, which is a common extension of w,
and w, if and only if B, =B,.

Proof. The “only if” direction is trivial: the restrictions on 2; of any
B-K.M .S. state w are f-K.M.S. states, too.

In the following, we suppose that w, and w, are f-K.M.S. states. It
is known [12] that the assumptions (A), (B), (C) imply that 2, and 2,
are statistically independent, i.c.

11 Commun. math. Phys, Vol. 26
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(1) thereexistsa homomorphism @ : A, ,— A, ®,A,, where U, ®, A,
denotes the closure in the a-norm [13] of the direct algebraic product
Qll © QIz s

(i) there exists a common extension of any two states w;,w, over
A, and A, respectively, to a state w over A, ,, given by w =w, @ w, - P
We shall show that w is a f-K.M.S. state.

On the set

\/QIZ—*{ Z Al A}GQ'Il:AiZeQIZ};

finite

the norm-closure of which equals 21, ,, the homomorphism @ is actually
an isomorphism, given by

dY AA= Y AQA2eNA,0OU,.

finite finite
On A, O A,, we define automorphisms a! O a? by
% Ou TA®AT =T (4 A A7)
clearly, we have
Qo =0 Qaz® on A vA. (1D

Let us compute the a-norm of a! O o2

n O ), A ®A7
i=1

n

1 41 2 42
Y ot Al @of A
,':

/4 @

1/2

wonfaon] (fnons]fusossEoss)
esaf oo

= sup
01 ® 0,

where the supremum is to be taken over all states ¢, over 2, all states ¢,
over A, all C;e A, and all D; e A,,

1/2

T oy [CHot ALY (5} ADC,] @y [DFe2 A2 (@2 A2)D]]
i,1=1 jk=1
Z‘Pl(cfcl)(l’z(D?Dl)

il

=sup

Let E() denote the set of states over A. We define automorphisms of
E(2) by
dp(A)=@(@Ad), oacAutq.
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Using this notation, we continue the above equation:
Y Yoy (o) C* Aj* Ap((od) 1 C)I87 @, () D AF* AR () DT 72
il j,k
Zar (P1 )ﬂlci)*((aﬁ)—lcz)] o (02[(( ) lD) (( ) IDZ)]

=sup

Instead of taking the supremum over all g, € E(2;),i =1, 2,and all C; e U,
D;eqA,, we may take it over all & ¢, e E(Y), all (o) 'C;e,,
(27)"'D;eA,, and we get

=z,
Hence a! ©a? is norm-preserving and can be continued to an auto-
morphism group a! ® o of A, ®,A,. Due to the continuity of @, Eq. (1)
can be extended to U, ,:

Do, =0l Quld. (2
Our main task will be to establish

Proposition 2.4. Let w; be f-K.M.S. states over U, with respect to o,

i=1,2. Then v, ®w, is a f-K.M.S. state over A, ®, W, with respect to
1 2
o ®o.

With the help of this proposition, the proof of Theorem 2.3 is easily
completed. Consider w = w; ® w,° P. The continuity of w(A«,B), 4, Be A, ,,
is a trivial consequence of (2) and Proposition 2.4. Furthermore, for all
A, Be N, , and all f with # fe 2, we have

[ fe—ip)w(Aa,B)dt= [ f(t —if) o, ® w, [D(A)P(x,B)]dt
= [ ft—iB) 0, @ w,[P(A)oy ® o7 B(B)]dt
= [ f()o, ® w, [(# @0 D(B)) (A)]dt
= | f(w[(«B)A]dt,
where we again made use of Eq. (2) and Proposition 2.4. Therefore, w is
a f-K.M.S. state over 2, ,.

Remark 2.5. It would be desirable to define rather than assume the
existence of an automorphism group «, on ,,. It is easy to define o,
on A, v A, by

o, X A; A7 = Z (o A7) (67 A7)
or, equivalently, by
w=0 "'l QP
with the help of the isomorphism @ : U, v A, - A, OA,.

1*
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Unfortunately, it is not known whether @ ! is a-norm continuous
and can thus be extended to an isomorphism of 2, ®,A, onto A, ,,
thereby allowing to define «, on 2, ,. Of course, if we assume that the
composed system is described by U, ®, A, then (4) and (E) are trivially
fulfilled.

Now let us prove Proposition 2.4.

In the following, 2, A, A, ... etc. always denote C*-algebras with
time automorphisms «,, o, & ... and states o, w;, w, ...

7, denotes the cyclic representation of U given by w, a® the corre-
sponding representation of the time automorphisms o, unitarily
implemented by U, (t).

&, € A, is a vector of the representation space 5, defined by the
equivalence class [A] of A€W Q. is the cyclic vector such that

0(4)= (2, 7,(A)Q,)

Extensions of the state w and the automorphisms «;’ onto the von

Neumann algebra B, generated by n () will be denoted by

D) =(Qq, Qo) &7 =Uy(t) Uy() ™.

To shorten the notation, we write & =&, U, ()= Uj(1), B,,, = B,.

In short, the proof of Proposition 2.4 is as follows: We consider the
representations 7, of 2; given by the K.M.S. states w;. The extensions @;
are K.M.S. states over QS =n, (U)" Let B, denote the holomorphic ele-
ments of B;. Due to the continuity int of w, (Aac B), @, are weakly continuous
automorphlsms of B, and therefore, (i) B;is weakly dense in B,, (ii) the
direct algebraic product 581 @%2 18 weakly dense in (B, ® B,)". d; @D,
fulfills the condition (KMS) on B,©B,; due to the weak density of
B, 0B,, D, ®d, isa K.M.S. state over (B, ®B,)". However, (B, @ B,)"
=(n,,(UA)®7,,(A,))" is isomorphic to 7, g,,(A; ®,A,)", and hence
w, ®w, is a f-K.M.S. state over U, ®,A,.

Lemma 2.6. Let w(Aa,B) be a continuous function in t for arbitrary
A, Be U. Then &, is weakly continuous in t: |(®, &,C¥)|+=5>0 for arbitrary
S, ¥YeH, CecB=m,A).

Proof. U,(t) is given by U,(t)®,=®, 4, AcWU. Any @, ¥ € #,, can
be approximated by @, and ¥p , respectively,
[¥5, | =¥]. Hence

(@, (U, (1) — 1) P)]
S| @ =Dy, (Up() =) P) + (D, (U (D) = 1) (¥ = W)
+ ‘(‘15‘4"7 (U, ()= 1) ¥y )
Pl +2]@] |¥—¥s, | +lo(ie—1B,) <e
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for sufficiently large n,m and sufficiently small ¢t. Thus U_(¢) is weakly
continuous. It is also strongly continuous because it is unitary; and this
trivially implies weak continuity of &,C = U, (t)CU,(t)"*, C e ®B.

Lemma 2.7. Let B denote the holomorphic elements of B =n,(A)". If
o, is weakly continuous, B is weakly dense in B.

Proof. For all f(t) with Fourier transform % f € 2, we have
B,= | f(t)3,BdteB, BeB,

and there exists ¢ (¢, ) such that

Let us choose a sequence f,(t). 7 f, € 2, such that f, 20, | f,dt=1, f, con-
verge to the é-function. Then ¢, (e, B) can be made arbitrarily small
(¢, fixed). Due to the weak continuity of &,,

<g, il t;>t.(e, B).

B, — f f(t)&,Bdt\

—t1

(D, (3, — 1)BY) <e,, if t<ityle,; P, ¥, B).
Choose r large enough such that ¢, (¢;, B) <t,(¢,; @, ¥, B), then
(®.(B—B,,)¥)
< l(@ (B— tjo f,(t)&,Bdt) W)I + I(@([jo 1) &,Bdt—Bfr) lP)I

—to —to

<yt |0 ¥ e QED.

Lemma 2.8. If B,,i=1,2, are weakly dense in B, and B, respectively,
then B, OB, is weakly dense in (B; ®B,)".

Proof. B, and B, are *-algebras, so we can use the density theorems
of von Neumann and Kaplansky in order to conclude that any B, € B,
and any B, € B, can be strongly approximated by nets B,,€B, and
B, €8B,, respectively, with | By, | < ||B,||, | By £|B.|. Any @, ¥ € #
can be approximated by vectors of the form

b, = Z P1i® ey, Y.= Z lP'fj@UJ'z'j;

finite finite

Pl ohuwied: o=, v =[]
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Therefore,

(@.[B,®B,—B,,®B,,]P)
<|o—a,| |B,®B,—B,,®B,| | ¥
+ @] [Bi®B,— B, @Byl ¥ — .|
+|(®,, (B, — B, )® B, V,)| + [(®,, B;,®(B, — B,) ¥,
s(jo-o,) ¥+ ]| |¥~¥.D-2|B] ||B]
+ izj<<p;'i, (By = Brwi) o3l [Bal sl

+ 2 ot 1Bl [wisll (@3 (By = Bap)wi )l

and this expression can be made arbitrarily small because the sums are
finite. Hence any element B; ® B, and thus any element Y, B;;® B,;

finite N
of B, ©B, can be weakly approximated by elements of B, ©B,; of
course, B; OB, is weakly dense in (B; ®B,)". Q.E.D.

Lemma 2.9. Let &, and u)2 be B-K.M.S. states over B, and B, with
respect to the automorphisms & al, a, , respectively. Then & =, ® &, fulfills
the condltwn (KMS") on B,OB, with respect to the automorphisms

= oct ®°‘t

Proof. (KMS) implies (KMS'), thus for B;, C; € B, we have
5)1(31&iﬂc1)=®1(C1B1)§ G)z(Bz&mcz):a’z(Csz)~

Take arbitrary elements Y B @By, Y C;,®C, €B,0B,, then

finite finite

0, ®, ;Blk®32k,&§,,®&,?,,;Cl@cz,)
kz(I)l(Blk&ilBC”)&)Z(BZ,(&?I,CN)
kza’ 1(Cy1Byy) @,(Cy By

= ),

®, (Z C1,®C2,ZB1k®sz) Q.ED.

Proposition 2.10. Let w,,w, be B-K.M.S. states over W,, W, with
respect to o} and af. The extensions of w; and of on B, =mn,, (W,)" will be
denoted by &, and &. Then & = &, ® @, is a f-K.M.S. state over (B, ®B,)"
with respect to &, =&} ® &2
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Proof. Tt is well known [1] that @, are f-K.M.S. states over B, with
respect to . Therefore, we have, due to Lemma 2.9 and due to the
equivalence of (KMS') and (KMS) for holomorphic elements,

@(Ba,C)is continuous int, B,Ce 581 ®B,, (3)
[ f(t—ip)d(B&,C)dt= | f()w((3,C)B)dt, FfeD,B,CeB,0B,. (4

(i) The @, fulfill (KMS) (i), thus, according to Lemma 2.6, & are weakly
continuous in t. The same is true for &, :4,B= U(t) BU(—t), where
U(t)= Uy (t)® U,(t) is unitary and strongly continuous in ¢ since the
U,(t) are strongly continuous. This implies that &, is weakly continuous
in t, and @(B&,C) = (R, B&,CQ) is continuous in ¢ for all B, C € (B, ® B,)",
Q=0,®8,,;1e. (3)is true for all B, Ce(B ®B,)".

(ii) Choose Ce(B,®B,),BeB,OB,. According to Lemmas2.6-2.8,
C is an element of the weak closure of B, ©B,, and, since B, OB, is
an involutive algebra, also an element of the strong closure due to
von Neumann’s density theorem. Let CaeQ‘SIOSBZ converge strongly
to C. Define

L,(t)=f(t—ip)d(B&C,), L(t)=f(t—ip)d(B&C),
R,(t)= f(t) o((&C,)B), R(t)= f(t) (% C)B).
Then
I L(ydt— [ L(t)ydt| < [1f(t— i) |d(B&(C — C,))dt
< [Ife=ipl(U(—1)B*Q,(C - C,)Q)dt
< _Hf(t-iﬁ);dt HB*QH 1|(C~—C1)Q|] <e
for sufficiently large o.
A similar estimate holds for f R,(t))dt; because of (4), jL (t)dt
= [R (t)dt, and therefore, (4) holds for all Be%1®%2,Ce(% ®B,)".

Repeating the argument with respect to B, one realizes that (4) holds
for arbitrary B,C (B, ®3B,)". Q.E.D.

Propesition 2.11. 7, ()@ 7, (W) X 7, 90, (U; @, As).
(On the left hand side, “®” denotes the norm-closed tensor product, the
norm is the operator norm in #, @ K,,.)

Proof. (i) Define
Hi={AeW,; w(A*A)=0}, i=12;
H={AeW,®,U,; 0, ®w,(A*A)=0};
D, =W/A;, i=1,2; D=WUW0OW,/A .
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2,,9,,9 are dense in H, = A, , H,=H,,, X =K, o0, respectively.

We introduce the mapping f: 2,0%2,—2 by f(z <I>Alk®<I>A2k>
k
=@y, 04, Where &, denotes the equivalence class of C. f is well
defined: take B;, € #;, i=1,2; then
Z(A1k+B1k)®(A2k+B2k): ZA1k®A2k+C
C=XA,®By,+ 2B, ,®A,,+ LB, ®B,, €A

and therefore,

with

¢Axk = ¢Axk+Bxk ’
f(z ¢A1k+81k® ¢A2k+BZk) = ¢E(A1R+Blk)®(f12k+ Bai)
=54 @040 = f(ZE ¢A1k®(p»"2k) :

Moreover, f is isometric:

|[2¢A1k®¢A2k” ’= z((1)/4,,<> ‘PA”)x (¢A2k> ‘DAZ,)z =Zw,(ATA )0, (A3A2)
=0, Q0 (XA, ®A4,)*(Z A @A)

= ”¢2A1k®A2kH2 .

Clearly, f is a 1—1-mapping of 2, © %, onto Z. Its domain and its
range are dense in | ® #, and #, respectively, hence it can be extended
to an isometry f: # Q@ #,— K.

(i) Now define the mapping g: 7, (W) O 7, (W) = Ty g0, (2 OU)
by

g (Z Tcw1(A1k)®nw2(A2k)) =Ty, 00, (E A1 @ Ayp) -
k
Clearly, g is a 1 —1-mapping which respects the *-algebraic structure.

g is isometric: It is fairly easy to see that for &, Y%, 0%, and
Aen, (NW)On,,(A,) we get

(@, AP)=(f(D),g(4) f(P)), (5
and therefore,
_ [A¥|? B (P, A*AP)
“AHZ—‘I’e;SfL}I(?B]{’z H‘I’H2 - W:@x@@z (Y,%)

oy U )
¥e2,09; (f(P), f(P))

@A)
= e ey 19N
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Thus g can be extended to the norm closure of =, ()OO, (2A,), and
we get an isomorphism

G 7, (W) R 7, (W) =Ty, 90, (U @,2,). Q.E.D.

Remark 2.12. (i) Eq.(5) holds for arbitrary &, ¥ € # ® #,, and
arbitrary A en, (U,)®n,,(A,) because both f and g are isometric.

(ii) By construction of f, we have f(Q,, ®Q,,) =2, 8 w,-

(i) By construction of g and due to its continuity, we have

01O =g o @,

Combining the results of the preceeding propositions we can easily
achieve the

Proof of Proposition 24. Forany 4, Be A, ®,A,:
CO1 ®0)2(A(Xt1 @OCIZB) = (Qan@cuz’ nwl ®w2(A) OC;L“@wz n(m@zoz (B) ‘le ®wz) El
and, according to (5) and Remark 2.12:

= (Qau ® ‘sz’ ghl (nan@wz(A)) a:o; ®OC;OZQ~1 (nw1®wz(B)) Qun ® sz)
=0, b, (A% Q2B

with A'=g (T, @0,(4)) B =9 ' (7, 9w,(B)) € (B, ®B,)". Proposition
2.10 tells us that &, ®d, fulfills the condition (KMS), therefore,
0, ®w, is a K.M.S. state over U, ®,A,. Q.E.D.

I11. Thermal Coupling of Finite Quantum Systems

It cannot be seen from the formalism of the last section, whether or
not the systems under consideration are coupled thermally. In classical
thermodynamics, thermal contact of two systems is an interaction of
the systems, which allows energy transfer without particle exchange,
without momentum transfer and without a change of the volumes of
the systems. We have to show how in the case of quantum systems
thermal coupling can be introduced in such a way that the assumptions
of Section I remain unchanged if the thermal interaction is switched on,
provided the temperatures of the systems are the same. However, to
achieve this goal it is necessary to deal with a less abstract situation.
We shall regard our systems as limits of finite systems in finite boxes
and try to construct an interaction satisfying the above requirements.
We shall disregard the momentum transfer which, in our model, will be
zero at least at equal temperatures.
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Especially, we want to preserve the property ‘2, C ;. i=1,2. The
easiest way to achieve this is the use of a classical system S, interacting
with both quantum systems S, and S,, representing a heat transferring
part of the walls of the boxes. This may be justified by remarking that
heat exchange is normally a very slow process compared to processes
on an atomic level.

We start with finite quantum systems S{* and S$%2 in finite regions
A, and A, respectively, A;nA,=0. The S shall be described by
Hamiltonians H; acting in Hilbert spaces 4, i =1, 2. The Hilbert space
of the composite system is # = #, ® #,. (We identify H, with H, ® 1, and
H, with1,® H,.) S, is given by a classical Hamiltonian H,(p,, q.), where p,
and g, denote finite sets of canonical variables. To formulate the inter-
action we use the Schrodinger picture. The total Hamiltonian is

H=H(py, 41) + Wi(p1> 915 Pes 40) + Ha(p2s 42) + Walpas 425 Pes 90
+HC(PC’ C_IC)'15

where ¢;,i=1,2, are finite sets of variables, p;,= —E(L; W, acts in 7,
and 1 is the identity in #. To prevent unnecessary complications, we
assume W, to be self-adjoint bounded operators, | W|| < c. This ensures,
with the aid of Kato’s Theorem [14], that H is self-adjoint.

The equations of motion are

(6)

W)
ZEUJ(gl,gz,t)=Hlp(q1,c_12,t), (7
d OCHD OH, oW
P = — _ ]
dr Pe aq. oq. aq. (8a)
d  aHY  8H, | WD
ad= T T T T o (8b)

with (A4) = (i, Ay) denoting the expectation value of an operator A in
the state determined by Eq. (7), W= W, + W,.
Eq. (7) admits a product solution

t
—i § Helpe(t'), ge(t'))dt’

w(gi, gz t)=e ° vi1(q1, ) wa(gs, 1),

where the y; obey Schrodinger equations with Hamiltonians H; + W,.

This separation of variables corresponds to our requirement that
oA, CA,. Egs. (7) and (8) are time translation invariant, hence (H) is a
constant of motion (but this is no longer true for the operator H!). This
can be checked by direct computation.
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From (7) and (8) we calculate

d
- o =KH B =KW, B], k=12
oW dg. | Wy dp.

S W = KTH, Hy+ WD +

oq., dt op. dt
_ 0 W KH)y oW KH)
0q. op. op. 0q.
d 0H, oW B 0H, oW

d_tHc: dq. 0p. op. 04,

By these equations it is shown that, in general, neither ( H,» nor (H, + W,>
are constant, therefore, the interaction admits energy transfer from one
quantum system to the other, provided W, and H, do not commute.

The classical system S, represents the “wall” between the quantum
systems through which the heat exchange can take place. In classical
thermodynamics, it is understood that the wall itself does not contain,
or store, energy. In order to approximate this situation, we have to
consider a special case: we sandwich S, between like quantum systems
with opposite signs of the interactions:

A=A, A,=A+a suchthat An(A+a)=0;

H=H®1, W,=V(p.q)®1; )

. H2=1®ﬁ, W2=_1®V(pc’9c)a (10)
with N

V(pes 40 =V (pe—Po-4c—q0) - (11)

Here p,, g, are solutions of the unperturbed classical system given by
H,;in W, and W, we have suppressed the respective variables p,, ¢, and
D292

Preferring to describe S, and S, in the Heisenberg picture, we
have to look for the automorphisms ¢, of time translations and put

O =of).

Since H generally depends on ¢ through the time dependence of p,
and ¢, o, is not a group of automorphisms. Formally, we can write

t
ifH(t')dt

0 A=UM) AU, Ult)="Te ® ,

the symbol T denoting time ordering.
In order to introduce the temperature, we consider S; and S, as
canonical ensembles. In the unperturbed case, their equilibrium states
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o, and w, are given by density matrices
o~ BiH,

= Tre FH w(+)=Tr(g;*);

Qi

the unperturbed time automorphisms are
wA =t gem it =12,

Now let us switch on the interactions W; and W,. A general solution
cannot be given here. We are interested in a special one which leaves
the systems essentially unchanged. As long as f, = f3,, such a solution
exists:

0, A=U)AU(t) ", Ut)=expi(H,+ W(p,. 90) + Hy + Wa(po. g0)) 1 ;
PC:_p()’ gc:go; (12)
exp[— ﬂ(Hi + VVi(Pm Qo))]
Trexp[ = B(H; + Wi(pos 40))]
(e PH: are trace class operators, and so are e " #H:* %) due to the bounded-
ness of W,.)
This is a solution since

o (W; + Wy)) = o(W, + W) =0

(03] =w1®w2, w; = Tr(Qia')» Qiz

due to (9) and (10), and hence p, and g, obey the unperturbed classical
equations given by H,. This in turn leaves W(p.,q.) = Wi(po,q,) time
invariant according to (11), so that «, is indeed given by the above ex-

. . d
pression. As a simple consequence we have " {H,+ W, =0.

Of course, what is done here, is neither a proof that systems in thermal
equilibrium must have equal temperatures, nor a complete model of
heat exchange. This would require a theory describing how a system
approaches its equilibrium state. Our point is to give an argument that
the assumptions of Section II can be maintained in the presence of
thermal contact in the case of equal temperatures: we have put forward
a simple model of thermal interaction and given a solution of the desired
type such that the assumptions (A4) to (E) can be satisfied.

IV. Coupling of Infinite Systems

We are interested in thermally coupling infinite systems, so let us
consider the infinite volume limit

n; .
A—0, ——; i=1,2,

Eis
i
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of our model systems, where V; = volume of the region A;, n, = number
of particles. The properties which are important for applying the theorem
of Section II, namely the existence of uncoupled solutions

1) y2
w=0,Qw,, o=0 Qa

modified only by replacement of H; by H, + W, with constant W, if §; = f5,,
are evidently not affected by taking the limit. But we have to assure
ourselves that switching on and off the thermal coupling acts continuously
on the systems and can be interchanged with the infinite volume limit.
Therefore, let us consider a set of systems (2 ,, w4, o' (1)) with

Tre  BH@* W) 4

A —
i (A)= TTre-FE@TIW)

AeU,

dA) A= UA) AUM) "L, UA(t)= e HDTiW geqp,.

The following questions have to be answered:

1) Is &*(4) continuousin Aat A=07?

2) Does continuity hold in the limit A— oc?

3) Are the states w4 continuous in 1 and what about the infinite

volume limit ?

4) How is the limit state w affected by the introduction of the inter-

action W ?

Since W is intended to represent the interaction of the system with
parts of its boundary, we assume

(F) Wis given by m-particle potentials, m=1, 2,...m,, with support

in the region A,, | W] <c.

A, will be held fixed in the infinite volume limit. Therefore, neither
the temperedness nor, for sufficiently small ¢, the stability of the total
potential will be disturbed by switching on the interaction, if the particle-
particle-interactions in H(A) are given by tempered and stable potentials.

1. The first question is answered by

Proposition 4.1. Let the automorphism group o,(4) of the operator-C*-
algebra A be implemented by M **") where H and W are self-adjoint
operators, W bounded. Then a,(4) is strongly continuous in A for fixed t.

Proof. Theorem 1X.2.1 of [14] tells us that &™**") i for fixed t,
an entire function of A and therefore norm-continuous in A. Hence

Hat(;")A_at(i/)A“ é H(ei(H+lW)t__ei(H+l'W)t)Ae-—i(H+).W)t“
+ Hei(H+Z.'W)tA(e—i(H+/1W)t_e—i(H+l’W)t)H

<2e)4]
if |4 — 2| is sufficiently small. Q.E.D.
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Especially, we have continuity at 4 =0.

2. To answer the second question, we have to replace H by H(A).
We write o'(4) to indicate the A-dependence of the automorphisms,
defined as above. Now let us suppose that, for fixed /7, the limit
/}1_{1210 0 (A) = o,(4) exists and defines a group of automorphisms of the

global algebra U of observables. There is no general proof for the
existence of this limit. Robinson [15] has given a proof for the case of
quantum lattice systems with sufficiently nice potentials. The class of
those potentials is large enough to be invariant under the addition of a
“thermal” interaction potential as specified by (F). We can expect that
to be true whenever one can exhibit a class of nice potentials and show
the existence of the limit lim o for A=0.

A—-
From the next proposition, we see that «,(4) too is continuous in A.
Proposition 4.2. Let o,(H,, 1), 1 € I, be a set of automorphism groups of
A implemented by &' *W)': H self- adjoint, W self-adjoint and bounded.
Then o,(H,, A) is strongly continuous in 4 for fixed t uniformly in 1€l

Proof. It suffices to show that the norm-continuity of e'#:*4")

established in Theorem 1X.2.1 of [14], is uniform in i Looking at the
proof of this theorem, we see that e **") can be written as

QTIN5 U, (13)
n=0

where the U’s are n-linear in AW and bounded by
t"

n!’

lunof = 2w (14)
In general, there are two additional factors M"*!¢"' on the right hand
side of (14), M, and 7y, depending on the class 4(M,,y,) to which iH,
belongs (for the notation compare [14]). But for all self-adjoint operators
and hence for all H,,1 €1, we have

+iH e%(1,0).

Due to (14), the series (13) converges uniformly in ¢ for fixed ¢ and so we
get uniform continuity of ™ **"  Q.E.D.

3. Let us consider states w4 as defined in the third question. It is
tacitly assumed that e ##) is a trace class operator. Because of the
boundedness of W, the same is true of e #HMTAM T et ys introduce
the abbreviation E4(B)=e FHM**M): and et ||...|, denote the trace
norm defined by |A|, = Tr((4*A4)"/?). Then we get

Lemma 4.3. [|[EZ(B)|, S #1H|ES(B)|,, if 4 is real.
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Proof. Recall that W is supposed to be self-adjoint. Let £2(4) be the
m-th eigenvalue of H(A) + AW (in increasing order and repeated according
to multiplicity). | W/ < ¢ implies

em(A) Z en(0) — 4] ¢
|EA(B)|, = Tre HW*2W) _ 3 p=feh (15)

m

<Y e POl < Bl EA(B)

Now we want to establish
Tr(EZ(B)A)

ith
TrEXB)

Proposition 4.4. The state w?} defined by w?(A)=

Proof. The essential point is to show the trace-norm continuity in
4 of E4(B). For fixed A, E§(B) can be considered as an element of the
semigroup {EJ(¢), & >0}, generated by H(A). Since H(A) is self-adjoint
and bounded below, H(A) = —y,, we have

[ES(E)]| S et (16)

Introducing the bounded perturbation AW, we get another semigroup
{E4(8), £€> 0} with
HEA “ e(m+lAIc>é (16"

compare Theorem IX.2.1 of [14]. According to the proof of the cited
theorem, E4(¢) satisfies the following integral equation:

4
E{(&) = Eq(&)— [ Eq(E— &) AW E(E)d¢E .
0
Therefore,

|E4&) — Ed©)], < NﬂéézWﬂ@ww

H/\

g IEGE = AW ] [ EZ(E)] 4

.,+_

g
Jz [ESE =& 2w [ EZ)]1dE
Using Lemma 4.3 and inserting (16) and (16) we get

|EL&) — E4 ),

&2
§|2|c<j “EA(f 5)” eliatlalod dﬁ + 5 1A= &) plaled HEA f)” df)
&/2

< |,1|C(€,Mlcé/2 + elAlcé) . J61
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with
)

Ji= g IE4E - &),

~CAO)+ 74 (=) gral g

Since ¢p+7,=0 because of H(A)= —7y,, the integrand reaches its
maximum for & = ¢/2; hence

J <e ,Aéze-(e M(0)+7v4)¢/2 .f/2——e//‘5/2 NEA é/z)Hl 5/2
|EL(E) = EG(E)]; 1Al - 28 [EG(E/2)], (17)

for sufficiently small 4.
Now we can compute

o TOEMBA-TrEND) — TrENHA - T EXp)

A =i = TrEXNp) - TrEA(P)

TeEAD) -~ TEENBN | TrEL(B) — E)A
TeES(D TEH

S wi(4)

and

|Cl); (A) 0)0 (A)l = “E‘L’ B.)‘H “EA(ﬁ Eg(ﬁ)“] < Ml(g/ls (gA = const > (18)

according to (17). Therefore, w4 is continuous at A=0. Taking E% (¢),
with arbitrary but fixed A, instead of EZ(¢) as unperturbed semigroup,
and introducing a small perturbation AW, we can repeat the above
arguments and thus get continuity of w4 at 4,. Q.E.D.

e P2 ES(B/2)]

E5(B)l4

is not independent of A, and it seems to be no easy task to prove uniform
continuity.

4. In our simple model the states of the quantum systems are changed
by the thermal coupling even in the case of equal temperatures. We
assert that for f; = f8, in the limit A,— oc the partition functions remain
the same, and in this sense the states are unchanged. Our arguments are
necessarily indirect ones, and we do not claim to give an exact proof.

We let A;,i=1,2, increase in such a way that A,nA4,=0. Let us
consider one of the systems and omit the index. Following Ruelle
([117], p. 65), we define the quantum microcanonical partition function

Unfortunately, the constant ¢, =4c&| 4| n (18)

QA n, Ey=Tré~ (H(A)—E),
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where

_ 1 if x<O
0 (x)’{o if x>0,

H,(A) is the n-particle Hamiltonian of the unperturbed system. Let ¢,
and &l(1) be the eigenvalues of H,(A) and H,(A)+ AW, respectively.
Because of | W| < ¢, we again have for >0

ed—Ac<edA)<ed+ic.
Q equals the number of eigenvalues of H,(A) below E; hence

QA n, E—ic)<Q,(A,n, E)=Trd (H,(A)+ LW —E)

(19)
<QA,n E+ Ac).

The entropy of the system is given by S(A, n, E)=1ogQ(A,n, E) and
S,(A, n, E)y=1ogQ,(A4, n, E), respectively. Eq. (19) implies

S(A,n E—ic)<S,(A,n, E)SXS(A,n, E+ Ac). (20)

For our discussion it is natural to require that the limit
.1
lim 2 S(A)=s(g, ¢)

. E .
exists when —V~—~>8, %—»Q, V denoting the volume of A.

Since Ac is fixed, it is clear that we can replace E by E + Ac without
changing the result of the limiting procedure; thus we conclude from
(20) that

5(0.0)=5,(e. )= lim - 5,(4).

For the rest of the argument we again refer to Ruelle [11], where it is
shown that different ensembles in the limit 41— oo yield the same physical
quantities.

As we have seen, it is possible to introduce thermal interactions of
certain infinite systems S, S, by considering the thermodynamic limit
of finite systems with suitable interaction. Our model is very simple but
it supports the conjecture that even for systems in thermal contact
certain assumptions can be fulfilled which allow us to establish the
existence of a common K.M.S. extension of two K.M.S. states of the
respective systems.
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