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Higher Order Perturbation Theory
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Abstract. We define the vacuum expectation value of the time-ordered product of
three exponentials of free massless fields as a continuous linear functional over a suitable
test function space using minimal singularity as a criterion.

I. Introduction

The present paper is an extension of an earlier work [1] devoted to the
analysis of the structure of exponential interactions as given by the
Lagrangian JS?int(/φ)

) = :^ Φ W -l :=iintW (1)

where φ is a free scalar field of mass m.
In [1] we discussed the second order contribution to the Green's

functions in an expansion in powers of =Sfint(/φ). To achieve uniqueness
we introduced a minimality principle. We argued that with the least
singular choice of the time-ordered product TLίnt(x1)L ιnt(x2) the Green's
functions correspond most closely to the given classical Lagrangian (in
second order).

Here we go one step beyond the results of Ref. [1] and show that
the minimality principle can be generalized to third order, at least for
the case of a massless field. The generalized minimality principle leads
to a unique, least singular definition of the time-ordered product
TL int(x1)...Lίnt(x3). Because of the simple relation between time- and
normal-ordered products of exponential Lagrangians it is sufficient to
analyze the structure of the vacuum expectation values

<0|ΓL i n t(x1)...L i n t(x3)|0>= Π [e/2iDF(*'-^-l]
l ^ i < 7 ^ 3

+ i Σ [_ef2ίDF(Xl~χJ) - 1] [ef2iDF(χJ~Xk) - 1] (2)
σe<θ3

= Π MF(XI ~ xj) + i Σ [ί£F(*, - */)] [iEP(xj - xk)~]
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Here S3 denotes the group of permutations of three objects.
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(3)

The ambiguity in defining <0|TL in l(x1)...L in t(x3)|0> consists in a
translation and Lorentz invariant real symmetric distribution e^'(R12)
[2] the support of which is confined to X j = x2 = x3. Hence the second
term on the r.h.s. of (2) although already defined may be replaced by

1
τ Σ \[iEF(Xi-xji][iEF(Xj-xJ]-π6λA

with the least singular superpropagator iEF(x), λ = f2/4π2 and

(4)

(5)

The real part of the Fourier transform of expression (4) is given by

^ ^ c / V^ \ V^
5 δ \ΣPn} Σ

λ 2

4 '

λ 2

TP,
λ_ ?

4 '

(6)

Suppose that (6) is smeared in the spatial variables with a testfunction
Φ(Pι>P2> Pa)e ^(#9) [3] such that there exists a constant K with

Hence

2 n = l , 2 , 3 for (p1? ,p3)e suppφ. (7)

PΪ,o-K2<p2

n n = l , 2 , 3 . (8)

The various terms of (6) smeared with φ are of the following type for large

l or l l '

(9)
δ(ΣpΠf0){θ(Max{|p/ f0 |, |pkf0|}) + (0(lΛ,ol N) x entire function

of order 2/3 in pk^ + [i<r->k])

for any J V e N .
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With the help of this information one obtains the following structure
for

y
Z

-

4

as a function of the time differences

V δ(v}(xQ - γ°) hσ(xQ - x?H il l)^ V ^A t Λj ) ΐlv\Λ,j Ή / [ 1 A J J

fr<^(~^~ 1 i! — Π

with

and
00

Σ <5(v)(x? — Xj)/Zv(*j° —x/c)e^'CR2) for all σ E 6 3 .

The singularities are contained in the second term of (11). They are
attached to the lines χ^ = χ^,χ^ = χ^ and x3 = x°. In particular, for no
spatial testfunction φ does the expression (10) involve singularities
belonging to the point x± = x2 = x3.

The crux of the problem consists of showing that in the weighted space
average of the real part of the first term on the r.h.s. of (2) background,
line singularities and point singularity can be separated from each other.
Once this has been proved one particular definition of J~[ [iEF(xi — xJ)']

\=i<j=2

can be singled out by the absence of point singularities in the weighted
space averages of its real part or in other words by its being least singular.
Then the vacuum expectation value of the time ordered product
TL int(x1)...L im(x3) is defined by the sum of that particular definition of

I f .
11 \JΈF(Xi — x7 )] plus—- Σ \ \jEF(Xi — x7 )] [ιEF(Xj — xfc)]

Clearly, the weighted space averages of the real part of (Q\TLint(xι)...
•• £int( x3)|0> again do not contain point singularities. Hence
<0| TL in t(x1)...L ln t(x3)|0> so defined is least singular.

In Section II we give a particular definition for J~I [iEF(xι — x^ )]
l ^ i < j ^ 3

and prove that it satisfies unitarity and locality. In Section III we show
that this particular definition is already suggested by the behavior of

Y\ [iEF(xι — Xj}] in the neighborhood of the point x t = x2 = x?, and
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consequently is the least singular one. We conclude with a remark con-
cerning the singularity structure in the invariant momenta of the cor-
responding amplitude in momentum space.

It will not escape the reader's attention that all of the preceding and
subsequent considerations carry easily over to Lagrangians of the form

&ini(fφ)=]dμ(q) :<*'+-!: (12)
o

where [expgα] dμ(q) is a bounded real measure for some α > 2,

II. Definition of the Time-Ordered Product, Unitarity and Locality

To prepare the ground for the subsequent discussion, let us investigate
powers

lQ(Pι,P2ltι,t2)±iV]μ (13)
and

LQ(Pι9p2ltl9t2)±iεY (13')

of the parameter depending quadratic form

^ (14)I ~r 12 i 12 ̂ 1

for Reμ > - 4, tj e / - [0, 1] j = 1, 2 and ε > 0 [3].
As a distribution-valued function [Q(pι,p2j *!> ^2) + ί'0]μ *s infinitely

differentiable with respect to ίj, and t2 as long as the quadratic form
Q(pι,p2l ί i s Z2) i

s n°t degenerate, i.e. away from ^=0. For Reμ> —4
the behavior of (13) when ίj approaches the left end of/ is given by

[β(Pι ϊp2;ίι ίί2)±iO]' l = Gμ(p1,p2;ί1,ί2) + ίί+ 2G^(p1,p2;ί1,ί2) (15)

where the distribution-valued function Gμ is infinitely differentiable with
respect to tv and £2

 an(3 where G'μ is a bounded function of ^ and ί2

for t } € 7,7 — 1, 2 (bounded in the sense of y)1- Moreover, we have

ε io (16)
2)±ϊO]μ for Reμ>-4 and ^ Φ O .

1 Qualitatively, this behavior can be seen from the partial Fourier transform with
respect to the variable p1. It is a special case of Lemma 2.2.20 in E. R. Speer and M. J. West-
water, Generic Feyman Amplitudes, IAS preprint (1970). However, also in the general
situation, an alternative, more direct proof of the corresponding behavior when the para-
meter depending quadratic form Q degenerates can be given which does not involve
analytic continuation from the Symanzik region.
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Thus the distribution

t1T
2 (17)

unambiguously defined in

ί 3

<s l 5 S2,s3/Re,s1 <0, Res3 > — 2, ]Γ
I t = l

can be analytically continued in s l 5 s2, s3 to a function meromorphic in Ω

I 3 ϊ

X Res f c>- 2(3-/) for all Q^l^2\. (18)
k = l+l )

If we use the same symbol for the continued function, then

p}n-sίΓ
1TS±({p} sί,s2,s3) (19)

\ / = ι /

is analytic in Ω. We define

ί = l

P ί ) ί ^ 2 f S 2 3 + 1 ί ^ l ί Γ S 1 " 1 [ l + ί 2 + t2tl]"2 (20)
/ = 1 / 0 0

Then for {s} e Ω, there exists the limit in the sense of 5^'OR12)

l 9 s 2 9 S s ) (21)

and is equal to the corresponding distribution (19).
For the moments p ι ,p 2 >P3 in a compact set K, i.e. in &(K) the

distributions (20) are equal to

(22)
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Here the contour Cκ>ε depending on K and ε starts and ends at + 1 and
encircles the origin once counter-clockwise. It is so close to the real
interval [0,1] that Q(pt, p; ; ί1} f 2) ± iε does not vanish in

[tl/tl e region encircled by Cκ J x {t2/t2 e 1}. (23)

The function (— ί)~sι ~ 1 is defined such that arg( — ί) = 0 for ί < 0.
Next, we turn to the asymptotic behavior of the distributions

ί = l

for ε^ (24)

We expand

t2)

(25)

-K2

Σsι

with respect to τ using the formula

/(*)= Σ
N xn 1

N\

for ε > 0

for

ov
(26)

3 3

set τ equal to tl and choose N such that 3+ £Res / :gΛ Γ <4+ £
i i

This expansion leads to a corresponding expansion for (24) a term by
term estimate of which gives the following result:

There exists a positive constant M such that the set of distributions

|!+ Σ Σ I/>J2

1=1v=0

3 12

ΣIm

Max<l,

/(s l 5 s 2 ,s 3 )6Ω, O^ε^

is bounded.

S ΣPi}Γ(-sίΓ
ίT^±({p}ιsl9s29s3)

(27)
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We are now in a position to define

ίT(x 1,x2,x3)= Π [iEF(Xj-xJ]
A l ^ J < f c ^ 3

and _ (28)'

in momentum space where

* ,„ ^ 1 r Λ Γ(-l-s)Γ(-s)cosπs
. (29)

The loop L starts and ends at + oo and encircles the poles —1,0,+! , . . .

once clockwise, λ = ——^- is assumed to be positive.
4π2

[EF(fc)]* - EF(fc), i.e. [EF(x)]* - Ej?(x). (30)

De/ϊmίzon.

ι,x2,X3{^"(Xl' *2> *3)) (Pl> P2> Ps) = ^(Pl, P2 ? P3)

4
' " (31)

1 n-l-sj . 2

^ X m 3 + m2 + sι

•Γ(-m3-m2-s1)l —

Σ

where the loop C starts and ends at + oo and encircles the points — 2, — 1,
0, + 1, .. . once clockwise and where 9Ϊ~ is given by

?! + !-/) y / '
-sι-s2) ̂ 3 l i

^ < r 1 < v < - _ 9 ^ / o ^ ς + c ^ — ^
λJ 2 ^̂ - -*• 5 ^ i ^̂  ^-") I ^̂  2 "̂  1 ^̂  *

h> P2> Ps) is obtained from ^(/71?p2, p3) by replacing TQ~ by TQ + .



Exponential Lagrangians 137

We note the relation

P2,P3)]* = «^(Pi,P2,P3), i.e. [^(Xi,x2^3)]* = ̂ i^2^3). (33)

Using (27) and standard estimates on gamma and beta functions one
verifies that

^(Pι,P2,P3)e5αZ'ι/3(K12) and f(pί9p29p3)eWΐί/3(R12) (34)

where Wί/3(Rl) denotes the space of all linear continuous functional
over the test function space

, (35)
for all d = l , 2 , . . . and all (α)eN<}

SPt^jR') is equipped with the topology given by the norms </>ί,α) [2].
In order to prove that the above definitions of 2Γ and y are per-

missible in the sense that they satisfy unitarity and locality, we consider
the following functions of an auxiliary parameter y, first for γ real and
larger than nine 2

Π

r = ± l , ±3; -f <S< -1.

With the help of (27) and standard estimates the integrals can be shown
to exist for these values of y. However, for values of γ close to + 1 they
will not exist as they stand. We swing the s3- and s2-contours around the
real axis from — 1 to +00 which will push the ^-contour to the far left.
Subdividing this deformed s ^ -contour into 2 parts: one parallel to the
imaginary axis: RQSI = S, the other one being a loop which encircles

the poles of Γ — £ Sj • — 2 with Re^ ̂  S once clockwise (a singularity on
\ i /

t = S is to be accounted for by either the first or the second part, but
2 This type of regularization was first introduced by M. K. Volkov in Ann. Phys.

(N.Y.) 49, 202 (1968).
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not by both) we derive the following identity

& π2/4 1 " (-l)m3

Σ-4 y2 % m3\Γ(2 + m3/γ) o

mr / m3 m2 rv \•r -— — -sΛ r(-Sl)
(37)

where

Σ

2πi 3

Γ(-y(l+s3))cosπy(l+S3) s+ico

Z

π
(38)

• Σ
σeSs \ 1

S is the same in both formulae (37) and (38) and — f <S< — 1. The

contour Z encircles those of the poles s3 = — 1 H -, m3 = 0,1,... once

clockwise whose real part is less or equal to / — 2 — 2S. (z}

In much the same way as before, one shows from this form of &~r that
(—)

and that ^ r ( P ι ^ P 2 ^ P ^ ' >y} an(^ ^ r ( P i > P 2 j p 3 i 7 ) are a,nalytic functions of
y in the chisel shaped region Wδ

. (40)

Furthermore, the following limits exist in 9K'1/3:

-
Σ ^(Pι>p2,p^y



Exponential Lagrangians 139

and are equal to (p^piίPs) and ^(P^Pi^Pa) respectively. Next, we
introduce the parameter depending superpropagators

λ_,
4

^(fc*-fc§ ( T ) iO)

r= ±1, ±3 (42)

where the loop Lγ encircles the poles of the gamma functions once clock-
wise. Using Stirling's formula and Jensen's inequality one shows:

a) £F(F),r(/c; 7) 6 9W1/3(Λ4) for Re7 ̂  1,

b) EF(p} r(k; 7) are analytic functions of 7 in

c) the following limits exist in 9Jί'1/3(K4)

lim EF(F),r(k', 7)

and are equal to

(43)

. (44)

For the difference EF r and Eψ r one finds

7

ι2 oo

λ iπ

~4e

TO+ 1
+ 2

(45)

with

m

s)
(46)

where the loop L'y encircles the poles s = — 1 H -- m=l,2, ... once clock-

wise. £( + ) and £'"' are related by

(47)
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Going through the same routine as before, one shows that

a) £<*>(&; y)ESR'1/3(K4) for R e y ^ l . (43')

b) E(

r

±}(k\ y) are analytic functions of y in Wδ.

c) the following limits exist in 9Jl'1/3CR4)

lim £<± }(/c;y),
y^ + 1
yeWό

are independent of r = + 1, +3 and are equal to

;2
JE (±)(fc)- - 2πiλδ + (k2} - 2πί— Θ( + fc0) Θ(k2} *±\ 4 V-

(44')

iEF r(x; 7) and — iEψ r(x; γ) are time-ordered functions in the following
sense:

ί^+)(x;7) for x°>0
' (48)

fi£ί.+ ) (-x;y) for x°>0

.^^ for χ0<0

where for instance the first line of Eq. (48) is to be understood as follows:
given a test function / with /e9Jϊ1/3(^4) and with supp/ e {x/x° > 0}
then

j d x f ( x ) i E F , r ( x ι y) = J dx/(x)i£ί+)(x; y) .

For y real and larger than nine the contours Ly and L'y may be opened
and pushed to the left such that — 2 < Res = SO < — f whence it follows
that for these values of 7 EF(j?)f r(x; y) and E^^x; y) are locally L2 integrable
functions of x for which products as for example

Π liEFtr(xj-xk;γ']9 fl C~ iE^Xj-x^ y] ,
1^J<A:^3 l ^ j < k ^ 3

^F.rte - *;; 7) ί^+)(χj - χk; y) ̂ r+)(^ - χ fc; y) (49)
and -zΈ^r(x ί.-x j;y)zΈ^)(x fc-x j;y)ϊ£^+)(xk-xI.;y)

are unambiguously defined. Formal manipulations which are correct for
locally L2 integrable functions yield the following relations :
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f - f Π<* 4 *n/(*ι>*2>*

Π [iEFίf(xj-xk;γ)']- Π
^ j < fc i 3 1 ^ J < k ̂  3

— i y r . . . r FT d^x f ί x % % \ (50)
σe3 3 π = l

7 ΓΓ fγ γ nΛ~| Γy fΛ ~*~ > (v Y " "\A~1 Γί P"^ M Y — Y ' "vVl
iJup fV-^i -^y? / / J L t j L /r V / k ' //J L r V ί k ' / / J

For with xf — x^ >0 and Xj — x^ >0 for all x^x^esupp/

3

ί" ί Π rf4x«/(xι,x2^3) Π [iEp^Xj-x^y}]

3 4 "J<"3

 ( + )

 (51)

J J J. X nJ \ 1' / ' J/ L r ,f\ I J 5 / / J L Γ V J / C ' / / J

^ T~T p . τ-1 / \-ι

3 1§'/<'ίS3 (51')

= ί-ί Π ̂ /(^i.^.^C-i^.r^-^ yαP^^-^ y)]

In order to establish the connection between

Π [iEFtr(xj-xk;y)'] and ^(x^ x 2,x 3; 7), (52)
I ^ j < f c i 3

f] [-i£F,r(Xj-xk;7)] and J=

r(x 1,x 2,x 3;y) (52')
1 ̂  j < k i 3

for 7 real and larger than nine we introduce with Speer [4] the functions

EF,r,ε(x'> y} arκl ^F,r,ε(^; ?) given by

,ε>0.

(53)
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Then, the following relations hold in L2

loc and L\oc respectively:

lim EF(F) (x; 7) - EF(P] r(x; 7)
ε|0

Π (F),r,ε(^-^;y)]= Π

According to Speer we obtain

K l , * 2 , X 3 ϊ 1 I
L ^ j < f c ^ 3

m
n= 1

3

(54)

(55)

π2λ4 1

4 ~(2τd)3

(56)

Σsn+2

As a consequence of the fact that — 4 < £ Resn + 2 < 0, Res3 + 1 > — 1,
i

uniform convergence of the s-integration and Eq. (16), the limit ε I 0 of
the r.h.s. exists (bounded convergence) and is equal to

A A Ads3ds2dSl

7 = 1

-Σ^-2) Σ
σe®3 \ 1

4 (2πi)3 s,_

-|Isn+2

4

The limit ε|0 of the l.h.s. of Eq. (56) is given by (55). Thus we find

Π [(-)i£F<F>.r(*j-*t;y)] = &ι,*2,*3;y)
1 ^ j < k ̂  3

Eq. (58) implies that the left-hand sides of the Eqs. (50), (51) and (51')
are analytic functions of 7 in Wδ and that their limits exist as 7 tends to + 1
from Wδ. Also, the products of the right-hand sides of (50), (51) and (51')
viewed as convolution integrals in momentum space are analytic func-
tions of 7 in Wό. This follows since the integrands are analytic in 7 for
yeWδ and the integrations are uniformly convergent for /e9Jϊ1/3(R12)
(for fe@(R12) the regions of integration are even compact). The limits
of the r.h.s. exist as 7 tends to + 1 from Wδ. By the uniqueness of analytic
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continuation in simply connected regions we obtain the desired unitarity
and locality relations

1 ,x 2 ,X3) = ίl Σ ~i Σ H Σ
\ r = ± l r = ± 3 / σe63

• ί 1 Π d*xJ(Xl,x2, x3) {[J£F>; - x,.)] [i4+)(*j - xj] (59)

= ϊ Σ

etc. Here the Eqs. (33), (41), (44) and (44') have_been used. This completes
the proof that the above definitions of SΓ and ZΓ are permissible.

Finally, we want to point out a special property of these definitions.
For pf > 0, / = 1, 2, 3, the real part of ^"(pl5 p2, p3) can be brought into
the form

_2;4 i S + ioo 3

' 3 \ 1 1

2^ \2~tPn\] 2 2 J 1 1 L 2 ~ι" 2 1J I /
σeβ3 \ 1 / 0

or into the form

2 ι 4 ι Γ+ioo
JL si λ. * / / L \ / \ A Γ Γ ? T T—Γ

ί ds T Γ(-s)τ^ττ ίί dsa^ Π
4 2 π i τ _ J

i < I O \ 4 Γ V '(2π02,J-L * l Ά[ Γ(3 + s,)

ΓΠ _ L e _ c _ c \ 2-ι

where t/= -f, T> -3.
Simple estimates using Stirling's formula show that Re^ tends to zero in
the region &

ί? = {pι J P2,P3/P J

? >0 7=1,2,3} (62)

as the invariant momenta pf tend to + oo with a decrease of type
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and

This fall-off property fixes the time-ordered function completely.
For, any other choice would differ from our definition in momentum
space by a real entire function of Pι,pl, pi of order <^. These entire
functions do not decrease in any direction in C3. Thus the real part of
any other choice of the time-ordered function does not decrease in
momentum space in any direction inside the region φ.

III. Naturalness of the Definition

In this section we want to illustrate that the choice (31) of the product
of the three superpropagators is the most natural one.

We note that the imaginary part of this product is completely fixed
by unitarity. Its real part is fixed by locality away from the point where
all coordinates coincide, the difference between two admissible choices
being a real distribution concentrated in that point. We confine our
attention to the real part of the product since it is this part that contains
all the ambiguities and needs precise definition.

We consider the function τf(t1,t2,t3) of the time differences tj — tk

that arises from Re^r(x1, x 2? xs)> given by (31), after smearing over the
spatial variables with test functions /: / e 9W1/3(R9). In order to determine
the detailed structure of this function we need more information about
Re^ than the previously established decrease O / M i n ~ 3 p 2 \ and

/ \ l j = l , 2 , 3 r j )

0 Max~ 5/2 p] in 0 = {/?!, p2, p3/p2 > 0; - 1, 2, 3}. We have to know the
\ ,7 = 1 » 2 , 3 I ^

behavior of Re^ in £/l

K2

0,p>0,p2>0}, 0<K 2 <^ (63)

as p2 (and p2) tend to + oo. To this end, we study the following function
00 1 °° 1 1 Γ(— 1 — s )

= Σ ^1(^+1)1 Σ m2i(m2 + ί)ι ~2ni[dSl Γβ + sj

+ sin2πs1] Γ( — w3 — w2 — s^) Γ(— sj
(64)

2

1

0 0
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where

--π:,+,2+l2l,rM^s,— (65)
Si + ioo 2 . . . _ . _ _ _ . _ _ _ . .

£ Ϊ - l - s ι - s 2 £ - s ι - l

Si-i ' "

We are interested in the behavior of F(x1? x 2,x 3) for Xj>0j= 1,2, 3, x2

(and x3) tending to -f oo and x1 staying finite 0 < xί < K2. We split the tl

integrations into three parts: 1) from 0 to ξ(t2), 2) from ξ(t2) to 2 ξ ( t 2 )
x

and 3) from 2 ξ ( t 2 ) to + 1 where ξ(t2) = . Accordingly, we write

F(x1? x2, x3) as a sum of three terms Fj(xi, x2, x3) corresponding to the
respective intervals. It is not difficult to determine the behavior of the
terms F3 and F2 which can be cast into the form

1 ξ(t2)~1-2 i S + ioo 3 Γ j p / _ j _ s \

F ίx x x )= f d ί f dt — - f f f ^° ^° ^° "̂  ' —3V 1? 2? 3/ J 2 J 1 ^^.τ ̂ 3 J J J
0 0

(66)

Γ(-1-Sl) π Γ(-»3-»2-Sl)[x2 + ί2X3]" (67)

— f dί1(-ί1)
m3+m2+sτι+ίι] sι 1[i+ί 2+ί 2(i-f ίι) ί(ί2)i m3 m2 Sl 2

2πί J

0 ξ(ί2)

Clearly, F3 is of type 0(x2

 5/2). It is an immediate consequence of the
definition of 9?(x1 ?..., ί2) that the second term of the r.h.s. of (67) is of
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type 0 ( x 2 5 / 2 ) . Hence, also F2 is of type 0(x^5/2). F^ is given by

1 oo /v 4. \m3 oo ^ra2 1
/ \ V Λ 1 L 2 / v^ Λl L

+ jdί 2 J dί 1 5R(x l ϊ x 2 ,x 3 ; ί 1 , ί 2 ) (68)
0 0

where Zr is the circle of radius r around the origin with positive orien-
tation, r larger than one and fixed.

Again, the second term of the r.h.s. is of type 0(x2

 5/2) We note that the

curled bracket is bounded by 2m3 + m2 + Resι exp l lmsj . The first term

of the r.h.s. of (68) may be written as the sum of two terms according to
the factor [1 + sin2πs1]. In the term corresponding to 1 the contour C
may be straightened out which leads to a behavior of type 0(x2

 5/2) for
this term. In the term corresponding to sin2πs1 the sx and tγ integrations
may be replaced by summations over the respective residues which
leads to an entire function of x2 and x3 of order 1/3. Summarizing, the
behavior of F(x l 5 x2, x3) for x7 >0j = 1, 2, 3 as x2 (and x3) tends to + oo
and x t stays finite: 0 < x1 < K2 is given by a sum of an entire function of
x2 and x3 of order 1/3 plus a function of type 0(x^~5/2).

Now we are in a position to determine the behavior of Re^(p1?/?2,p3)
when some of the time components of the momenta tend to + oo while
the space components are fixed in a compact set. Due to the presence of
the energy conservation ^-function there are only two alternatives

1) PJ,O~* + °° f°r J= 1*2, 3.
2) p2

0 stays finite, p2

5 o and p2

 0 tend to + co.

In the first case all p2 tend to -h oo which is a situation we have
already dealt with in the preceding section where we found that

/ \

θ Min~ 3 p 2 . In the second case p2 and p2

\ J = 1 » 2 , 3 J

tend to + oo while p2 stays finite. If p2 > 0 we invoke once again a result
of the preceding section and obtain
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If pf <0 we go back to the definition of 9~ > formula (31), and split the
sum ]Γ into two terms according to whether i φ / or i = I. The term with

σεS3

ί φ / can be brought into a form analogous to (60) leading again to a
/ 3 \

behavior of type δ \Σpn 0(Max 5'2{p^Pn}) whereas the term

corresponding to ί = / can be expressed by means of F(x1? x2,
 xa) and *s

equal to

2 2 2

The behavior of F(xl9 x2, x3) in the region of interest has been established
above. Thus we see that the behavior of Re^(p1,p2,p3) for pf <Q,
Pn and pi tending to 4- oo is given by

P {g(plP

2

m, Pi) + θ((P

2

mr512) + O((p2

nr
5/2)}

/

where g is an entire function of p2

m and pi of order 1/3.
Combining the various pieces of information, we obtain for /e

3

^τ/(Pι.o> P2,o> P3, o) = ί ί Π d3Pjf(Pι> P2> P3) Re«T(p l5 p2, p3)

0(Min

(69)

Here E is some constant depending on the support of / and g (pt 0 , p^ 0 , pk 0)
is an entire function of p; 0 and pk > 0.

The statement (69) implies the following structure of τf(tl, t2, ί3):

τ / ( ί 1 , f 2 , f 3 ) = Λ/(ί1-ί2,ί2-ί3,ί3-ίι)+ Σ Σ^^i-ίX.σ^-ίfc) (70)
σe®3 v = 0

for / e ̂ (K9) where /i^ is a three times continuously differentiable func-
tion and /ι{σ are infinitely differentiable functions such that

f δ<' '(f, - f ,.) fcίjf; - r f c) e ̂ 9Mi 3(.R2) .
v = 0

This result does not only hold for f£^(R9). Due to uniform convergence
of the p -integrations it also holds f e 9J11/3(JR9).

The singularities of τj , dictated by locality, are contained in the
second term of the r.h.s. of (70). They are attached to the lines t1 = t2,



148 K. Pohlmeyer: Exponential Lagrangians

ί2 = £3 and £3 = tl. For no /e 9Jί1/3(R9) does τf possess any singularity
attached exclusively to the point ί1 = ί2 = ί3. Any other choice of the
time-ordered function would lead to a corresponding τf possessing such
a point singularity for at least one / with /e 5R1/3(K9).

IV. Conclusions

The crucial property of a certain class of non-polynomial Lagrangians
to which the exponential Lagrangian belongs is that in the weighted space
averages of the time-ordered two- and three-point functions background
(line singularities) and point singularity can be separated from each
other. The special feature of our particular choices of the time-ordered
two- and three-point functions consist in the absence of point singularities
or in other words in their being least singular. However, it should be
mentioned that the triangle graph considered here is a relatively simple
object and enjoys special properties that need not be true for the general
perturbation theoretic term.

Finally, it is worth noting that in spite of the extremely singular
nature of the exponential interaction the analyticity structure of the
triangle graph in the invariant momenta on all sheets of the Riemann
surface is just the same as in renormalizable models. This is so because
^R~ is an entire function and the sums and the integral in the first term
of the f.h.s. of (31) converge uniformly in a neighborhood of any point
of analyticity of To~({p};s 1,m 2 —I,m 3 —l)/Σ p j = 0 regarded as a funtion
on the complex invariant momenta. Thus the singularities are deter-
mined by TO ~ ({p} sί, ra2 — 1, m3 — l)/Σp = o» their location is independent
of s1, ra2 and m3 and hence the same as in conventional theories.
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