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Abstract. The method of Peierls is used to prove the existence of a spontaneous
magnetization for a spin system with nearest-neighbor interactions and Hamiltonian
H= -J X [_Si

zSj

z + u(Sl

xSj
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ySl

y)~], S, a (classical) unit vector at the Γth site, with
<υ>

|α| < 0.0298 and 0.0198 for a square lattice and simple cubic lattice, respectively.

I. Introduction

In the modern theory of phase transitions an argument due, in essence,
to Peierls [1], and later made rigorous by Dobrushin [2] and Griffiths [3]
has been very useful for proving the existence of phase transitions in
several model systems [4, 5]. In particular Ginibre [6] (see also Robin-
son [13]) has considered the anisotropic Heisenberg model or quantum
lattice gas with Hamiltonian

H=υ + K\ 17= -J X S f

zS/;
<y> (1.1)

where St

x, etc. are the angular momentum operators (Pauli matrices) for
a spin 1/2 atom located at a site i on a regular ^-dimensional (hyper) cubic
lattice (d ̂  2), <(/> denotes a pair of nearest neighbor sites on the lattice
(each pair counted in the sum only once), J is a positive constant and α a
real number.

For this model (only one of several which he considered), Ginibre
proved the existence of a phase transition - the two phases characterized
by the thermal average (S^y having positive and negative values,
respectively, in the thermodynamic limit - for sufficiently low tempera-
tures and provided α| is sufficiently small. The actual estimates employed
by Ginibre (which could, no doubt, be refined) require that |α| not exceed
10 ~6 for d = 2, with even smaller limits for larger d. On the other hand,
Fisher [7] has given intuitive arguments which suggest that a phase
transition probably occurs for any |α| < 1, while Mermin and Wagner [8]
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have proved that a phase transition (of the sort considered here) is
impossible for |α| — 1 and d = 2.

The arguments of Fisher and of Mermin and Wagner apply also to
the corresponding "classical" spin problem in which the St in (1.1) are
vectors of unit length rather than quantum mechanical operators. The
classical problem, which is the subject of the present paper, comes about
in the limit as the spin of each atom tends to infinity [9], and is simpler
than the quantum case considered by Ginibre [6] in that one need not
deal with non-commuting operators. However, the introduction of con-
tinuous variables does lead to some complications.

We are able to show that the classical system has a phase transition at
a sufficiently low temperature provided |α| < 0.0298 for d = 2 and
|α| < 0.0198 for d — 3. While these values are larger than those permitted
in Ginibre's argument for the spin 1/2 case, they are substantially less
than one might hope to achieve. On the other hand, it seems to us that
the Peierls argument, at least in the form we employ, is likely to be of
little use in the vicinity of |α — 1, for reasons stated in Sec. IV below.

II. Notation
The unit vector

associated with site j can be described in polar coordinates with an
azimuthal angle φj and a polar angle θp or by φj and

£ = 57 = 0080,.. (2.1)

In particular, K in (1.1) is of the form

K = - Jα £ [(1 - C;2) (1 - ς/)]1'2 cos(& - φj) . (2.2)
<u>

Let Ω be a finite set of sites i = 1, 2, . . . V. Following the usual custom, we
shall refer to the space of variables φ1? ς l 5 ... φv, ζv as the "phase space"
Γ and a particular point in the space, denoted by ξ, as a "configuration".
The Boltzmann probability distribution is

P(ξ) = e-βH»™/ZΩ, (2.3)

where β is the inverse temperature, HΩ = UΩ + KΩ is obtained by re-
stricting the sums in (1.1) to sites in Ω, and the partition function is

Z0=$dξe-l>a» = 2ΐdφ1 ί dζt ... ]*dφv ί dζye-f". (14)
Γ 0 - 1 0 - 1

Thermal averages are defined with respect to (2.3), e.g.:

<s/>Ω=μαy-^/zΩ. (2.5)
r
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III. Peierls Argument

In this section we consider a square lattice with Ω all the sites within a
large square. If the sites on the boundary of the square are constrained to
have SI = 1 (i.e., only configurations satisfying this condition will be
considered), we shall show that under suitable conditions there is a
constant ε > 0, which depends on J, α, and β but is independent of the size
of the square, such that for any site j in the interior of the square

The steps required to deduce from (3.1) the existence of a phase transition
in the thermodynamic limit are but minor modifications of the usual
arguments [4] and we shall not repeat them here.

Since the classical vectors we are considering vary continuously, it is
necessary to modify the usual Peierls procedure for constructing borders.
For a given configuration ζ we shall say that a site j (equivalently, the
spin at the site) is in class n = 1, 2, 3 provided:

n = 1: 1/3 ^ ζj ^ 1,

n = 2: - l /3<C j <l/3,

n = 3: -l^ί,.^ -1/3.

(3.2)

One may imagine borders (Fig. 1) drawn between pairs of adjacent sites
on the lattice if one site is in class 1 and the other is in class 2 or 3. Due to
the condition ζt = -f 1 for sites on the boundary of Ω, such borders are
closed polygons, and it is evident that any site in class 2 or 3 falls inside
at least one such polygon. For simplicity, we restrict our attention to the
"outer borders" which are not enclosed inside other borders. Let p be the
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Fig. 1. Example of a configuration showing the values of ζl at each site. The border B is the
solid line of length 18 (in units of the lattice constant). Another border of length 4 also occurs
in this configuration. The 11 sites situated between the solid line and the dashed line are

the circumference sites for B
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probability that the site j lies inside an outer border. Since
than 1/3 if j is not inside an outer border, we see that

is not less

(3.3)

and hence (3.1) can be established by showing that p is sufficiently small,
less than (1 - 3ε)/4.

To bound p, we shall show that the probability PB of occurrence of a
particular outer border B (having a specified shape and position on the
lattice) is bounded by

PB^ambe-i"*b, (3.4)

where b is the length of B (we assume the lattice constant is 1) and α, m,
and y are positive constants independent of B. Since the number of
polygons of length b (= 4, 6, 8, etc.) enclosing a particular site does not
exceed b2 3b, it is evident that, whatever the values of α, m, and y, we can
make p arbitrarily small by choosing β sufficiently large, which means
a sufficiently low temperature.

Thus the only problem remaining is to establish (3.4) for

P Γ A£ s>~βHn / f At π-βHr> (1 ς\ΓB = j uζe ' "/ j uζe ^ " , (y ^j
^ r

where $ denotes the set of configurations in Γ for which the border B
occurs (as an outer border). The bound is obtained by introducing a
mapping τ of & into Γ with the following properties: (i) for ξ e 3$,

HΩ(τξ)^HΩ(ξ)-yJb; (3.6)

(ii) the region gβ is the union of a number of disjoint regions ^^ and τ
maps each ̂  one-to-one and continuously into a region % having the
same phase volume (Lebesgue measure). The different regions % (as
indicated schematically in Fig. 2) are not, in general, disjoint, but the
maximum number which overlap at any point in Γ, which is to say the

Fig. 2. Illustration (schematic) of the properties of the map τ
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maximum number of points of £8 which are mapped by τ into the same
point in Γ, is bounded by anf. These properties combine to yield

(3.7)
J dξe->H" g anf

which implies (3.4).
The map τ is constructed as follows. For brevity we adopt the term

"circumference sites" to denote those sites inside B which have at least
one nearest-neighbor site outside B (Fig. 1), that is, sites adjacent to the
inside of border B. Let τ1 be the transformation which for every circum-
ference site replaces ζ7 by ζj — 2/3 if j is in class 2, and leaves (7 unchanged
if j is in class 3, or if j is not a circumference site. (All transformations
considered here leave all the φj unchanged.) Let τr be the transformation,
analogous to that used in the simple Peierls argument, which changes
ζj to — ζj for every site inside B.

If τl causes UΩ to decrease, or to increase by at most Jb/9, that is if

Ua(^)^U^) + J b / 9 9 (3.8)

then τ is defined as the product τr-τ1. Since for ξ e 36 every circumference
site in the configuration τ1 ξ is in class 3, while every site outside B which
is adjacent to a circumference site is in class 1, the application of τr to
τ1ξ causes a decrease in UΩ of at least 2Jb/9:

UΩ(τξ)=UΩ(τrτiξ)^UΩ(τ1ξ)-2Jb/9^UΩ(ξ)-Jb/9. (3.9)

On the other hand if for some ξ e & (3.8) is not satisfied, τξ is defined
to be τ2ξ, where τ2 replaces ζj by ζj + 2β if j is a circumference site in
class 2, while leaving all other ζj unchanged. It is then the case that

UΩ(τξ) = UΩ(τ2ξ) ^ UΩ(ξ) - Jb/9 . (3.10)

This result may be obtained as follows. The change in UΩ which comes
about from application of τ1 or τ2 has two sources. First there are pairs
of sites one of which is a circumference site in class 2 and the other a site
not on the circumference or a circumference site in class 3. The change in
UΩ from such pairs is evidently the same in magnitude but opposite in
sign for the two transformations τί and τ2. A second contribution comes
from adjacent sites which are both circumference sites in class 2. The
contribution of these terms to UΩ invariably decreases (becomes more
negative) under the application of either τl or τ2. Consequently if (3.8) is
violated for some £e^, (3.10) must be satisfied.

The azimuthal angles φt are not altered by τ, but the changes in (Γ will
in general change K. Of course τr does not affect K, so we need only
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consider the effects of τί and τ2. If ( or ζj or both are altered by ±2/3
(while remaining in the allowed range — 1 !g ζ rg 1), the square root of the
quantity in square brackets in (2.2) can change by at most (8/9)1/2. In
addition, if site i is in class 1 (ζt ^ 1/3) and ζj is altered by ± 2/3, the
change is at most 8/9. As there are at most b circumference sites and each
of these has four nearest neighbors at least one of which is outside B and,
consequently, in class 1, we conclude that

KΩ(τξ)^KΩ(ξ) + \<* Jk[(8/9) + 3(8/9)1/2] (3.11)

for a square lattice. Combining this with the previous estimates, (3.9) and
(3.10), for l/Ω, we find that (3.6) is satisfied with

7 = [l-|α|(8 + 18|/2)]/9 (3.12)

positive provided |α| < 0.0298.
The transformations τί and τ2 are both many-to-one. Thus in order

to reconstruct ξ from τ^ξ it is necessary and sufficient to know at which
circumference sites ζ} was decreased by 2/3. As there are at most b
circumference sites, a given τ1 ξ can have come from at most 2b possible
configurations in &. The same remarks apply to τ2ξ, so we conclude that
τ is at most 2b + 1 to 1, and thus (3.4) is satisfied with a = m = 2. This
completes the Peierls argument for the square lattice.

The extension of the Peierls argument to lattices of dimension d > 2 is
straightforward. For d = 3 it is necessary to replace the square bracket in
(3.11) with 8/9-f 5(8/9)1/2, and as a result |α| must not exceed 0.0198 in
order to insure that y is positive.

IV. Concluding Remarks

It is perhaps worth noting that the machinery developed above can
be used to prove the existence of phase transitions for certain other models
involving classical spins, for example:

2, (4.1)

where we assume L > 0 as well as J > 0, and L/J < 1/8. (When L is zero
or negative, somewhat better results can be obtained by an entirely
different route, using correlation (GKS) inequalities [10]).

One wonders if our rather poor upper bounds for |α| may be improved.
No doubt certain technical refinements of our argument are possible, but
it is doubtful whether one can establish a phase transition for |α| less than,
but close to, 1, without a rather drastic revision of the entire Peierls
procedure. The essence of the Peierls argument is the estimation of the
probability of occurence of a boundary, or boundaries, separating unlike
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phases. With α near 1 the boundary is expected, on physical grounds
[11,12], to be a Bloch wall in which the spin direction alters gradually
over many lattice sites. To obtain a configuration of lower energy given
one in which such a Bloch wall occurs as a "border" it will be necessary to
alter the configuration in a complicated way on a very large number of
sites, and there seems to be no simple prescription for accomplishing this,
in contrast to the usual Peierls argument which makes use of a well-
defined and sharp border.
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