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Abstract. We introduce a new method for studying the thermodynamic limit for
systems of particles with Coulomb interactions. The method is based on calculating the
potential energy of the Coulomb interactions from the electric or magnetic fields in the
system rather than from the energy of the individual particle - particle interactions. We
are able to include the effects of a constant external field being imposed at the boundary
of the system. The difficulties associated with Coulomb potentials being not even weakly
tempered are overcome by imposing the boundary condition that at the boundary of the
region containing the particles, the electric or magnetic field has normal component equal
to that of the applied field. We prove that the thermodynamic free energy density exists and
is independent of the sequence of regions used to define the limit. We introduce sequences
of regions all of the same shape and show that for these sequences of regions the thermo-
dynamic free energy density is independent of shape. Finally, we prove that the thermo-
dynamic free energy is a convex function of the density of particles and of the applied field.

I. Introduction

In this paper we describe a new method for proving the existence of
thermodynamic functions for systems where the interactions between the
particles or molecules of the system include long range Coulomb forces
and where in addition external electric or magnetic fields may be present.
The interactions we consider include the forces between magnetic
dipoles in paramagnets and ferromagnets, the forces between electric
dipoles in dielectrics and the forces between charged particles in ionic
systems. However, we specifically exclude from consideration interactions
attributable to the interference of electric and magnetic fields, such as
the interactions of charged particles with magnetic fields produced
by electric currents; in consequence our treatment does not apply to
diamagnetic substances. In addition to proving the existence of the free
energy for such systems, we discuss rigorously some of the simple proper-
ties of the free energy. The method also makes it possible to include in
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the rigorous discussion the shape dependent effects that are, experimen-
tally, a characteristic feature of the thermodynamic functions of systems
with Coulomb interactions. We leave a discussion of these effects to a
later paper.

For systems with short range forces only, the best method of proving
the existence of the thermodynamic limit is the one originated by
Ruelle [1]. He considered a system of N particles whose positions we
denote by JC1? JC2, ..., xN, interacting by two body forces with a potential
φ(r) satisfying the two conditions

(i) Stability:
u < oo

where

- t t = i n f — inf £ ψ(\xi-χj\) ( u )
N^ί i V X I , J C 2 , . . , * 2 V l<i<j<N

is the greatest lower bound on the mean energy per particle. Physically
this condition ensures that the system of particles does not collapse in
on itself.

(ii) Strong tempering: for some Ro < oo

^O for all r^R0. (1.2)

Physically this second condition ensures that the system of particles does
not disperse.

The stability condition has the consequence that Z{N, Ω\ the classical
partition function for N particles in a region Ω has the upper bound

Z(N,Ω)^(λeβu\Ω\f/Nl (1.3)

where λ = (2πm/h2β)3/2, β~ 1/fcT, which we shall treat as a constant in
this paper and |Ω| denotes the volume of the region Ω. The strong
tempering condition has the consequence that if Ω' and Ω" are two regions
whose separation is at least Ro and if (Ω' u Ω") C Ω, then

Z(N' + ΛT, Ω) ̂  Z(Nf, Ω') Z{N", Ω"). (1.4)

Ruelle used the inequalities (1.3) and (1.4) to show that

lim [logZ(N,ΩN)]/JV (1.5)
N->oo

exists where β 1 ? β 2 , . . . is a sequence of cubes whose volumes satisfy

lim \ΩN\/N = v (1.6)

and v, the specific volume, may have any value greater than the specific
volume at close packing. Fisher [2] extended Ruelle's proof to regions of
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more general shape and also showed that the condition (1.2) may be
weakened to

(ii') Weak tempering: for some Ro < oo

ψ(r)^D2/r3 + ε for r^R0 (1.7)

where D2 and ε are positive constants.
For classical system with Coulomb as well as strong enough short

range repulsive forces it is possible to prove stability without too much
difficulty [3,4], but without the short range repulsive forces, a system of
classical particles with Coulomb (const/r) interactions is not stable in
the sense of (1.1). A system of quantum mechanical particles with only
Coulomb interactions is stable if a large enough proportion of them are
Fermions [5] because the Pauli exclusion principle then takes the place
of the short range repulsive forces. It should be noted in this context
that classical stability implies quantum mechanical stability but not
vice versa.

However, for any system with Coulomb as well as other forces, even
the weakened form of the tempering condition (1.7) is violated, both for
charged particles (since φ(r) = (const)/r>0 for particles of like charge)
and for dipoles (since φ(r) = (const)/r3 > 0 for similarly directed collinear
dipoles).

Lebowitz and Lieb [6] have examined the problem for a system of
point charges with almost zero total charge in zero external field. To
obtain an inequality of the type (1.4) they use a symmetrization technique
to allow for the screening of the charges in the system by other oppositely
charged particles, so that the average interaction of a particle with the
rest of the system is tempered strongly enough.

The intention of the present paper is to provide a proof that the
thermodynamic limit exists which applies even if an external field is
present. For this case the symmetrization arguments used by Lebowitz
and Lieb no longer apply. Our method is to replace the tempering condi-
tion by a special boundary condition on the electric and magnetic fields
in the system; this boundary condition makes it possible to deduce (1.4)
even though the Coulomb potential violates the tempering condition.

Basically, the special boundary condition is that the normal com-
ponents of the electric and magnetic field at the surface of the container
must vanish. For the magnetic field, this boundary condition has the
interpretation that the material of the container walls is an ideal super-
conductor. For the electric field, the best available physical interpreta-
tion is that the material has a vanishing dielectric constant (in contrast
to the hypothetical fluid of infinite dielectric constant used by Onsager [3]
in his proof of stability). To keep the physical interpretation simple, we
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shall mainly consider a system of magnetic dipoles. The generalization
to a mixture of electric charges and dipoles will be discussed later.

A preliminary outline of this work was given at the I.U.P.A.P. Conference on Statistical
Mechanics in 1966 [11].

II. Description of the System

We restrict the detailed presentation to a pure (one component)
classical system with short range forces and magnetostatic forces, for
example a system of magnetic dipoles. We include in the short range
forces those due to the particles in the system having a hard spherical
core of finite radius. We denote the number of particles or molecules in
the system by N.

We assume that the Hamiltonian has the form

¥f = K 4- U 4- W (21)

where K denotes the kinetic energy, U the potential energy due to the
short range forces and W the energy due to the magnetic field. The
system is classical so that the kinetic energy is given by

N N

ί=ί ί=ί

where q( represents the position coordinates of the ith molecule and may
include, as well as the three coordinates of the centre of mass of the ith

molecule, the angle and internal coordinates of that molecule. The
vector Pi represents the generalized momentum of the zth molecule.
K{1) is the single molecule kinetic energy and is a positive definite
quadratic form:

^(i)(ρ» ί ) = i Σ Σaκι(y)PkPι ( 2 3)
k I

where pk and pι are components of p.
For the short range potential we assume the form

U= Σ U,j+ Σ Ui (2.4)

where Utj is the potential energy of the interaction between the ιth a n d / h

molecules by short range forces and Ut is the internal potential energy of
the ith molecule plus the potential energy of the interaction between the
molecule and the container of the system. We assume the two body
potential energy to have the form

UiJ=Ui2)(qi9qJ) (2.5)
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where U{2) is symmetric and translationally invariant. We also assume
that l/(2) satisfies

(a) the stability condition u{2) < oo where

- i ^ E E i n f A Γ 1 inf X Uu (2.6)
N qi qN isi<j^N

and (b) the strong tempering condition

t / u ^ 0 if ^i-rj^Ro for some R 0 < o o (2.7)

where rf is the position vector of the centre of mass of the ιth molecule
with position coordinates q{.

The one-particle potential U{1) arises from two separate physical
processes: the internal forces between one part of the molecule and
another and the external forces (other than magnetic ones) between the
molecule and the wall. We assume that l/(1) is bounded below and that
the forces between the molecules and the container are strong enough
to ensure that the entire magnetic moment carried by the molecules
remains inside the region Ω enclosed by the container. That is, we assume

(a) U{1)(q)^-u(ί)

(z.o)
(b) if U{1)(q)<+oo t h e n m(x,q) = 0 f o r a l l xφΩ

where m(x, q) is the magnetic moment density (or intensity of magnetiza-
tion) at the point JC produced by a molecule with position q.

For example, if the molecules are uniformly magnetized hard spheres
of radius a/2, we may take U(1)(q) to be zero if the distance from r to the
complement of Ω exceeds a/2 and to be + oo if not. It is useful to assume
that Ro > a/2, which we can arrange by changing Ro in (2.7).

For the contribution to the potential energy from the magnetostatic
interactions, we use the formula

W = (lβπ)$H2(x)d3x (2.9)
Ω

where H is the magnetic field strength in e.m.u. The integration is
confined to the region Ω because we are not interested here in the energy
of the boundary material nor of anything outside the boundary. The
field H is to be calculated from Maxwell's equations, which in the static
(current free) approximation used in this paper reduce to

VxH(x) = 0 (2.10)
and

F [H(jc) + 4πm(jc)] = 0 (2.11)
where

m(x)= X m(x,qi) (2.12)
i= 1



58 O. Penrose and E. R. Smith:

is the total magnetic moment density at the point x. We shall require
m(x, q) to be, for every fixed q, a continuously differentiable function of JC
except on a finite number of smooth surfaces, at which it may be dis-
continuous. This requirement excludes point dipoles (such as a spinning
electron) from the treatment, but allows them to be represented approxi-
mately by small magnetized spheres.

As indicated in the introduction, the basic idea of this paper is to
replace the tempering conditions on the potential normally used in
thermodynamic existence proofs by a boundary condition requiring
that the normal component of H vanish on δΩ, the boundary of Ω. This
boundary condition corresponds to a superconducting wall which
shields the system from an external field. It is quite easy and later very
useful to generalize the method so that the effects of constant external
fields on the system may be considered. To achieve this we use the more
general boundary condition

Hn(x) = H0Jx) if xeδΩ (2.13)

where Hn denotes the normal component of H and HOn denotes the
normal component of the constant external field Ho. We assume that the
surface δΩ is smooth so that we have a suitable interpretation of the
normal to δΩ. This more general boundary condition allows the physical
interpretation that Ho is a uniform field frozen into the superconducting
boundary layer.

We now verify that the differential Eqs. (2.10) and (2.11), taken
together with the boundary condition (2.13), do specify a unique field
H(x) in Ω. Let X^x) denote the magnetic scalar potential produced in
infinite space by the magnetic moment distribution m(x). It is given by
the Poisson integral

X1(x)=$m(xf)-V(\x-xf\Γίd3xf

= $σ(xf)/(\x-x'\)d3x'
where

σ{x)=-V-m(x) (2.15)

is Poisson's equivalent pole distribution. The distribution σ is a con-
tinuous volume distribution in Ω except on the surface of discontinuity of
m(x% where σ is a continuous surface distribution.

The potential X±{x) is continuous ([7], p. 246-248) and its first and
second derivatives are also continuous except on those surfaces on which
m(x) is not continuous. On these surfaces the normal component of
VXx(x) may have a finite jump, but the tangential component remains
continuous. The potential Xγ satisfies Poisson's equation inside Ω:

V2X1(x) = 4πσ(x) (2.16)
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where we interpret both sides of (2.16) appropriately on the surfaces of
discontinuity of m(x). By (2.15), H^x)^ VX^x) satisfies the differential
Eqs. (2.10) and (2.11) but not the boundary condition (2.13).

In order to obtain a magnetic field H which satisfies both the pair of
Eqs. (2,10) and (2.11) and the boundary condition (2.13), we introduce
a second potential X2(x) satisfying Laplace's equation

V2X2(χ) = 0 f o r x e Ω (2.17)

and satisfying the boundary condition

for xedΩ with —— denoting a derivative along the normal to dΩ. For
dn

this Neumann problem to have a solution, a necessary condition is

([8], p. 230)

k f ) ^ . (2.19)

By virtue of Gauss's theorem and (2.11) and (2.16), this condition is
satisfied. The condition (2.19) is also sufficient if the surface 6Ω has a
continuous second derivative ([8], p. 366). The function X2 so defined is
unique up to an arbitrary constant. Thus there exists a unique field

H{x)=V(Xι+X2) (2.20)

satisfying (2.10), (2.11) and (2.13) if dΩ is a surface with a continuous
second derivative.

In most calculations in statistical mechanics, the potential energy is
calculated as a sum of potential energies of one- and two-particle poten-
tials, and the energy of interaction of a system with an external field Ho

is written as — Ho M, where M is the total magnetic moment of the
system. We now examine the connection between our potential energy
expression (2.9) and the more usual way of writing down the potential
energy. To this end we define

H1 = VX1 and H2 = VX2-H0

so that using (2.20) we have

a a ( 2 2 1 )

JL$(H1+H2)
2d3x.

8π „
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The first integral on the right of (2.21) is the vacuum energy of the
external magnetic field Ho. The second integral may be transformed in
the following way. We use Cartesian coordinates (x, y, z) with the x axis
along Ho so that

H0 = \H0\Vx

and then, using Green's theorem, the definitions of H1 and H2 and (2.11),
we obtain

J Ho (H, + ff2) d3x = \H0\ J Vx (H-H0)d3x
Ω Ω (2 22)

= 4π\H0\$xV-m(x)d3x
Ω

where the surface integral from the application of Green's theorem
vanishes by (2.13). We may apply Green's theorem again to the second
line of (2.22) and, noting that m(x) = 0 for x e dΩ, obtain

-j- J Ho (H, + H2)d3x = -Ho J m(x)d3x
T TC o o

(2.23)
= -H0.M,

where M= J m(jc) d3jc is the total magnetic moment of the system. The
Ω

second line of (2.23) gives an energy of exactly the type usually used in
thermodynamics and in the statistical mechanics of magnetic lattice
models for the interaction of a system with an external field.

We now examine the third integral on the right hand side of (2.21).
Using Green's theorem we write

j (H, + H2)
2 d3x= f (Hi + H2) V(X1 +X2-x\H°\)d3x

Ω Ω ' Π Ίά\

= - $V-(Hι + H2)(X1+X2-x\H0\)d3x,
Ω

the surface terms vanishing because H1 n + H2n = 0 onihQ surface by (2.13).
Substituting (2.14) in (2.24) and using (2.11) we obtain

Ω ΩΩ I ( 1 2 5 )

-~$σ(x)(X2(x)-x\H0\)d3x.
λ Ω

The first integral on the right hand side of (2.25) is the normal "Coulomb"
energy of the system of molecules. The equivalent pole distribution σ(jc)
may be written as a sum of contributions from individual molecules. This
integral then includes the magnetic self-energies of the molecules and the
usual molecule-molecule interaction terms. The magnetic self-energies
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of the molecules are finite because of condition (2.15), but they would
not be finite for point charges.

The second integral on the right side of (2.25) we regard as a surface
term. The justification for this is that H2^0 in the deep interior of Ω,
so that we can choose the constant in its potential X2(x) — x\H0\ in such
a way that this potential is ~ 0 in the deep interior of Ω. We can interpret
this surface term as giving the interaction of the charges, or magnetic
poles, on the molecules with their images on the other side of the wall.
Note that we may observe such forces experimentally when a permanent
magnet floats above a superconducting disc.

III. The Basic Lemma

The main reason for adopting the boundary conditions (2.13) in this
work is that they lead to the following lemma. Its physical interpretation
is that the free energy of two subsystems isolated from one another by
superconducting walls is decreased if the superconducting wall separating
them is removed.

Lemma 1. Let Ω' and Ω" be two non-overlapping regions with boundaries
which have continuous second derivatives and let Ω be another such region
containing both Ω' and Ω". If m'(x) and m"{x) are two magnetic moment
densities which vanish outside Ω' and Ω" respectively, with energies W
and W" inside Ω' and Ω" when a constant external field Ho is imposed at
the surface of Ω' and Ω", then the energy W of the magnetic moment
density m'(x) + m"(x) in the region Ω with a constant field Ho imposed at
its surface satisfies

W £ W + W" + ^ - (|Ω| - \Ω'\ - |Ω"|). (3.1)
oπ

To prove this lemma, we first convert the definition of W given in
Section II into a variational principle. Let ^ denote the class of vector
fields H(x) which (i) are continuous and differentiable everywhere except
possibly on a finite number of smooth surfaces and have normal com-
ponents which are continuous at these surfaces and (ii) satisfy (2.11) in Ω
and (2.13) on δΩ (but don't necessarily satisfy (2.10)). We show that

W{m(x\ Ω] = inf-!- f H2(x) d3x (3.2)

where the left hand side denotes the magnetostatic energy of the magnetic
moment distribution m(x) in the region Ω calculated from Eq. (2.9) and
the minimum on the right hand side is over the class <& of vector fields
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H(x). To prove (3.2) we define

δH(x) = H(x) - FIX,(x) + X2{x)~] (3.3)

where Xγ and X2 are defined in Section II. The boundary conditions (2.13)
on H and (2.18) on Xγ +X2 imply that

δHn = 0 on dΩ, (3.4)

while the conditions (2.16), V2X2 = 0 and (2.11) imply

V (δH) = 0 in Ω. (3.5)

Substituting from (3.3) into the integral to be minimized in (3.2), we obtain

j H2 d3x= J {(δH)2 + \V(X1 +X2)f +2δH V(X, +X2)} d3x . (3.6)
Ω Ω

The surfaces of discontinuity of H divide Ω into a finite number of
subregions within each of which δH is continuous. We apply Green's
theorem to the last term of the integrand on the right side of (3.6) separately
in each of these subregions of Ω. By using the conditions (3.4) and (3.5)
and the continuity of the normal component of H at the surface of
discontinuity, we find that the contribution of this term to the integral
is zero. Thus (3.6) implies that the integral in (3.2) attains its minimum
when δH = Q and so, by (3.3), equation (3.6) implies that the variational
principle in (3.2) is equivalent to the definitions of W and H given in
Section II.

Now we may complete the proof of Lemma 1. Let H' and H" be the
fields corresponding to the magnetic moment distributions m' and m"
in the regions Ω' and Ω". They may be calculated by the method of
Section II and they satisfy

V H\x) =-4πV m\x) for x e Ω',

H^ = HOn on dSΪ,

V - H"(x) =-4πV- m"{x) for JC e Ω" (3.7)
and

HΪ = HOn on 3Ω".

The field Hγ defined by

\H'{x) for xeΩ'

for xeΩ" (3.8)
[Ho for other x
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belongs to the class c€. Consequently, by (3.2),

U j [H>{x)fd*x+ f lH"(x)fd*x+ j
δ π lίί' ί3" Ω-Ω'-Ω"

So

W{m"(x),Ω"} + -^-{|β| - |Ω'| - |β"|} (3.9)
oπ

which is equivalent to (3.1) and the lemma is proved.

IV. The Thermodynamic Limit

The purpose of this section is to prove the existence of the thermo-
dynamic free energy per unit volume, defined to be — k T times

g{ρ,H0)= lim l Ω J - M o g Z ^ β ^ H o ) . (4.1)

Here Z(N, Ω, H) is the partition function for a system of N particles in a
region Ω with the Hamiltonian defined in Section II. We establish the
existence of the limit (4.1) for a particular sequence of regions Ωk (k = 1,2,...),
all the same shape, which is almost a cube. For all sequences of regions
Ωk which we consider, the corresponding sequences of numbers Nk satisfy

l im[N f c / |ΩJ]=ρ, (4.2)

where 0 ̂  ρ < ρc and ρc is the density of closest packing of the molecules.
We extend our existence proof to general sequences of regions Ωk in the
next section. It is possible to extend the proof to allow any finite number
of species of molecules, but we do not do this here.

In classical statistical mechanics, the partition function Z is defined by

Z = (N\hNd)-Ί-'ί^P(-β^)dq1dq2...dqNdp1dp2.,.dpN (4.3a)

where d denotes the number of degrees of freedom of a molecule and J^
is the Hamiltonian defined in (2.1). If N = 0, then we use the definition

Z = exp(j3#0

2|Ω|/8π). (4.3b)

To prove the existence of the limit (4.1) we use the method of Ruelle [1]
and Fisher [2]. We consider the quantities

ff*(N, Ω, Ho) = - i - logZ*(N, Ω, Ho) ( 4 4 )
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where
Z*(JV, Ω, Ho) = Z(JV, Ω, Ho) expQSHό2 |Ω|/8π) (4.5)

with Z defined in (4.3). We call the quantities 0*(N, Ω, Ho) the "modified
free energy". First we show that for any sequence of regions Ωk with an
associated sequence of numbers Nk satisfying (4.2), the sequence
0*(JV l5Ω l5Ho), g*(N2,Ω2,H0),... is bounded above.

To obtain this upper bound on g*9 we replace the non-electromagnetic
part of the potential energy by its lower bound

-Nu= -JV(tt(1) + M(2))

and replace the electromagnetic potential energy W by its lower bound 0.
The integrals in (4.3) may then be evaluated and we obtain

ZS(N\)-ίaNeβNu\Ω\N (4.6)

where aN is the result of integrating over all the momentum coordinates
q1, . . . ,##. Substituting this into (4.5) we find for a sequence of regions
Ωk and a sequence of numbers Nk,

g*(Nk9 Ωk, Ho) £ βH*βπ + (JVk/|Ωfe|) {βu + \og(e(\Ωk\/Nk) a)}. (4.7)

Now, by (4.2), for any ε > 0, for the sequence α of regions Ωk, there is a
number Mα(ε) such that

|N k / |Ω f c | -ρ |<e for /c^Mα(ε).

Using this inequality with ε = ρ/2 in (4.7) we find

^ j j (4.8)g(Nk,Ωk9H0)^ +

for k ^ Mα(ρ/2). Thus, for all ρ > 0, the sequence g*(Nk, Ωk, Ho) is bounded
above for all k greater than some finite number. The case ρ = 0 requires
separate consideration, which will be given later.

All we have to do now to prove the existence of the limit (4.1) for a
sequence of domains Ωk is to prove that the sequences g*{Nk, Ωk, Ho) is
nondecreasing. To do this we first prove the inequality

Z*(JV, Ω, Ho) ̂  Z*(N'> Ω>> Ho) Z*{N", Ω\ Ho) (4.9)

where N = N' + N" and Ω' and Ω" are two disjoint regions both con-
tained in a region Ω and separated by a distance greater than or equal
to JR0. The regions Ω\ Ω" and Ω all have surfaces with continuous second
derivatives.

The integral in (4.3) is decreased if we confine the region of integra-
tion to that part of phase space where Ω' contains N' molecules and Ω"
contains N" molecules so that the rest of Ω is empty. This restricted
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integral is N \/(N'! N"!) times the integral in which the first N' molecules
(labelled 1 JV') are in Ω' and the other N" molecules (labelled
N' + l, ...,iV) are in Ω".

Thus to prove (4.9) we must show

exp( - β^) exp(j8[|β| - |β ' | - |Ω"|] H0

2/8π) ̂  exp( - jS[Jf' + Jf"]) (4.10)

where Jf" is the Hamiltonian for those molecules in Ωf with the wall and
magnetostatic interactions appropriate to dΩ' as boundary and ffl"
similarly for Ω".

For the kinetic energy term in (4.10) we have

K = K' + K" (4.11)

so that we can ignore the kinetic energy in proving (4.10). For the two
body short range potential energy, the change in going from Jf to
Jf7' -f ffl" is to drop terms in ]Γ ί/ί>7 for which one molecule is in Ω' and the

other in Ω". Since the separation between Ω' and Ω" is greater than or
equal to JRO these interaction terms are negative by (2.7) and J f is increased
by their removal. For the one body potential, the condition (2.8) ensures
that the container Ω' + Ω" has a larger potential energy than the enclosing
container Ω. So for the whole short range potential energy we obtain

Uf+U"^U in all cases. (4.12)

Finally we treat the electromagnetic energy using the lemma of
Section III which shows that

W~ " έ " H ° ( | Ω | " |ΩΊ " |ΩΊ)" W + W"'
This completes the proof of (4.10) and thus of (4.9).

We now introduce the "standard sequences" Ωsk and Ns k (fc= 1,2,...)
to prove the existence of the limit (4.1). The sequences are

Ω, u = a cube with "smooth edges" of side 2kξ — Ro

Ns,k=*kv
where

ξ = (v/Q)113

and v is a positive integer chosen so that ξ > Ro. We define

Gk(ρ,H0) = g*(NS9k,ΩS9k,H0). (4.14)

We recall that in Sections II and III we proved results for regions with
surfaces which have continuous second derivatives. Unfortunately this
does not hold for cubes. In order to have a sequence of regions which do
have smooth enough surfaces, we construct "cubes with 'smooth edges'".

5 Commun math Phys., Vol 26
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L-2r

m Cross section
"of prism removed

Cross section
'of prism inserted

Fig. 1. A cross section of a cube with "smooth edges"

To construct a cube with "smooth edges" we take first an ordinary
cube of side, say, L. From each corner of this cube we remove a small
cube of side r where r <ζ L. From each edge of length L — 2r of the
remaining object we remove a prism of length L — 2r and square base
of side r. In place of the cubes removed from the corners we place objects
best described as made up of the points which form the solution set of the
inequalities

x ^ O , y ^ O , z ^ O and x 4 + y4 + z 4 ^ r 4

where x, y and z are rectangular coordinates. In place of the prisms
removed from the edges we place prisms of length L — 2r and cross section
those points making up the solution set of the inequalities

and

where x and y are rectangular coordinates. A sketch of a cross section of a
cube with smooth edges is shown in Fig. 1.

If we call the difference in volume between an ordinary cube of side L
and a cube with smooth edges of side L, VL, then we have

(4.15)

so that for small r, the volume of the smoothed cube is not very different
from that of the unsmoothed cube. It should be noted that the surface of a
cube with smooth edges indeed has a continuous second derivative.

From (4.9) it follows by a natural generalization that

(4.16)
ί = l
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8

where N = Σ Nι and Ω1,..., Ω8 are non-overlapping regions contained

in Ω. We take Ω = Ωsk + 1 of the sequence (4.13) and Ω 1,..., Ω8 to be eight
cubes with smooth edges and side 2kξ— Ro separated by corridors of
width Ro and tucked into the corners of Ω, where the parameter r
describing the smooth corners of Ω and all the Ωι is the same in all cases.
Then we have, since ρ < ρc,

i ϊo)^ X 8- f c-1logZ*(JV i,Ω i,H0) (4.17)

or if N = 8 k + x v, Nι = 8kv and Ω = ΩStk+1,

8" f c- 1 logZ*(iV, ΩSfk+19 Ho) £ 8"fc logZ*(iV/8, Ωsk, Ho) (4.18)

so that the sequence Gk(ρ,H0) is non-decreasing and, because of (4.18)
and (4.8) the limit (4.1) exists for the sequence of regions described in
(4.13).

Finally we consider the case ρ = 0. We extend the set of standard
sequences to include

Ωs k = a cube with smooth edges of side 2kξ — Ro
(4.19)

NStk=0

for which lim Ns k/\Ωs k\ = 0. By (4.3b) we have

Z(0, ΩsΛ, Ho) = exp(- βHZ\ΩsJβπ) (4.20)

so that
Z*(0,Ω S i J k ,H o )=l

and
G f c(0,H o)-0 for all k. (4.21)

Thus lim Gk(0, Ho) exists, so that the limit (4.1) exists for 0 ^ ρ < ρc.
k+oo

V. General Sequences of Regions

We follow the technique of Fisher [2] to prove that the free energy
defined by (4.1) exists for more general sequences of regions {Ωj} and is
the same as that for the standard sequence of regions defined in (4.13).
Firstly we prove that, for suitable sequences {Ωj}

lim mίg*(Np Ωj9 Ho) ^ G(ρ, ff0) (5.1)
where ^°°

o ) Ξ UmGk(ρ,H0) (5-2a)
h-+oo
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is the modified free energy density given by the standard sequence (4.13) and

g*{Nj9 Ωj9 Ho) = -T^T logZ*(N,., Ωj9 Ho) (5.2b)

for a sequence {NΛ such that lim NΛΩλ = ρ. Then we prove

lim supg*(Np Ωp Ho) g G(ρ, ff0) ( 5 3)

Taken together, (5.1) and (5.3) imply

\img*(Nj9Ωj9H0) = G{ρ9H0). (5.4)

To prove (5.1) we consider a maximal filling of the region Ωj by njk

regions Ωsk of the standard sequence (4.13), the cubes Ωsk being kept a
distance Ro apart in this process. The first condition we impose on the
sequence of regions {Ωj} is that the surfaces of all the regions have con-
tinuous second derivatives, otherwise we cannot define the Hamiltonian
as in Section II. We then apply the inequality (4.9) with the same density
ρ' in each cube. This gives

Z*{NJιk, Ωj, HO) ^ Π Z*(NsΛ, Ωs>t, Ho)
r= 1

where Njfk = NSiknjik. The corresponding inequality for the modified free
energy is then

g*(NJtk9 Ωj, Ho) £ Ih~§~ GM Ho) (^)

Thus we have

l i m inϊg*(Nj k, Ωj, H o ) ^ l i m inf J'k sΛ Gk(ρ, H o ) (5.6)

for all fc. Thus (5.1) will hold if

Hm^H = l. (5.7)
j-+co

To establish (5.3) we enclose Ωj in the smallest possible region of the
standard sequence (4.13), Ωsjc(j), which keeps the distance of Ωj from the
boundary of ΩsK{j) greater than or equal to Ro. We then construct a
maximal filling of the volume between Ωj and ΩsK{j) by mjk smaller
standard regions Ωs k with a spacing of at least Ro. The inequality (4.9)
applied to the subdivision oϊ Ωs K{j) gives

9*(Kκ> Ωs.κ> Ho) ^ T§\g*(NJ^ ΩP Ho) + ™ Λ * | H # * ( ^
 ΩsΛ> Ho)

I s,K\ I s,K\ ( l g )
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where N^κ = Njtk + mjtkNSik. Manipulating (5.8) we obtain

g*(NJtk,Ωj9H0)£ l ^ t -rnjtk^\g*{NiK9Ω8tK9Ho)

If we have the two conditions

lim lim \Qj\-1 {\Ω,J -mhk\ΩJ} = 1 (5.9a)
fc-> oo j - * o o

and there exists A such that

mjΛ- *'k ^A for all j and k, (5.9b)

then lim lim s'κ = ρ and by the continuity of G(ρ, Ho) in ρ which we

prove in the next section we have

lim s\xpg*{Njtk, Ωj, Ho) ̂  G(ρ, Ho).

We have proved (5.1) and (5.3) and thus (5.4) for all sequences of
regions satisfying (5.7) and (5.9 a), (5.9 b). A discussion of conditions on the
sequences of regions {Ωj} which yield (5.7) and (5.9 a), (5.9 b) may be
found in Fisher [2].

For systems with electromagnetic interactions, it is important to be
able to describe "shape-dependent" effects in the thermodynamic
behaviour. Unfortunately, it is not immediately clear what we mean by
the "shape" of an infinitely large region. To overcome this difficulty we
consider sequences of regions all of the same shape. As the first member
of the sequence we take a finite region ωί with a surface with continuous
second derivative and with a non-zero Peano-Jordan content [9]. We
construct the nth member of the sequence {ωj from ω1 by multiplying
every linear dimension of ω1 by n. We sketch this construction for ω 3

in Fig. 2. The volume of ωn is then

\ωn\ = n3\ωί\. (5.10)

The free energy of the sequence {ωj is then the free energy for a given
shape, namely that of ωv If the sequence {ωn} obeys (5.7) and (5.9a),
(5.9 b), then the free energy for the shape ω1 is equal to

-kT{G(ρ,H0)-βHtβπ}.

In addition the free energy does not depend upon the shape ωγ. We now
show that the condition that ωγ have a non-zero Peano-Jordan content
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Fig. 2. Sketch of construction of ω 3 from ωλ

is sufficient for (5.7), (5.9 a) and (5.9 b) to be satisfied and so for the modified
free energy of the sequence {ωn} to be G(ρ, fί0).

If we construct a maximal filling of ωq by cubes of volume 8fe ξ3, then we
are, at the same time, constructing a maximal filling of ω x by cubes of
volume $kξ3/q3 and so we can say nqk ^ q3 lωj/ίδ*^3). Now

(2kξ-R0)
3^ \ΩsJ^(2kξ-R0-2r)3. (5.11)

Thus

<Z3KI - \ωq\ = « 3 K | I 2kξ I
so that

Hg,fc8*£3/g3 ^̂  ng,fclQs,fc| ^ Hg,fc8*<*;3/g3 [ (Kp + 2 r ) } 3

II •= I I = = I I I 1^ P f ' \ /

Now nq>k^>kζ3/q3 is the volume of an approximation to the region α^ by
cubes of side 2kξ/q. Since ω x has a non-zero Peano-Jordan content,
nβik^

kζ3/(q3\co1\)-^l as (j-xx) if 2kξ/^-^0. But to prove (5.7) from (5.12)
we require 3R0/(2kξ)-±0 also. So if we take

fc = [(ilogβ-log£)/(lo g2)] (5.13)

where [x] is the largest integer smaller than x, then 2kξ~]/q. Thus (5.7)
holds as we take the limit q -» oo with k as in (5.13).

We prove (5.9 b) by

\ωq\ \ωq\ ~ q3\ω,\ \ωx\
 K ' }

which proves (5.9b) since both Ωsjc{l) and ω x have finite non-zero Peano-
Jordan content.

To prove (5.9a) we use (5.11) to write

(5.15)
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The two terms in the first bracket on the right hand side of (5.15) are the
volume of the best exterior approximation to ω1 by cubes of side 2kξ/q.
We take the limit q->co with k as in (5.13). Because ωx has a Peano-
Jordan content and because by (5.13) 2kξ/q-+0,

lim — {\Ω8tKiq)\ -mqΛ\ΩsJ} = 1.

Thus (5.9 a) is established, so it is sufficient, for the modified free energy
of the sequence {ωn} to exist and equal G(ρ, Ho\ that ωί have a finite
non-zero Peano-Jordan content.

It may be noted that it is possible to extend the definition (4.1) of the
free energy to include of regions {Ωj} which do not have a Peano-Jordan
content. However, it would be necessary either for there to be an alternative
definition of volume for the regions or for the volume of both the exterior
and interior approximations to the regions (that is the outer content
and the inner content) to differ from one another by an amount which
became negligible with respect to the inner content as j->co. This
extension would not be possible with the shaped sequences introduced
in this section as the ratio of the difference to the inner content would
remain constant in the sequence {con}.

The free energy (4.1) for the sequences of regions with shape introduced
in this section is shape independent because the regions obey (5.7), (5.9 a)
and (5.9 b). In particular, if the Hamiltonian j f introduced in Section II is
rotationally invariant, then for a given magnetic field Ho, the free energy
for a shape is independent of the orientation of the shape with respect to
the magnetic field. That is, the free energy depends only on the magnitude
of the magnetic field imposed at the boundary of the container. This is not
generally true for any Hamiltonian, since the effect of rotating the system
with respect to the magnetic field may be to change the Hamiltonian
for the system we are considering. If the Hamiltonian is changed then
we may reasonably expect the free energy of the system to change.

The physical reason for the shape independence of the free energy is
that the system can form magnetic domains. The domains will arrange
themselves so that the boundary conditions (2.13) are satisfied. The shape
independence of the free energy density then follows because the domains
all have the same free energy density, and the contribution to the free
energy density of the whole system from the boundaries between the
magnetic domains is negligible.

VI. Simple Properties of the Free Energy

We first establish that the modified free energy G(ρ, Ho) is a concave
function of ρ on 0 ^ ρ < ρc. We apply the inequality (4.9) to four regions
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Ωsk with density ρ' placed in the upper half of a region ΩStk+1, and four
regions with a density ρ" placed in the lower half oίΩs k+ί. The inequality
for the free energy implied by Eq. (4.18) is then

(6.1)

where ρ = ρ'/2 + ρ"/2. Letting fc-> oo in Eq. (6.1) we obtain

G(ρ'/2 + ρ"/2, Ho) ^ i

The modified free energy G(ρ, Ho) is thus concave on 0 <̂  ρ < ρc and the
free energy —kTg{ρ, Ho) of (4.1) is thus convex on 0 ̂  ρ < ρc. This means
that both functions are continuous in ρ on 0 < ρ < ρ c since by Eq. (4.8)
they are both bounded ([10], Theorem 111). We required this property
in the last section to establish the existence of the limit (4.1) for general
sequences of regions and its independence of the particular sequences
of regions used. From Eq. (6.2) we may deduce the more general con-
vexity property

where X pf = 1 [10].
ί

Next we show that the free energy density is convex in ί/0, the external
field applied at the boundary. That is we prove

gfao^igfaJ igiρ,^) (6.4)
where

2H0 = H^H2. (6.5)

We define x, y and z directions with x along the vector Hί — H2 and z
at right angles to H1 and H2 so that H1 and H2 are both in the x — y plane.
We consider a set of 2M cuboidal regions of dimensions Lx dx L with
edges smoothed in the same way as those of the standard sequence (4.13).
We lay them in a stack of size Lx (2Md + (2M -1) R0)x L with a
separation Ro between each region. We then enclose the stack of regions
in another region of dimensions (L + 6D) x (2M(d + Ro)) x L which
overlaps each end of the stack of regions by a distance 3D and is distant
Ro/2 from the x — z faces of the stack of regions. We illustrate this array
of regions in Fig. 3. We call the thin regions ΩLd and number them from 1
to 2M as in Fig. 3 and call the enclosing region ΩL. We choose the number
of regions in the stack so that

2M S L/{d + Ro) < 2(M + 1). (6.6)
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Fig. 3. Sketch of 2M regions ΩLd enclosed within the region ΩL

To prove the inequality (6.4) we bound the partition function Z(N, ΩL, Ho)
below by an integral over those parts of phase space in which the N
particles lie in the regions ΩLd with an equal density in each. We can
obtain an upper bound on the electromagnetic potential energy of this
restricted system from the minimization principle of Section III. In fact
we arrange that on the surfaces of the odd numbered regions ΩL d the
trial magnetic field H' should have a normal component equal to that of
H1 while on the surface of the even numbered regions the magnetic field
has a normal component equal to that of H2. Within the regions ΩL d

we allow H' to satisfy V x H' = 0. The field outside these regions is
defined below in Eq. (6.9). This enables the phase space integrations for
the bound on the partition function to be performed and we obtain

(6.7)

where W(H') is the potential energy of a field W in those parts of ΩL not
occupied by regions ΩLd. H' is a field belonging to the class %> and for
which

H'n = HOn on the surface of ΩL

H^ι = Hί n on the surfaces of the odd numbered regions ΩL d (6.8)
and

H'n = H2n on the surfaces of the even numbered regions ΩLd.

In Fig. 4 we illustrate the left hand end (cf. Fig. 3) of the regions ΩLd and
the adjacent part of the surface of ΩL.
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_ H _ * _ l - H - f l - l - _ H Ro/2

Fig. 4. Left-hand ends of regions QLd and adjacent part of boundary of ΩL showing values
of the magnetic field H'

For the field H' we choose HJ = 0 everywhere and the x and y com-
ponents as shown in Fig. 4 with the fields Ha, Hβ and Hy defined by

(6.9 α)

(6.9 J8): n0,x

•HQiy-(HUx-H0Jd/D

Note that each of the regions α, j8 and 7 has been given, for the purposes
of describing this field, its own set of x — y axes.

At the right hand end of the stack of regions we make the field W
change back to Ho in exactly the same way as we changed it to H1 or
H2 at the left hand end. Within the regions ΩLd of course, the field is
affected by the various configurations taken by the molecules within
the regions so that we can obtain the inequality (6.7). The field H' is thus
continuous and differentiable everywhere within ΩL except on a finite
number of surfaces. On these surfaces the normal component of H'
is continuous. The field H' obeys Eq. (2.11) within ΩL and Eq. (2.13) on
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the surface of ΩL. Thus W e Ή, and we may use it in Eq. (6.7). An exact
calculation gives

W(H') = MdLD/(4π) j(H1>x - H0J
2 (1+*£*- +jf^j (6.10)

- 2H0>y • (HUx - Ho>,) (——J + Hi + Hi - 2H 0

2 | + W(H0).

Substituting this result in (6.7) and taking the logarithm of both sides, we
obtain

g(Q, ΩL, Ho) ̂  MJ°LJ {g{Q\ ΩUd, H,) + g(ρ', ΩL,d, H2)}

β
\ΩL\ 4π

Id
(6.11)

-itiOy (Mlx-MOfX)\—-—] +n1 +n2 -.

where

(6.12 a)
2M|ΩL ) d |

and

g(ρ, Ω, Ho) = ^ logZ(N, Ω, H o ) . (6.12b)

We now take d = L1/3 so that M ~ L2 / 3 and let L-* oo. We then obtain

a^Li/a^O + i l i m supgf(^^L f Li/35H2). (6.13)

Unfortunately the sequence of cuboidal regions of size L x L1 / 3 x L do
not obey (5.9b) as L-+co so (6.13) does not immediately give the result
(6.4). But this sequence of regions does obey condition (5.7) so that
Eq. (5.1) holds. This means that we may deduce

lim infflf(ρ', ΩL f Li/ 3, Ho) ̂  g(ρ, H o ) . (6.14)
L->oo

If we now put Hί=H2 = Ho in Eq. (6.13) we obtain

lim sup0(ρ', ΩL L l / 3 , Ho) ̂  #(ρ, H o ) . (6.15)
L->oo

From (6.14) and (6.15) we deduce

lim sup0(ρ', ΩLfLi/3, Ho) = gr(ρ, H 0 ) . (6.16)
L—> oo
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Substituting (6.16) into (6.13) we obtain

g(ρ9 HJ2 + H2/2) ^ $g(ρ9 H,) + %g{ρ9 H2), (6.17)

the result we wanted to establish.

We have shown that the free energy exists and that

/(ρ, Ho) = -kTg{ρ, Ho) = - fcΓ(G(ρ, Ho) - βH$/Sπ) (6.18)

and thus that the free energy /(ρ, Ho) is a convex function of ρ on 0 ^ ρ < ρc

and of Ho. From these properties we can deduce the following properties
of/(ρ,H 0 ).

a) Continuity. f(ρ,H0) is continuous in ρ on 0 < ρ < ρ c and in HOtX9

HOy and Ho z.

b) Differentiability. The right and left hand derivatives

0) f(ρ±δ,H0)-f(ρ,H0)
i i m

= lim

o

f(ρ,H0±εΐ)-f(ρ9H0)
dHOtX ε-o ε

±

0 ) f(ρ9H0±εj)-f{ρ,H0)

= i i md i i 0 fco ε
and

d±fH0) f{ρ9H0±εk)-f(ρ9H0)
i i m

where j , j and k are unit vectors along arbitrarily chosen x, y and z axes
exist everywhere on 0 < ρ < ρ c and for all Ho ([10], Theorem 111). A
longer discussion of the properties to be deduced from the convexity
of the free energy as a function of ρ may be found in Fisher [2]. The
corresponding consequence of its convexity as a function of Ho is that
each component of the magnetization of the system exists for almost
all Ho.

VII. Electric Forces and Fields

We note that except in giving a physical interpretation to our
boundary conditions, we have not used, at any stage, the specific fact
that we are dealing with magnetic dipoles in magnetic fields. Thus the
whole of the mathematical treatment would equally well apply to a
mixture of electric charges and dipoles in an electric field constant on the
boundary. An unfortunate feature of the boundary conditions (2.13)
however is that by Gauss's theorem they insist that the total charge on
the whole system be zero. This is unfortunate for we would like to be



Classical Coulomb Systems 77

able to prove the existence of the free energy for the case of a small
imbalance in the net charge of the system, as did Lieb and Lebowitz
for the case of zero applied field.

In constructing the existence proof for the free energy of a system
with electrical forces it is clearer to carry through all of the analysis
of Section II using the equivalent charge distributions rather than the
dipole moment distribution as the charge distribution is simpler to
interpret physically.
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