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Abstract. In one time and arbitrarily many space dimensions we obtain necessary and
sufficient conditions for the existence of a local operator solution of the equation dvω = Wv,
Here the given local fields Wv satisfy dμ Wv — dv Wμ = 0 and the spectrum of the two point
function (Ω, Wμ(x) Wv(y)Ω) is assumed to have a mass gap.

For the mathematical treatment of local field theoretic models in-
volving pseudovector or vector fields the curl of which vanishes1 it is
important to know whether these fields are gradients of local, pseudo-
scalar or scalar primitive fields respectively and whether the primitive
fields are relatively local to the rest of the underlying fields of the model.
For the pseudoscalar current: ψγ5yμψ: where ψ denotes a free massive
Dirac field in one time and one space dimension the primitive field can
be expressed in terms of creation and annihilation operators and the
questions just raised can be decided by rather tedious computations [1].
This particular primitive field plays an important role in the solution of
the Federbush model [2,1]. In models that are only partially solvable
e.g. for the derivative coupling of a massless, neutral, pseudoscalar
particle to a charged spinor field [3] general citeria are needed. We
therefore pose the following problem: Let a local Wightman theory in
1 time and n space dimensions be given: {J^'9U(a9Λ);φa(x)9Wμ(x)
oί = 1,..., / μ = 0,1,...,«} [4]. Let the linear domain of definition D
common to the operators

ΦM>Φϊ(φ)CφΛ(φ)*>Wμ(f) where φ,/6^(Λ1+"),

invariant under the application of these field operators and U(a, A) and
containing the unique vacuum state Ω be just the set Dί of quasilocal
states (i.e. those states which can be obtained by smearing monomials
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1 In one time and one space dimension these are exactly the local models with con-
served vector or pseudovector currents.
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in the fields with test functions from y, forming linear combinations
and applying the resulting "quasilocaΓ operators to Ω). Let us assume
that there exists a mass m0 > 0 such that states with mass smaller than
m0 do not contribute to the two-point function

(Ω9Wμ(x)Wv(y)Ω) (0.1)

of the local, hermitian pseudo vector fields Wμ(x).2 Let the curl of Wμ(x)
vanish

dμWv(x)-dvWμ(x) = Q. (0.2)

What can we conclude in this general framework about the existence of
a primitive pseudoscalar field ω(x) with Wμ(x) — 3μω(x), its locality and
its relative locality?

Before we formulate the answer to this question in a theorem we
would like to point out a fundamental difference between the cases n = 1
and n > 1. For n — 1 the vanishing of the curl of the local pseudovector
field Wv(x) implies the existence of a local, conserved vector current
Vμ(x) defined by

(x) (0.3)
— i υ/

which in general implies the existence of a non-trivial conserved charge
<2 [5]. The charge operator Q can be expressed by a line integral involving
Wμ. In contrast, for π>l , the analogous construction never leads to a
genuine conserved charge.

The second part of this statement requires a proof: Let e be an
arbitrary space-like vector of Minkowski length — 1 : e2 = — 1. Let f(x)
be a test function in <9^(Ri+n) arbitrary apart from the condition
j dxf(x) = 1. Let the symbol B stand for an arbitrary quasilocal operator.
We define the operator <2ί °n the dense set D1 of quasilocal states BΩ by

Q{BΩ= J d s e μ [ $ d x f ( x ) W μ ( x - s e l B ~ ] Ω , Q{Ω = 0. (0.4)

In order to prove that Q{ actually defines an operator, it is sufficient to
show that the integral in (0.4) converges strongly in the Hubert space
ffl and that Q{BΩ = 0 whenever BΩ = 0 (the consistency requirement).

2 It is for the sake of simplicity that we restrict ourselves to hermitian pseudovector
fields: hermitian vector fields can be treated similarly, non-hermitian fields are decomposed
into their hermitian parts.
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We start by showing the strong convergence.

ψf(s) = eμ{_\ dx f(x) Wμ(x - se\ H] Ω (0.5)

is for all β, / and s a vector in ffl . We form the scalar product

), Ψe

f(ή) (0.6)

which is easily shown to be a function simultaneously continuous in s
and ί. Hence the norm squared

(Ψί(s)9Ψe

f(s))=\\ψ£(s)\\2 (0.7)

depends continuously on s. Due to the quasilocal character of £, || ψ£(s)\\2

decreases rapidly of s|-»oo. The continuity and decrease guarantee the
strong convergence. Thus Q{BΩ defines a vector in 3? which we will
show is always the null vector, and thus a separate demonstration of the
consistency requirement is superfluous.

First, we shall prove that Q{BΩ does not depend on / provided
fe^(Rί+n) and J d x f ( x ) = 1. To this end, let fγ and /2 be test functions
in y(R1+n) subject to the condition fdx/^x) = 1 = $ d x f 2 ( x ) and
arbitrary otherwise. Let e be an arbitrary space-like vector with e2 = — 1.
Finally, let B and B' be any two quasilocal operators. We claim that

+ 00

J dseμtfdxg(x}Wμ(x-selB~]Ω = Q (0.8)

for g(x) = /t (x) - /2 (x) e ̂ (tf1 +"), j dx g(x) = 0.
Indeed it suffices to show that

+ 00

J dseμF9

μ(se) = Q (0.9)
— GO

where F%(y) is defined by

F*(y) = j dx φ(x + 3;) (β'Ω, [W;(x

for an arbitrary test function φ E ^(Rl +n). For e2 - - 1, F^(se) e
as a function of s. Because g e ^(R1 +n) and j dx g(x) = Q,g can be repre-
sented in the following form

= Σ δvΛ
v(x), ftv(x)6^(K1+") v = 0 , l , . . . ,n (0.11)

v = 0
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and we may conclude (summation convention !)

+ 00 +S

j ds eμF9

μ(se) = lim J ds eμF9

μ(se)
— S

+ S

= -lim j ds eμ(BΏ, [J dx hv(x + se) dvWμ(x)9 B]Ω)
S-*oo _ s

(Ό 1V '- - lim j ds(BΏ9 [f
S->GO _s

+s d
_,.,

—
(is

= lim {FΓ(Se) - Ff(- Se)} = 0 .
S-+00

Next, let / be an arbitrary test function from ^(R1+n) subject to the
condition Jdx/(x) = l. For n>!9 to every space-like vector e with
e2 = — 1, there exists an orthogonal vector eL with (e1-)2 = — 1 :

e>eλ = Q. (0.13)

fσ(x) = f(x — σeL) is a test function in <$f(R1 + n} concentrated around
the point σe± which satisfies the condition j dxfσ(x) = 1. We consider the
expression

(FΩ, β{σ^Ω) - f ds eμ(BΏ, [J ^x /(x + ̂  - σβ1) Wμ(x), B] Ω) (0.14)
— CX)

which was just shown to be independent of σ. It follows from the quasi-
locality of B and the orthogonality of e and e1- that

eμ(BΏ9 [J dx f(x + se- σeL) Wμ(x)9 K] Ω) E ̂ (R2) (0.15)

as a function of s and σ. This implies that

+ 00

} dse*(BΏ,[$dxf(x-σe* )Wμ(x-se),B]Ω)e&(R1) (0.16)
— oo

as a function of σ. In view of its σ-independence we conclude

(BΏ, Q{£Ω) - (BΏ, β{σBΩ) - 0 . (0.17)

Since the quasilocal states form a dense set in 3tf we obtain Q{BΩ = 0
for all quasilocal operators B i.e.,

β{ = 0 q.e.d.3

3 An alternative proof of Q{ = 0 for n > 1 consists of showing that in this case Q{ does
not depend on e as long as e2 = — 1. From this it follows, in particular, that Q{ — QLe
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We introduce the following notations: Let {a, A} be an element of
the orthochronous Poincare group & τ . We set {α, A } f(x) = f(Λ ~ 1 (x — a)).

Let the energy-momentum spectrum of the theory {^\Ό(a,Λ}\
φa(x\ Wμ(x) α = 1, . .., I μ = 0, 1, . .., n} have a partial particle structure
i.e. apart from the point 0 associated solely with the vacuum state let the
spectrum of the mass operator of the theory contain further isolated
points corresponding to particles. Then, by D™ we denote the set of
"non-overlapping asymptotic states" [6, 7].

The previously indicated difference between the cases n = 1 and
n>l enters into the formulation of the following theorem valid in our
general framework.

Theorem. For n > 1 there exists a field ω(x) with the following prop-
erties :

(a) After smearing with an arbitrary test function f in ^(R1 +n\ ω(f)
is defined on D^ and maps D1 into Dv if Φ, Ψ e D l 5 then (Φ, ω(f)Ψ) is a
tempered distribution regarded as a functional of f.

(b) ω(x) is hermitian i.e. ω(/)* — co(f) on D1

(c) ω(x) is pseudoscalar i.e. for all {α, A} e &\

[7(α, A) ω(f) U(a, A)^ = ω({α, A} f) on D^

where In denotes the reflection on the hyperplane xn = 0;
(d) ω(x) is local;
(e) ω(x) is relatively local with respect to the fields φΛ9 </>| α, β = 1, . . . , / ;
(f) ω(x) is a primitive field for the pseudovector field Wμ(x) i.e.

(dμω)(f)=Wμ(f)onD1.

For n — \ the analogous statements are true if and only if Q = 0. For
n — 1, Q Φ 0 the analogue of the statements (a)— (d), (f) and (e) replaced by

- ̂ (x1 - y1) [β, φM(y) ] for (x - y)2 <0

hold true if and only if [g, Wμ(xJ] = 0.
// in addition (Ω, ω(x)Ω) — 0 is required then the field ω(x) is unique.

Remark. If the energy-momentum spectrum of the theory {ffl\ U(a,Λ);
φα(x), Wμ(x)oί = 1, . . . , / μ = 0, 1, . . . , n} has a partial particle structure we
may replace Dί in the statements of the theorem by Dί where D^ is the set
of all states which can be obtained by smearing an arbitrary monomial
in the fields φΛ9 φ| and ω with testfunctions from <?, applying it after
extension by continuity to vectors in DQX an<3 forming the linear span of
the resulting states and the states in D1 . Dί is invariant under the applica-
tion of the (extended) fields φΛ, </>|, Wμ, ω and under the application of
C7(a, Λ) and Q.

We shall give a constructive proof.
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a) Construction of the Field ω(jc)

Let e be an arbitrary space-like vector of Minkowski-length
— 1 : e2 = — 1. We define fields ωe(x) on quasilocal states BΩ as follows,

ωe(f}BΩ=~ f dsφ)eμtfdxf(x)Wμ(x-se\B^Ω
2 _0 0 (a.ij

+ B$dx'{$dxf(x)D(x-x')}dfμWμ(x')Ω for fe^(R1+n)

where D is the time symmetric Green's function of the wave equation
and φ) denotes the antisymmetric step function. It follows from the
argument beginning with Eq. (0.5) that the first term of the r.h.s. defines
a vector in Jf. In order that Eq. (a.1) actually defines an operator it
suffices to show that J dx' '{J dxf(x) D(x — x')} d'μWμ(x')Ω is contained in
D1 and that ωe(f)BΩ = ΰ whenever BΩ = ΰ. From the definition of D
it follows that

—
D(x-x'}} (k) = -Pr , (a.2)

where P denotes the principal value. Let g(k2) be a real C00 -function with
\g(k2)\ ^ 1 and

2 f l for k2>\ml
9(k)~(Q for k2<±ml'

We define /(x') by

/V) - ^Γ1 {θ(k2} 3F, {\ dxf(x) D(x - y}} (k)} (x'} . (a.3)

f(x') is contained in ̂ (R1 +n}. Because of our assumption on the spectrum
of the two-point function (Ω, Wμ(x) Wv(y)Ω) we may conclude

f dx'{J dx/(x) D(x - x'}} dfμWμ(x')Ω

= J dx'f(x') d'μWμ(x')Ω = CfΩ

where Cf = \dxf(x'} d'μWμ(x'} is a quasilocal operator itself with
C7* = CJ on £>!. Hence, CJί2 e Dx and ωe(f)BΩ defines a vector in Jf.
We note the following relations

(Ω, BCfΩ) = ~ j° ds ε(s) eμ(Ω, B j dxf(x) Wμ(x - se)Ω) , (a.5)
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(Ω9B$dxf(x)eμWμ(x-se)Ω) is contained in ^(R1) as a function of s.
For a proof we apply the argument of Ref. [8] for a strong decrease of the
truncated Wightman functions for large space-like separation of the
arguments in theories with a mass gap. The assumption we made on the
two point function (£2, Wμ(x) Wv(y)Ω) is already sufficient for our pur-
poses. Thus the r.h.s. of (a.5) makes sense. Using the mass gap assumption
once more we find

eμ(Ω, B J dxf(x) Wμ(x - se)Ω)

= -(Ω,B$dxe»{dvf(x)}dvWμ(x-se)Ω)

= (β, B J dx{e»dμVf(x + se)} Wv(x)Ω) (a'6^

= -£- (Q, B J dx{d*f(x)} Wv(x - se)Ω) .

Inserting this identity into the integral on the r.h.s. of (a.5) we obtain the
desired equality sign

ί d x { d v f ( x ) } Wv(x)Ω) (a.7)

Relation (a.5') is proved analogously.
Next, we shall show that the consistency requirement is satisfied i.e.

BΩ = 0 implies ωe(f)BΩ = 0. Since ωe(f)BΩ defines a vector in 2tf and
since the set of quasilocal states is dense in 3f it is sufficient to prove that
for all quasilocal operators B'

= Q if BΩ = 0

Using (a.5) and (a. 5') this follows immediately from

(BΏ,ωe(f)BΩ) =
-oo V W

4- (B'CΓΩ9 BΩ) = (ωe(f)B'Ω, BΩ) .

Hence coe(f) defines an operator which by the last equation satisfies
ωe(/)* = ωβ(/)onD1.

We claim that ωe(f) maps D± into Dt.
4 For a proof it is sufficient to

show that
\ j ds ε(s) I dxf(x) &»]¥„(* - se), B] (a.9)

4 The author is indebted to Prof. H. Araki who pointed out to him that by proving
this claim the original theorem which involved extension by continuity could be sharpened
and the proof considerably simplified.
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is a quasilocal operator. Since B is a linear combination of smeared
monomials in the field operators we may assume without loss of generality
that B has the following form

ί Π d1+ny(r}

where Ar stands for one of the fields φΛ9 </>|, Wv and where φ e ̂ (Km(1 +n)).
Let χ(t) and χ(ί) be two real, infinitely differentiable functions with

|χ(ί)| = 1, χ(ί) = 0 for |ί| > 2, χ(ί) = 1 for |ί| < 1 and \χ(t)\ £ 1, χ(ί) - 1 for
t < — 2, χ(ί) = 0 for ί > — 1. We introduce two sequences of continuous
mappings !? -*tf by

-j +00

=lι
7 ~"~ -*•

f(x +

and

Expression (a.9) rewritten in this notation becomes

Invoking locality we find

[e* W"), B] = ̂  f dx J
r = l

r = l

r = l

(a.ll)

— ΓΊ Ύ((Y — V }2} > PμW (Vϊ Γί A (V }11 Λ V V ^ y(r)J )\\ e Vyμ\X) 11 ^rV/ίr)/

r=l JJ r = l
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We observe that for any natural number L

forms a null-sequence in £e(R(1+m)(ί+n)) i f / and φ are test functions in
1+n) and ̂ (Rm(1+n}) respectively. Hence

converges to a test function ψ(x,y(1), ...,y(m)) in <f(R(ί+nW + n)) as J
tends to infinity. This implies that expression (a.9) may be written as a
difference of two quasilocal operators

m m

J dx J f] d^vfo^DJ..., y(m)) eμ Wμ (x) ["] Arty(r))
r = l r = l

m m

r = 1 r = 1

which is the result we set out to prove.
Regard the matrix element (Φ, ωe(f)Ψ) as a functional o f / where

Φ, ίP e D!. As a weak limit (in &") of tempered distributions:

(Φ, ω e ( f ) Ψ) = lim (Φ, ω,(/(J)) y), (a. 13)
J-+QO

it defines a tempered distribution itself according to a well-known
theorem [9]. It follows from the nuclear theorem [9] that the vacuum
expectation values involving an arbitrary combination of the fields
ωe> 0α> Φβ an<3 Wμ define tempered distributions.

The proof of statement (a) of the theorem will be accomplished after
showing that ωe(x) actually is independent of e i.e. that all fields ωe(x)
with e2 = — 1 define one and the same operator-valued distribution ω(x).

To prove this point we propose to establish the following identity
for all quasilocal operators B and B' entering into the definition of F

y 7 ds ε(s) e*Fί(se) = \ +f ds ̂  #(**(»)) (a 14)
^ -oo ^ -oo

where e is an arbitrary space-like vector with e2 = — 1, / is an arbitrary
test function in <$f(R1+n) and where e(n) denotes the unit vector in the

6 Commun. math Phys, Vol 25
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direction of the positive nth coordinate axis. The identity (a. 14) can be
derived by using the following properties of F£ :

(1) F*(y) is continuously differentiable and curl F£(y) = 0.
(2) In the topology of £f(Rl)sNFjL(se) is uniformly bounded in the

interior of {e \ e2 < 0}. This is true for any natural number N.

b) ω(jc) is a Hermitian Field cf. Eq. (a.8)

c) ω(jc) is a Pseudoscalar Field

The proof is elementary. It uses the fact that ωe(x) does not depend
on e as long as e is space-like with e2 = — 1.

d) Locality of ω(x)

Let B and B' be two arbitrary quasilocal operators and let / and g
be any two test functions in £f(Rl + n\ the supports of which are space-
like separated. One must control the convergences in the following
manipulations. Setting eμ j d x f ( x ) Wμ(x - se) = eW*f(se\

i Jj* ds dt ε(s) ε(t) ([_eW*f(se\ F]Ω, [eW*g(te\ B] Ω)

+ H ds ε(s) ([eW*f(se), B']Ω, BC9Ω)

+ ̂ dt ε(t) (B'CfΩ, [eW*g(te\ E]Ω)

i f j ds dt ε(s} ε(t) {(Ω, B'*eW*f(se) eW*g(te)BΩ)

-(Ω,B'*BΩ)(Ω,eW*f(se)eW*g(te)Ω)} (d.l)

-h •••

+ •••

4- •••

-h i j ds ε(s) {(Ω, B'*eW*f(se)BC9Ω)

+ (Ω,Cf*B'*eW*g(se)BΩ}}

In passing to the last line relations (a.5) and (a.5r) have been used and we
have taken into account the fact that the curled brackets as functions of
their arguments are absolutely integrable [8]. Consequently, the order
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of integration is arbitrary and we obtain

= $lldsdtε(s)ε(t){(Ω9B'*leW*f(se)9eW*g(tey]BΩ)

-(Ω9B'*BΩ)(Ω9[eW*f(se)9eW*g(te]]Ω)}

Now, to any pair /, g with space-like separated support there exists a
decomposition converging in the topology of y

ΣΣfi(*)Φ) with ft-g
i = l j = l

for z,7 = l ,2 5 . . .

and space-like vectors ey with (e0 )
2 = - 1 1,7 = 1, 2, ... such that for all

x e supp/f, j; e supp^ and all λ e [0, oo[

(x-j,-Ae0.)
2<0.

Hence for n > 1

Σ Σ ί^ ί
i = l j=l 0 -oo

(Ω, F*BΩ) (Ω, [
oo oo 0

(β,F*BΩ)Σ Σ ί dt(Cf>Ω,elJW*gj(teij)Ω)
ί = l j=l -T

(l) (d.4)

(Ω,B'*BΩ)Σ Σ ί dt]
i = l j=l -Γ 0

as Γ"1 tends to zero, whence we infer

(ω(/) β'β, ω(fif)ββ) - [/«flf] - 0 . (d.5)
This implies

[ω(/), ω(0)] Φ = 0 for Φe^. (d.6)

For n = 1 we may conclude the validity of Eq. (d.6) under the assumption

[Q,Wμ(x) ]=Q. (d.7)

From an argument analogous to the one given in Section a), Q is known
to map Dΐ into Dΐ .
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e) Relative Locality of ω(:c)

Let Ar(x) be φr(x) for 1 ̂  r g/, φ*_,(x) for / + l ^ r ^ 2 l and
P^._2/-iW for 2/ + 1 !gr :g2/ + n + l . Using the notation of the pre-
ceding section we obtain

(ω(/)BΏ, 4Γfo)*β) - (Ar(g)* BΏ, ω(f)BΩ)
00 00 1 + 0 0

= Σ Σ T ί

f) ω(x) is a Primitive Field

Let / be an arbitrary test function in ^(Rί + n) and B an arbitrary
quasilocal operator

J d x f ( x ) dμω(x)BΩ = [J d x f ( x ) Wμ(x),.

= $ d x f ( x ) W μ ( x ) B Ω ,

i.e. -ω(dμf)=Wμ(f) on/V

Uniqueness of the Operator Solution

The uniqueness of the local primitive field ω(x) (on Dx) required to be
relatively local or to satisfy the commutation relation (e.l) follows from
Schur's lemma and the normalization (Ω, ω(x)Ω) = 0.

If the energy-momentum spectrum of the theory {ffl\ U(a, A}\ φΛ(x\
Wμ (x) α = 1,..., / μ = 0,1,..., n} has a partial particle structure, it
suffices to carry over Hepp's argument [6] to the present problem in
order to prove the remark following the statement of the theorem. In the
case of one time and one space dimension we observe that the operator-
valued fields [β, φΛ(x}]9 [β, φβ(xj] are local and relatively local with
respect to φy(x), [β, </>γ(x)], φ*(χ), [β, </>,*(*)], Wμ(x) α, ...,δ = l , . . . ,/ ,
μ = 0,1, whence it follows that after Hepp's extension the charge operator
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has again the property

QD.CD,.

Up to now the theorem is proved for n > 1. For n = 1 the conditions
"8 = 0" and "[β, W^(x)] = 0" have been shown to be sufficient. We now
prove the necessity of the conditions 1) "6 = 0", 2) "[Q,Wμ(x}] = Q".

The charge operator Q is defined by [5]

•f oo

QBΩ=

where /e ^(#2) and Jdx/(x) - 1.
1. Let ω(x) satisfy W^μ(x) = dμω(x) and be local and relatively local to

φΛ(x) and 0| (x) α, β = 1, 2, . . . , / . We conclude

QBΩ= - J
— oo

-oo OS

2. Let ω(x) satisfy Wμ(x) = dμω(x) and be local. We conclude

+ 00 J

[Q, Wμ(g)~\BΩ = I ds—[fdx/(x +
- oo ^5

-0.

Thus, in addition to the sufficiency, the necessity of the conditions is
also proved.

In conclusion we give two examples in one time and one space
dimension.

1. Let ψ(x) be a free Dirac field with mass m > 0, y5 = y°-y1.
Wμ(x) = :t/?(x) y5yμψ(x)' is a hermitian, local pseudovector field, relatively
local with respect to ψ(x) and ψ(x).

The charge operator Q corresponding to the conserved current Vμ(x)
defined by Eq. (0.3) is non-trivial. However, Q commutes with Wμ(x).
It follows from our theorem that for Wμ(x) there exists a local primitive
field which however cannot be relatively local to ιp(x) and ψ(x).

2. Let ψa(x) and ιpb(x) be two free independent Dirac fields with equal
mass m > 0.

Wμ(x) = :ψa(x) y5yμιp
a(x):® i& + dμ{ya(x) y5®ιpb(x) - ιpa(x) y5T®ίpb(x)}
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is a hermitian local pseudovector field, relatively local with respect to

and :v

The charge operator corresponding to the conserved currents
Vμ(x) (cf. Eq. (0.3)) is non-trivial and does not commute with Wμ(x).
According to our theorem, for Wμ(x) there does not exist a local primitive
field.
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