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Abstract. A new C*-algebra, si, for canonical commutation relations, both in the case
of finite and infinite number of degrees of freedom, is defined. It has the property that to
each, not necessarily continuous, representation of CCR there corresponds a representa-
tion of si. The definition of s$ is based on the existence and uniqueness of the factor
type IIj representation. Some continuity properties of separable factor representations
are proved.

1. Introduction

In this paper we define and investigate a C*-algebra for representa-
tions of canonical commutation relations (CCR). It will be natural for
our considerations to start with a general abelian group 01 and a bi-
character b on 01 and then define a representation of CCR over {M, b)
as a mapping, say W, from 0t to unitary operators on a Hubert space
such that

W(x)W(y) = b(x,y)W(x + y). (1.1)

The only condition we impose on b is that it be non-degenerate in a sense
given later.

In applications of CCR for the description of quantum systems with
infinitely many degrees of freedom one has additional structure, and only
representations satisfying certain conditions are of interest. For instance
for Bose systems, & is in fact a vector space, the bicharacter b is defined
by a bilinear form and W has to be continuous on rays, i.e. for each
x e i the one parameter groups λ\->W(λx) have to be (weakly) con-
tinuous. In statistical mechanics the representations are locally normal
with respect to the Fock representations.

For representations continuous on rays, a pertinent C*-algebra was
defined by Segal [11], and the C*-algebras of statistical mechanics are
decribed in [10]. Our algebra is the minimal one. It is contained in every
C*-algebra containing unitary operators satisfying (1.1) and is defined
only by (β, b). The results are completely analogous to those for canoni-
cal anticommutation relations [12, 13]. From our point of view this is
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a consequence of the fact that CAR can be also put in the form (1.1)
(cf. Section 3.10).

The definition of the C*-algebra for the representations continuous
on rays rests on the Stone-von Neumann uniqueness theorem for finitely
many degrees of freedom; in statistical mechanics it is based on the
uniqueness of representations with the number operator. The existence
and properties of the minimal C*-algebra, on the other hand, follow
from the uniqueness of the representation generating a finite von Neu-
mann algebra.

In general representations of CCR need not have any continuity
property. For instance, for the factor type 1^ representation the weak
topology of the algebra of operators gives exactly the discrete topology
on 01. But in the case where 01 is a vector space, with b given by a bilinear
form on St^ the factor representations in separable Hubert spaces are
not far from continuous. Namely, we prove that if W is such a represen-
tation then there exists a character ξ of 01 such that the representation

χ\->ξ{x)W(x)

is continuous on rays. If Sf is a subspace of 0ί equipped with a topology
making it a Baire topological vector space (or, more general, a Baire
topological group) and such that for each y e 01, x \->b(y, x) is continuous
on <Sf then we have a stronger continuity property: for each /, g e 2tfw,
\(f I W(x) g)\ is continuous on Sf. This is, for instance, enough to conclude
that subsets of Sf and their closures generate the same von Neumann
algebras.

Whenever, in Sections 2.5-2.7, we speak about representations of
CCR over finite-dimensional vector spaces, the proofs given are valid for
representations of CCR over arbitrary locally compact abelian groups,
satisfying the second axiom of countability. In particular Theorem 2.7
gives a description of all separable factor representations of the C*-
algebra of CCR in this case.

Apart from Theorem 2.7, where we speak about representations of
C*-algebra defined in Section 3, Sections 2 and 3 are independent. The
continuity properties of the separable factor representations are dis-
cussed in Section 2 whereas Section 3 centers around the factor type 1^
representation and the definition of the C*-algebra for CCR. In Sections
3.1-3.4 we prove the uniqueness and existence of the factor type 1^
representation and show that the tensor product of any representation
of CCR over (β, b) with a suitable representation of the abelian group 0ί
gives the factor type Π^ representation. Then, in Sections 3.5 and 3.6, we
prove that the C* -algebra generated by any representation of CCR over
ψl, b) and that generated by the factor type IIj representation are iso-
morphic. This allows us to give in Section 3.7 the definition of the
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C*-algebra for CCR and to prove such properties as universality and
simplicity. In Sections 3.8 and 3.9 we study the effect of homomorphism
and that of taking direct products. The last section is devoted to a
reformulation of CAR as CCR.

Note added in proof: When this work was reported in Marseille the paper [16] was
pointed out to the author, where topics similar to some of Section 3 are considered. From
Theorem 3.7 above the C*-algebras of [16] and that defined here can be easily seen to be
isomorphic. The set-up, theorems and treatment of [16] and the present paper are rather
different.

1.1. Notation and some Formulas. In applications, one often starts
with two linear spaces, say &φ and θπ, and a non-degenerate bilinear
form <, > on &φx9π and calls a representation of CCR in the Hubert
space Jf a pair U, V of mapping from 9φ and θπ, respectively, to the set
of unitary operators on ffl such that, for all x', y' e Qφ and x", y" e θπ,

U(x') U(y') = U(xf + / ) , V{x") V{y")= V{x" + /')

U(x') V{x") = ei<x'>x"> V(x") U{xr).

To put this into the form (LI) one can define 91 \ = &φ@9π and W(x)
:= V{x") U(x) for x = (x',x"). Then (1.1) is satisfied with

b(x,y) = ei<y''x"> for x = (x',x"), y = {y\y").

Let G be an abelian, locally compact group satisfying the second
axiom of countability and let G be the dual group. A representation of
CCR over G is given by a pair U and V of representations of G and G
respectively such that

U(x) V{x") = <*',x") V{x") U{x'), x'eG, x'ΈG;

here <x', x"} denotes the value of the character x" e G on x' e G. Defining
91 ̂  W as in the case of vector spaces we get

Hx,y) = <y',x") for x = (x',x")9 y = (y',y").

The Stone-von Neumann-Mackey theorem [9], states that if {β, b) is
as above then every continuous representation of CCR over (β, b) is a
direct sum of representations equivalent to the following one: W acts
(irreducibly) in L2(G) according to formula

W(x) f{yf) = </, x"> f(y' - x"), x = (x'9 x").

From (1.1) it follows that

Wiyy1 W(x) W{y) = 6(x, y) b(y, x)'1 W(x).

Denoting the antisymmetric bicharacter x,yt->b(x, y) b(y, x)" 1 by β we
rewrite this formula as

1 W(x) W(y) = β(χ, y) W(x). (1.2)
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For ye Si let us define ξy to be the character χt->β(x,y) and let

•0tr = {ξy\yeSt}\

the nondegeneracy condition we impose is that Si' separates the points
of 0i. In other words, if β(x, y)=l for all yeSt then x = 0.

Throughout Section 3 we consider $ as equipped with the discrete
topology and denote by ύ the dual group of 01, i.e., $, is the group of all
characters of 01 equipped with the topology of pointwise convergence
on 01. The non-degeneracy of b reformulates, by the duality theorem for
locally compact abelian groups to condition that SI1 is a dense subgroup
of ά.

Given a representation W over (β,b) we let s/(W)°, s/(W) and
s/{W)" denote the *-algebra, the C*-algebra and the von Neumann
algebra, respectively, generated by {W(x)}xe<%.

Let <Cm denote the linear space of complex functions on 01 of finite
support. For α e (C(^} we define W(oc) by

W{a)=Yjoi{x)W{x). (1.3)

It follows from the commutation relations (1.1) that {^(α)}αεC(a) is a
*-algebra. As it is a minimal *-algebra containing {W(x)}xe0t, it coincides
with si(W)°. From (1.2) and (1.3) we get

W(x)-' W(a) W(x) = X a(y) β(y, x) W(y). (1.4)

We also introduce the automorphisms τx, x e S&, of &(3fw) defined by

τχ(A) = W(x)-χ A W{x), A e fi(^V). (1.5)

A short computation using the commutation relations shows that
is a homomorphism of the abelian group 0i into the group of all auto-
morphisms of &(Jtfw).

We recall that a bicharacter of a group 01 is such a mapping 01Y,01-*T
that when one of the arguments is fixed it defines a character of 01.

T denotes the multiplicative group of the complex number of modulus
one. A Borel function on topological space is a function measurable with
respect to the σ-algebra generated by open subsets.

2. Continuity Properties of Separable Factor Representations

2.1. Lemma. Let srf be a factor in the Hubert space J4? and let s/0 be
a weakly dense *-subalgebra of si. Let x\->W(x) be a mapping from the
topological group G to the set of unitary elements ofι si.

Let τx denote the automorphism A \-> W(x)~ι A W(x) of £ (jf). //, for
each A e si0, the mapping χ\->τx(A) is weakly continuous, then there exists
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a function ρ:G->T such that the mapping χ\->ρ(x) W(x) is Borel. If,
moreover,

i) x^-+τx is a homomorphism of G into the group of automorphisms

ii) G is a Baίre topological space,

then, for all g,heJ^f, x\->\(g\W(x)h)\ are continuous functions and the
function ρ can be chosen in such a way that x\->ρ(x) W(x) is (weakly)
continuous on a neighbourhood of the unit element of G.

Proof Let & denote the *-algebra generated by J/ O UJ/Q AS every
element of & is a finite sum ΣAtA[, the mapping x\->τx(A) is weakly

I

continuous for each A e M. As si is a factor, 8% acts on ffl irreducibly.
Applying the Kaplansky density theorem we see that for each A e £ (Jf)
there exists a sequence {An}neN C Si such that A is the weak limit of {An}.
Therefore for each g,he ffl the function

is the point-wise limit of the continuous functions

χ\-*{h\τx(An)h), n = l,2,....

Setting A = Pg, where Pg is the projection on (C#, g normalized, we get

(h\ W(xyίAW(x)h) = \(g\ W(x) h)\2.

Hence, for each g,he^, the function

x^\{g\W(x)h)\, XEG,

is a pointwise limit of a sequence of continuous functions.

2.2. The Projective Group of Jf\ For the proof we need some informa-
tion about the projective group of Jf7; as the reference we choose [14].

The unitary group °lί of ^f endowed with the weak topology is a
metrizable separable topological group. The topology of % can also be
described as the coarsest for which all the mappings

are continuous.
Let 9 denote Φ/.2Γ, where 2ί is the center of %, equipped with the

quotient topology and let π denote the natural homomorphism ̂ - > ^ .
& is a metrizable and separable topological group. The topology of 0>
is the coarsest for which all the mappings

are continuous; here dgh(π(U)) = \(g\Uh)\. A mapping F: X-+0* is Borel
if and only if all functions dgh ° F,g,he Jίf, are Borel.
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There exists a Borel map c from SP into °U such that
(i) π°c = Ίάg>

(ii) coπ(l) = l
(iii) there is an open set containing π(l) on which c is continuous.
2.3. Proo/ of the First Part of the Lemma. Let us consider the mapping

As dghoF = |(#IVF( )Λ)|, F is a Borel mapping if, for each g9heJίf,
x\-*\(g\ W(x)h)\ is Borel. But xH>\(g\ W(x)h)\ being a pointwise limit of
a sequence of continuous functions, cf. the end of Section 3, is Borel.

Let us now consider C ° F ( Ξ C O F ° W). C°F(X) can differ from W(x)

only by a factor of modulus one and is a Borel map from G into °M.
Therefore the function ρ can be defined by: ρ(x) W(x) = c° F(x), x e G .
This proves the first part of Lemma.

2.4. 77ιe Case of a Baίre Group. A topological space is said to be a
Baire space if the complement of any set of first category is everywhere
dense. For properties of Baire spaces we refer to [3].

The topology of 0> is separable and therefore, as is easy to see, one
can choose from the family dgh, g,he f̂, of the functions defining the
topology of 9 a countable subfamily which defines the same topology.
In other words, there is a sequence hn of vectors in 2tf such that a mapping
F from a topological space X to & is continuous if dhm hn° F is continuous
for all m , n e N . We apply this to the homomorphism F:G->0>.

By Theorem 8.5 (ii) of [3], dgh ° F, #, /z e J f, being a pointwise limit
of a sequence of continuous functions (functions of the zero Baire class)
is a function of the first Baire class. Any function of the first Baire class
on a Baire space is continuous at each point of a dense ^δ set (Theorem
7.5, [3]). Let Amn be such a dense <Sb set for dhγn^ F.

Λmn as a &δ set is a countable intersection of open sets, say Amn

= Pi Am>nΛ, and each AmnΛm,n,keN, is dense in G as ^ m n are.
fceN

Hence f] Am>nl= f] AmfnΛ is a countable intersection of open
m,«eM \ m,κ,fce]N /

dense subsets of a Baire space and therefore non-empty, Proposition 7.2
of [3].

If x is an element of f] Amn then all functions dhrn>hn° F are continuous
m,n

at x. It follows that F is continuous at x and, being a homomorphism,
F is continuous everywhere. Therefore \(g\ W(x) h)\ ( = dgh° F (x)) is con-
tinuous for each g,he£F. It remains only to find a ρ making χ\->ρ(x) W(x)
continuous on a neighborhood of the unit element of G. This can be
done by applying c to F(x) exactly as in the end of Section 5.

2.5. Theorem. Let W be a separable factor representation ofCCR over
& and let the dimension of 01 be finite. There exists a ξ e $, such that

x, ξy W(x) is a continuous representation of CCR.
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By the Stone-von Neumann-Mackey uniqueness theorem, ξ W is quasi-
equivalent to the unique continuous irreducible representation.

Proof. To show that we are in a situation described in Lemma 3
let A be an element of s/(W)°, say A = W(OL\ α e C ( f ) . It follows from
(1.4) that the mapping x H> W(X)~1A W(X) is weakly (in fact norm-)con-
tinuous.

Let ρ be the function of Lemma 3 making x±->ρ(x) W{x) Borel.
Denoting ρ(x) W(x) by W(x) we get

W{x) W{y) = b(x, y) σ(x, y)W(x

where

It follows from this formula that x,y\-*σ(x,y) is a Borel function. It is
what is called a Borel multiplier [8]. Our multiplier is symmetric. By
Lemma 7.2 of [8], a symmetric multiplier on a locally compact, separable
abelian group is trivial, i.e., there exists a Borel function λ\$-^T such
that

It follows from (2.1) and (2.2) that ξ : = λ 1ρ satisfies the identity

i.e., is a character of M. On the other hand <x, ξ} W{x) = λ(x)~1 W(x)
and therefore x ι-> <x, O W(x) is a measurable representation of CCR
ô ex ^ .

To prove that ξ W is in fact continuous, consider the decomposition
M = G@G and the restrictions of ξ W to G and G. These restriction give
measurable representations of locally compact groups in a separable
Hubert space. Such representations are known to be continuous. The
continuity of ξ W follows.

2.6. Theorem. Let W be a separable factor representation of CCR over
£%. Then there exists aξeύ such that x h-> <χ, ξ} W(x) is continuous on rays.

If 9 is any subspace of $ topologized to a Baire topological vector
space such that for each ye$ x^>β{x>y) is continuous on 9, then for
each q,h£3/F

is a continuous function on
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Proof. Let F be a finite dimensional subspace of 01 such that
is non-degenerate. Decomposing M into a sum of/^-orthogonal subspaces,
^ = ̂ " 0 ^ - ^ w e see that the elements of the center of the von Neumann
algebra generated by {W(x):xe^~} commute with W(β). Therefore,
W\3Γ is also a separable factor representation and by Theorem 2.5 there
exists ξ G 3~ such that χt-><x, ξ> W(x) is continuous on 5".

Each x e {% is contained in a two-dimensional subspace onto which
the restriction of β is non-degenerate. Therefore for each x e ^ there
exists a ξx elk such that Λ,h-><λ, ξx> W(/U) is continuous.

Let {xι}ιeI be a basis of 01 over 1R and let us choose ξXι as in the
preceding paragraph. Let us define ξ e 0ί by:

<x, O == Π ^ i ' ^ , ) f°r x = Σ ^Λ* ^ a fmi t e subset of / .
ιeJ teJ

It is easy to see that ξ makes χ κ ( χ , ξ} W(x) continuous on rays. This
proves the first part of the theorem.

As tf is a Baire topological vector space it is also a Baire topological
group. Defining sfQ to be s/(W)°, it follows from formulae (1.4), (1.5) and
the context there that we are in position to apply the second part of
Lemma 2.1. Hence, the theorem follows.

It seems that for separable £f there always exists a ρ which makes
χ\->ρ(x) W(x) as continuous as the functions χι->|(^| PF(x)ft)|, g,heJ^,
are. The proof that symmetric, Borel multipliers on separable, locally
compact, abelian groups are trivial depends, in an essential way, on the
properties of Haar measure on locally compact groups and is therefore
not applicable here. Nevertheless, we have a candidate for ρ that seems
to be good in the case of separable vector spaces.

2.7. Theorem 2.5 and the Stone-von Neumann-Mackey uniqueness
theorem allow us to give a complete description of the separable factor
representations of the C*-algebra of CCR over finite-dimensional space.

The group of the automorphisms of si acts on the set of all represen-
tation of si by πι->π°τ, τe Aut(j/). In Section 3.8 we define an iso-
morphism ξ\->τξ of U into Aut(j^) such that, Formula (3.13),

This allows us to speak about an action of M on the set of representations
of J *

Theorem, (i) every separable factor representation of s$ is a factor
type I representation.

(ii) U acts transitively on the set of (the equivalence classes of)
separable irreducible representations of s$.

(iii) the ίsotropy subgroups defined by the action of U of (ii) are the
same for all representations and equal to £%'.
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Proof. Let π be a separable factor representation of si. Then
W:= πojf is a separable factor representation of CCR over 01. By
Theorem 2.5 there exists a ξe$ such that x^(x,ξ} W{x) is con-
tinuous. By the Stone-von Neumann-Mackey uniqueness theorem, Sec-
tion 1.1, ξW is quasi-equivalent to an irreducible representation and
therefore it is a factor type I representation.

(ii) Follows from

and from the uniqueness of the continuous representation.
As U is an abetian group and the action of U is transitive, the isotropy

subgroups are the same for all representations. Therefore it is enough to
find the isotropy subgroup for one representation. Let π be such that
π ° J is continuous and irreducible, ξ W is equivalent to W if, and only
if, ξ is continuous. Hence, also π is equivalent to π°τ ξ if, and only if,
ξ is continuous. This proves (iii) and finishes the proof of the theorem.

2.8. Generalizations. The construction leading from the representa-
tion W to ξ W can be generalized as follows.

Let W be a representation of CCR over (β, b) in the Hubert space
Jf and let χ\->X(x) be a representation of the additive group of 01 in
the Hubert space jfx. Then

defines a representation over (β, b) in
If the dimension of 9t is finite, or St is a locally compact group

satisfying the second axiom of countability, W is continuous and the
Hubert space 3€x is separable, then W® X generates a discrete ΎOΪINeu-
mann algebra: the proof will not be given here. It also follows from
Theorem 2.5 and from the Stone-von Neumann-Mackey uniqueness
theorem that ^(W®X)~ is a factor if, and only if, there exists ξeΦ,
such that x^<x, ξ} X(x) is continuous. We conjecture that not all
separable representations over finite-dimensional 01 are of the type
W®X, with W continuous, and, moreover, that there exist separable
representations generating continuous von Neumann algebras.

In the case of non-separable Jfx, choosing X in a suitable way, one
can get factors of type II and III for srf(yV®X)~'. For instance, the
factor type Πj representation can be constructed in such a way, and will
be in the next sections. When the dimension of 01 is infinite and 2tfx is
separable the situation seems to be more complicated. At least for

one can get factor representations of type I ζ and III.
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3. Factor IIχ Representation and C*-Algebra of CCR

In what follows 0ί is an arbitrary abelian group, b is a bicharacter
of 01, non-degenerate in the sense of Section 1.1, and FFis a representa-
tion of CCR over (β, b).

3.1. Lemma. // φ is a finite trace on <srf(W)~ then

φ(W(x)) = 0, VxφO. (3.1)

Proof. If x + 0 then there exists ye0t such that β(x,y)φ 1. Applying
Formula (1.2),

φiWiyy1 W(x) W(y)) = β(x, y) φ(W(x)).

On the other hand, as φ is a trace,

φ{W{y)-γ W{x) W(y)) = φ(W(x)).

These two equations are compatible only if φ(W(x)) = 0. Our lemma is
proved.

Taking limit /ί->0 in the identity φ(W(λx)) = 0, this lemma gives a
"one-line-proof' of a result by Glimm [5], that there exists no represen-
tation continuous on rays generating a finite von Neumann algebra.

3.2. Lemma, (i) // φ, ψ are finite, normalized (i.e., φ(I) = ψ(I)=ί),
normal traces on stf(W)~ then φ = ψ,

(ii) if sd{WY is a finite von Neumann algebra then each finite, normal,
non-zero trace on stf(W)~ is faithful.

Proof. Applying φ and ψ to W{a\ using the notation of Section 1.1,
we get from Lemma 3.1

φ(W(a)) = a(0) and ψ(W(a)) = φ), VαeC (^.

By the von Neumann density theorem, jtf(W)° is ultra-weakly dense in
s/(W)~ and, by Section 1.1, s/{W)°= {W(α)}α6C<*>. On the other hand,
by [4], Ch. I, § 4, Th. l,φ and ψ are ultra-weakly continuous. Therefore
φ = ψ follows from their coincidence on jtf(W)°. This proves (i).

(ii) Follows at once from (i) and from the definition of a finite von Neu-
mann algebra. Namely, [4], Ch. I, § 6, Def. 5, a von Neumann algebra
is said to be finite if for each non-zero positive element there exists a
finite, normal trace which is not zero on this element. If therefore ψ(Λ) = 0,
and A is a positive element of srf{W)~ then, by (i), every other normal
trace is zero on A and srf{W)~ is not finite. The lemma is proved.

3.3. Proposition. Let χ\->X(x) be the representation of the additive
group of 0ί in J}(β, dξ), where dξ is the normalized Haar measure on Φ,,
defined by

(X(x) Φ) (ξ) = <x, O Φ(ξ), Φ e !?(<*, dξ).
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Then x\-+W(x): = W(x)®X(x) is a factor type II\ representation of
CCR over {β, b).

Proof (a) Let Ω be the element of J}(β, dξ) defined by

Ω(ξ)=l, VξeΛ.

If Ωx: = X(x) Ω then Ω0 = Ω and from the orthogonality of characters it
follows that {Ωx | Ω̂ ) = 0 for x + 3;. Let / be a normalized vector of Jf7^
and let us define φ on s/(W)~ by

Then
φ(W(x) W{y)) = (f I W(x) W(y)f) (Ω | X(x) X(y) Ω)

= (f\W(x)W(y)f)(Ω\Ωx+y).

The last term in this chain is zero if x + 3; Φ 0. As W(x) W(—x) = b(x, — x),

[0 if

It follows that φ defines on jtf(W)~ a finite, normalized trace. It is
obviously ultra-weakly continuous and therefore normal ([4], Ch. I, §4,
Th. 1). Applying Lemma 3.2 (i) we see that changing the vector / that
appears in the definition of φ leaves the same trace; we could also use
Ωx instead of Ω.

(b) Let X' be the unitary representation of the additive group of ^
defined by

(X'(x) Φ) (ξ) = φ(ξξx), Φ e L2(m, dξ) (ξx is defined in Section 2).

Let us also define W'as W® X'. Direct calculation shows that W'(x) and
I®X(x) commute with W{y) for all x9ye01. If A is in the center of
sf{W)~ then A commutes with the *-algebra si generated by s/(W)

It is easy to see that s/ contains I®X(x) and I<g>X'(x) for all x e i
Therefore, showing that the algebra generated by X(x), X(y), x j e ^ ,
acts in J}{U,dξ) in an irreducible way proves that A acts in 2tfw, i.e.,
A is of form: A®1.

Let B be an operator in J}(β,dξ) commuting with all X(x), X\y\
x, y e 0b. As Ω is a cyclic vector for {X(x)}xe@, this follows, for instance,
from the duality theorem for locally compact abelian groups and from
the Peter-Weyl theorem, it is enough to show that BΩ is proportional
to Ω. This in turn will follow from orthogonality of BΩ to Ωx for all

φθ. We compute

(Ωx \BΩ) = (ΩX\ BX'iy) Ω) = (Ωx \ X\y) BΩ) = (Xf(- y) Ωx \ BΩ)
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If x Φ 0 then, by the non-degeneracy of β, there exists ay e M such that
j8(x, j/)Φ 1 and therefore (ΩX\BΩ) = O. This finishes the proof that the
center of jtf(W)~ acts in J^w.

(c) By (a), there exists a finite, normal trace on s/(W)~. To conclude
the proof it is enough to show that s/(W)~ is a factor. Let E' be a pro-
jection of the center of s/(W)~9 E'φO, E' + I. It follows from (b) that
£' = £ (x) I, where E is a projection in 2tfw, E Φ 0, E φ /. If Ef φ0, | |/1| = 1,
then

2

Therefore cp(£') φ 0 and A H> ——— φ(AE') is a normalized, normal trace
φ(E)

on srf{W)~. By Lemma 3.2 (i) this trace is equal to φ. On the other hand
φ((I — E')E') = 0, whereas repeating the proof that φ(£')=t=O with E'
replaced by /— E' gives φ(I — E') Φ 0. This contradiction shows that the
center of s/(W)~ is trivial and concludes the proof of the proposition.

3.4. Proposition. There exists a unique, up to quasi-equivalence, repre-
sentation of CCR over (β,, b) generating a finite von Neumann algebra.
It is a factor type II\ representation.

Proof Let us suppose that jtf(W)~ is a finite von Neumann algebra.
If φ is a finite, normalized, normal trace on s4{W)~ then, by Lemma
3.2 (ii),φ is faithful. If £ is a projection from the center of s/(W)~, £ φ θ ,
EΦJ, then A\->φ(AE) is again a finite, non-zero, normal trace but it
gives the value zero to I — E, in contradiction to Lemma 3.2 (ii). This
proves that s${W)~ is a factor.

Let φ be a finite, normalized, normal trace on s/(W)~. It follows
from [4], Ch. I, §4, Th. 1 and Lemma 5 that we may assume, after
possible passage to a quasi-equivalent representation, the existence of
such a normalized vector Ω that

φ(A) = (ΩIAΩ), V4 e sd{W)~ .

Denoting W(x) Ω by Ωx, Ωo = Ω, we conclude from formula (3.1) and
the unitarityof FFthat {Ωx}xe0t is a set of orthonormal vectors. Moreover,
as follows from the commutation relations,

W(x)Ωy = b(x,y)Ωx+y. (3.2)

Therefore the subspace of 2tfw generated by {Ωx}xeM is W-invariant and
the restriction of W to this subspace gives a representation quasi-equiv-
alent to the original, with Ω as a cyclic vector.

Starting with another representation, say W\ generating a finite von
Neumann algebra, which by the first part of this proof is a factor, the
same method leads to an orthonormal family {Ω'x}xe<% and the restriction
of W to the subspace of 2tfw, generated by {Ω'x\xe0t is quasi-equivalent
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to W. We also have a formula corresponding to (3.2) with W replaced
by W and Ωx by Ω'x. It follows that the correspondence Ωx H->Ω* extends
to an isomorphism of these subspaces of 2tfw and 2tfw. bringing W and
W into quasi-equivalence.

[We indicate a shorter proof: If W and W are two factor type 1^
representations then x H> W(X) θ W(xr) is again a representation gen-
erating a finite von Neumann algebra. By what was said in the beginning
of the proof of Proposition 3.4, it is a factor representation and therefore
quasi-equivalent to its subrepresentations W and W. Hence W and
W are quasi-equivalent.]

It remains to show the existence of a factor type lϊ1 representation
for each (^, b). To do so, let us define in £2(β) operators W(x) by (3.2),
with Ωx now denoting the function of £2(β) taking value 1 at x and 0
at other points. Direct computation shows that x \-> W(x) is a represen-
tation of CCR over {01, b). It is also not hard to see that it is a factor
type Πx representation. But we need not to prove this, as Proposition 3.3
shows how, given a representation of CCR over {β, b\ one can construct
a factor type llx representation. This finishes the proof of Proposition 3.4.

3.5. Lemma. There exists a unique homomorphism of U into the group
Aut(s/(W)) of all automorphisms of s/(W) such that

τξ(W(x)) = <x, ξ> W(x), Vx 6 Λ . (3.3)

Ifξe&l' then the automorphism τξ is inner.

Proof. τξ9 if it exists, is unique as s${W) is the C*-algebra generated
by {W(x)}xeΛ.

Ifξe 9t\ say ξ = ξy9 then, formula (1.2),

W{y) ~1 W(x) W{y) = <x, ξy> W(x), Vx e 9t,

which shows that τξ exists and is implementable by W(y). This proves
the last statement of the lemma.

It follows from (3.3) that if, for each ξe&9 there exists an auto-
morphism τξ of sί(W) satisfying (3.3) then ξ\-*τξ is a homomorphism.
On the other hand, the existence of τξ is equivalent to equations

α(x) <x, ξ) W{x) α(x) P^(x)| , Vα e<Em. (3.4)

Defining the mapping αH>α^ by:

«*(*) = <*,£>«(*),
(3.4) can be rewritten as

|| , Vα e <Lm. (3.5)

To prove (3.5) for all ξ e 0ί let us first remark that this equation holds
for ξ e 01'. This follows from the existence of τξ for such ξ.
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The topology of $, is just the topology of pointwise convergence on
M. Therefore, for each xe^,(i->(x, ξ} W(x) is a continuous map from
βk to £(34?w), 2(J^W) equipped with the norm topology. It follows that
ξι->||FF(α^)|| is also continuous for each αeC ( Λ ) . But, as was remarked
in Section 1.1, St1 is dense in Φ,. Therefore the function ξ κ> || W(otξ)\\, being
continuous and taking the value ||W(α)|| on a dense subset of Φ, must
have this value everywhere. This proves (3.5) and the lemma.

3.6. Theorem. Given any two representations W and W\ of CCR over
(β,b\ there exists a unique homomorphism τw,w of srf{W) onto srf(W)
such that

τw,w: W{x)\->W\x), Vxe01. (3.6)

Before proving the theorem we give another description of the repre-
sentation W of Proposition 3.3. Some readers will recognize in the
following elements of the theory of direct integrals of constant families
of Hubert spaces.

Let ^(β, Jtf) denote the linear space of continuous mappings from
ά to 2tf. <€($,, Jf) with the scalar product

Φ,Ψ^{(Φ(ξ)\Ψ(ξ))dξ

becomes a Hausdorff, pre-Hilbert space whose completion we denote by

^ will denote the element oiJ}(β, ffl) which takes value h
at every ξ e U\ for h e jf, φ e <β{β,€), hφ is the element of L2(J, Jf)
taking value φ(ξ)h at ξ. From the bi-linearity of h,φ\->hφ and from

by well known properties of the tensor product, there exists an iso-
morphism of ^f ®J}(β, dξ) onto J}(β, 3tf) such that hφ corresponds to

If A is a continuous mapping from $, to fi(J-f), £(Jf) equipped, for
instance, with the norm topology, then

Ψ\->AΨ, AΨ(ξ) = A(ξ)Ψ(ξ)

defines a linear mapping ̂ (β, Jf7) -> %>{β, Jf) and A extends to a bounded
operator on L2(&, Jf). We want to prove the following formula for the
norm of A:

\\A\\ = sup\\A(ξ)\\. (3.7)
ξeά

As \\AΨ\\={\\\A{ξ)Ψ{ξ)\\2 dξf, the inequality \\A\\ ^ supM({)|| holds.
ξe0t

To prove that \\A\\ ^ sup \\A{ξ)\\, fix ξ0 e Φ, and for ε > 0 choose h e jtT,
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|| ft II = 1, such that

\\A(ξo)h\\^\\A(ξo)\\-j.

Asξt-+\\A(ξ)h\\ is continuous, there exists an open neighborhood U oΐζ0

such that I \\A(ξ) h\\ - \\A(ξ) h\\ \ < ~ for ξ e U and therefore

By a well known property of the Haar measure, the measure of U
is non-zero. As the Haar measure is regular there exists a compact K,
KCU, also of a non-zero measure. By the normalcy of compact spaces,

there exists a continous function which is 1 on K and 0 on 3t\ U. Therefore
there is a continuous function φ taking the value 0 on M\U such that

$\φ(ξ)\2dξ = l.

Then

\\Ahφ\\2 = l\\φ(ξ)A{ξ)h\\2dξ=\\\A{ξ)h\\2\φ{ξψdξ
A u

^(M(ίo)ll - β ) 2 j \φ(ξ)\2dξ = (\\A(ξ0)\\ - ε ) 2 .
ά

As ||ft<p|| = 1 and ε is arbitrary positive, it follows that ||y4|| ^
for all ζ0 e St. Thus \\A\\ = sup \\A{ξ)\\.

Proof of Theorem. Under the isomorphism of J4?W®L2($, dξ) and
I}(β, J^w) the representation x ι-> W(x) goes onto x ι-> W(x\ where

(W(x) Ψ) (ξ) = <x, ξ) W(ξ) Ψ(ξ), y 6 tf(Λ, ̂ V) (3.8)

and W(x) leaves ^(^ί, jf^) invariant for all x e 01.
We now show that

(3.9)

As remarked in the proof of Lemma 3.5, the mapping ξ t-> W(ocξ) is
continuous for each α e <C(Λ). On the other hand, it follows from (3.8) that

{W(OL) Ψ) (ξ) = W(aξ) Ψ(ξ),

Therefore the norm of W(oc) can be computed using formula (3.7), which
gives

\\W(a)\\=sup\\W(aξ)\\.

But this implies (3.9) by (3.5).
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It follows from (3.9) that there exists an isomorphism τw of si(W)
and si(W) such that

τw\W(x)\->W(x),

In the same way, starting with the representation W we arrive at W' and
τw.. The representations W and W' being equivalent to W and W,
respectively, are both factor type 1^ representations over (0t, b\ Propo-
sition 3.3. By Proposition 3.4 a factor 1^ representation over 0t is unique
up to quasi-equivalence. Therefore there exists an isomorphism τ^ ^ of
st(W) and si(W) (even of si(W'Y and si(W)~) such that

Now it is easy to see that τ^l ° τ$r w ° τw *s t n e required isomorphism of
si(W) and si(W). As si(W) is just the C*-algebra generated by
{W(x)}xe@ homomorphism τWΊV satisfying (3.6) is obviousely unique.
The theorem is proved.

3.7. After Theorem 9.7 we can formulate the following

Theorem. Given (0t, b), there exists a C*-algebra si and an injection
$ \0l-*srf such that

(i) J(x) is unitary for all x e l and {^(x)}xe@ generates the C*-
algebra si,

(ii) f{x) J(y) = b(x,y) J(x + y), Ίx,yeP2.
It follows from (i) and (ii) that

(iii) the pair (si, f) is unique up to isomorphism and for each represen-
tation W of CCR over (β, b) there exists a representation W of 'si such that

Wof=W9

(iv) the C*-algebra si is simple.

Proof Given (β, b) and a representation π of si, π ° J> defines a repre-
sentation of CCR over (β, b). Let π' be a faithful representation of si,
i.e., π' gives an isomorphism of si onto π\si). Then, by Theorem 3.6
and the condition (i), i ( π ° f) is isomorphic to si(π' ° f) and therefore
also to si. This shows that each representation of si is an isomorphism.
Thus si is simple. Almost the same argument proves (iii), and, that
given a representation W, (si(W), W) satisfies (i)—(iv). Therefore, the
existence of (si, f) for each (0ί, b) follows from the existence of at least
one representation of CCR over (M, b) which is assured by Proposition
3.4. The theorem is proved.

A pair (si, f) will be called the enveloping C*-algebra for represen-
tations of CCR over (31, b\ or the C*-algebra of (9t, b\ We allowed
similar abuses of language speaking about "the" factor type Πx represen-
tation. The same applies to the next sections.
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3.8. Homomorphίsms. In most of the preceding considerations the
bicharacter b enters through the anti-symmetric bicharacter β. The im-
portance of β will be even more evident in the discussion of homo-
morphisms. What follows can be partly reformulated in terms of the
group H2(β,T), as the mapping b\->β factorizes to an isomorphism
[fr]f->β, where [ft] is the image of b in H2(M, T). Our treatment is
influenced by that in [15].

Given (β, b) and (β\ b'\ with the corresponding bicharacters β and
β' a homomorphism h:έ%=> 0ί' will be called (/?, β')-symplectic if

β(x9y). (3.10)

In terms of b and V (3.10) reads

b'(h (x), h(y)) bf(h GO, Hx))-1 = b(x, y) b{y, x)'1

or
b'(h (x), hiy)) b(x, y)-1 = b'(h(y\ h(x)) b(y, x)'1.

This shows in particular that the bicharacter

is symmetric and therefore, Lemma 7.2 of [8], trivial. That is, there exists
a function f\M^T such that

Hx, y) = f(χ)f(y)f(χ + y)'1 b'(h(χ)9 hiy)). (3.11)

We now show that given (h,f) connected by (3.11) there exists a unique
homomorphism τ(Λ>f): sέ ̂ >d' such that

τ{hff) o y(x) = /(x) y'(r(x)), x e « . (3.12)

The uniqueness is obvious; to prove the existence let f(x) J(h(x)) be
denoted by W(x). Then, as follows from (3.11),

Therefore the existence of τ ( Λ > / ) follows from Theorem 3.7.
[Theorem 3.7 is stated for representation of CCR in Hubert spaces

and representations of C*-algebras. But, obviously, all remains true when
instead suitable mapping into C*-algebras and homomorphisms of C*-
algebras are considered.]

Putting ffl' =<ft, b' = b and h = Ίά<% we see that to each ξ e U there
corresponds an automorphism τξ of srf such that

τξoJ(χ) = (χ,ξ)J(χ); (3.13)

ξ^-Zξ is an isomorphism of 01 into Aut(j/).
If (h,f) satisfies (3.11) h is symplectic. Once more setting 0t = 0t\

β' = β, it follows that

12 Commun. math. Phys., Vol. 24



168 J. Slawny:

(i) for each pair (ft,/) where ft is a β-symplectic automorphism of M
and f\9t-+T is such that x, y*-» f(x) f(y) f(x + y)'1 is a bicharacter
(thus / is a character of 01 of second kind, in the terminology of [15]),
there is a unique automorphism of si such that

[In fact, allowing b to be an arbitrary multiplier, instead of bicharacter,
we get a generalization to arbitrary /.]

(ii) The mapping

defines a group structure in the set of all pairs of (i) and (Kf)\-+τ{hf) is
an isomorphism of this group into Aut(j/).

We can enlarge the group {(ft,/)} by including for ft anti-symplectic
automorphism of ^?, i.e., such that

examples of anti-symplectic ft appear in physical applications as linear
transformations changing sign of the corresponding anti-symmetric form.
To this end, let us first remark that if ft : 0l-^0ϊ is such that

then ft is (β,/Γ)-symplectic; here zh>f, zεC, denotes the conjugation in
C and we used the identity z" 1 = z for \z\ = 1.

Let si denote the C*-algebra ^conjugated to si, i.e., there exists a
one-to-one mapping A \->A of si onto si which preserves multiplication,
norm and conjugation_but is anti-linear. Denoting by T> the bicharacter
x,y\->b(x,y) and by J the injection XH>/(X) we see that (sJ,J) is the
enveloping C* -algebra over (β, b). As β is the anti-symmetric bicharacter
associated with b and h is (/?, /Γ)-symplectic, for each f\9t-+T there exists
a homomorphism τ ( Λ / ) \si-*si' such that

Denoting the superposition of τ ( Λ s / ) with the mapping inverse to A\->A
by τ(Λ>/) we get an anti-homomorphism τ(Λ>/} \sί-*sί' such that (3.12) is
satisfied. If ^ = 01 and /i is a β-anti-symplectic automorphism the group
described in (i), (ii) can be enlarged by (ft,/).

The last thing we want to prove in this section is the converse to (i)
in the following form.

(iii) For every homomorphism τ\si^si' such that

there is an (ft,/) such that τ = τ(hf).
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For a proof, let us first observe that the proportionality of J'(x') and
J'{yr) implies that x' = /. For, in such a case J'(x'Yγ Jf\zf)Jf\χ')
= S'iyY1 J\z')S'{y% Mz'eΛ\ and this implies that β\z\x) = β'(z\y')
for all z' e <%' from which the identity of x' and y' follows by the non-
degeneracy of β.

This observation and assumption about τ allows us to define the
mappings h: St-^St and/: ̂ -» T by

τ(/M)=/(χ)/W)
We compute

f(x + y) J'(h(x + y)) = τ{J(x + y)) = τ{b(x, yYxJ(x) S[y))

= 6(χ, y)"1 /(x)/(y) ^(fc(x)) S'(h(y))

= b(x, yY1f(χ)f(y) b'(h(x), h{y)) S(h(x) + h(y)).
This implies, according to the observation, both that h(x + y) =? /z(x) + /ι(y)
and that the Eq. (3.11) holds. As λ(0) = 0, h is a homomorphism ^ - ^ ^ ^
On the other hand, it follows from (3.11) that h is (/?, /Π-symplectic and
that x, yf-^/W/Cyl/Cx-f y)^1 is a bicharacter. This finishes the proof
of (iii).

3.9. Direct Sums and Tensor Products. As a reference to the tensor
products of C*-algebras we choose [6, 7].

Given a family {(βv bt)}ιeI of abelian groups M\ and non-degenerate
bicharacters bx oΐ&t we denote by (s/l9 <ft) the corresponding enveloping
C*-algebras. It follows from Theorem 3.7 that the tensor products

and 0stft coincide (in fact, all the C*-subcross norms on the
ie/ lei

algebraic tensor product of {^} ie/ coincide); we denote them by (X)^.
ιel

Let (β, b) be the direct sum of {(βv bt)}ιeI i.e., M = ̂  Stx and b = £ bt

b is again a non-degenerate bicharacter of 0ί. Then /(X)JS< , (X)^), where

(X)^ is defined as it should be, is the enveloping C*-algebra for (β, b).
ι<=I

3.10. CAR. We give the formulation of CAR in the form (1.1). In fact
corresponding definition of Clifford algebras appear in [1,2].

We recall that a representation of CAR over a real Hubert space H
in the Hubert space Jf is given by a linear mapping a from H into the
set of bounded hermitian operators on Jf such that

a(f) a{g) + a{g) a{f) = 2(f\g). (3.13)

Let {/Jιe j be an orthonormal basis of H, let the indexing set / be
linearily ordered and let us denote by 3$ the set of all finite subsets of /.
If x = {ιu ..., ιn} is an element of 01, ιx < - < ιn, then we define W(x) to
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be a (fH)... a(fj. It follows from (3.13) that W(x) is unitary and that
W(x) W{y) is proportional to W(x + y\ where by x + y. we denote the
symmetric difference of the sets x and y. Denoting this coefficient by
b(x, y) we have

W(x) W[y) = b(x, y) W(x + y). (3.14)

(β, +) is an abelian group, with the empty subset of I as 0. That b is
a bicharacter is proved in [2], p. 62, and that b is non-degenerate follows
from the following formula of [1]

where [x] denotes the number of elements of x.
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