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Abstract. The short distance behavior of field operator products is analyzed. It is
shown that under certain conditions operator product expansions can be derived which
give complete information on the short distance behavior and lead to the construction of
composite field operators.

1. Introduction

A central problem in local quantum field theory is the definition of
products of field operators at the same point. Important examples of
such composite field operators are Lagrangian densities, energy-momen-
tum tensors, interaction terms of local field equations and current
operators associated with internal symmetries. Let Au...,An be field
operators satisfying the usual postulates of local quantum field theory1.
The difficulty in constructing composite operators such as

originates in the singularity of the operator product

Λi (XJ... Λβ(xJ (1.2)

for coinciding arguments. Such singularities inevitably occur as a conse-
quence of relativistic invariance and positive definite metric in Hubert
space [1].

In Ref. [2] an expansion of the operator product (1.2) was proposed
which exhibits the singularities near Xj = x and simultaneously allows

* Supported in parts by funds from the National Science Foundation Grant No.
GP-25609.

1 Each of the operators A} may have several components transforming like a tensor
under homogeneous Lorentz transformations.

Ί Commun. math. Phys., V o\. 24



88 K. G. Wilson and W. Zimmermann:

the construction of composite operators. The hypothesis is that any
operator product (1.2) may be expanded in the form2

where the remainder R vanishes at ξj = 0 while the functions fk become
singular (or non-vanishing) in the limit ξj->Q. The operators Bk are local
and may be regarded as composite field operators associated with the
formal product (1.1).

In Ref. [3] this hypothesis was generalized by assuming that any
operator product (1.2) may be represented as a series

Σ . (1.4)
k = l

The series is asymptotic in the sense that the coefficients

fk(ρλ1,...,ρλa)

vanish stronger than ρN for /ĉ fc(JV) provided k(N) is chosen large
enough. In addition dimensional rules were given in Ref. [2,3] which
provide detailed information on the operators Bk and the singularities
of the coefficients fk.

We summarize the results concerning operator product expansions
and the properties of composite field operators which so far have been
obtained in the perturbation theory of renormalizable interactions, and
exactly for lower dimensional models. Local field equations with properly
defined interaction terms were first introduced by Valatίn [4] and have
been verified in all orders of perturbation theory [5, 6]. Independent of
perturbation theory Glimm and Jaffe have derived local field equations
for the model of (/>4-coupling in two dimensions [7]. Similar results have
been obtained for other twodimensional models [8, 9] 3. The principal
parts (1.3) of operator products were derived by Brandt [5], moreover the
asymptotic expansion (1.4) has been confirmed in perturbation theory
[10,11]. Operator product expansions and composite operators have been
studied in detail for the Thirring model [8]. In perturbation theory a
definition of composite operators can easily be given by applying
Bogoliubov's renormalization technique to the Gell-Mann Low expan-
sion of the relevant Green's functions. Under certain conditions it has
been possible to define current operators which have the required prop-
erties, such as conservation laws, commutation relations, etc. [10,12]. In

2 The product fkBk may include a sum over some Lorentz indices of fk and Bk.
3 Earlier references can be found in Ref. [11].
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particular it has been shown that in a renormalizable theory it is always
possible to construct an energy-momentum tensor [10,12].

The purpose of this paper is to show how an operator product expan-
sion can be derived from general principles. We begin with a brief outline
of the method, leaving questions of mathematical rigor for the detailed
discussion of the following sections. Our aim is to

(i) define local operators associated with the formal product (1.1),
(ii) to completely analyze the asymptotic behaviour of (1.2) for Xj-^x.

We introduce fixed vectors and a scaling parameter ρ by

α - l

Xj = x + ρλj(η), λj(η) = £ CJiηi (1.5)
i = l

with

/ * - * - > Φ0 for ρ + 0

and consider the operator product (1.2) as a function of x, ηj and ρ

P(x, η, ρ) = A(xx)... Λ(xa)
(l.o)

1 = (ii>->ria-i)>

If P diverges for ρ->0 we define an operator

(1.7)

dividing P by a suitable function fί. The singularity of fx is restricted
by the condition that the result be finite and different from zero. A suit-
able /i can be found if we make the assumption that there are "most
singular" matrix elements

(Φ,P(xηρ)Ψ) (1.8)

of P. A matrix element (1.8) is called most singular if it is as singular or
more singular than any other matrix element of P near ρ = 0. Choosing
one of the matrix elements (1.8) as the function fγ the operator (1.7) will
be finite and not identically zero. Evidently Q is a local operator. In
many cases Cί turns out to be a multiple of the identity [13]. However,
more composite operators can be found by further examining the be-
havior of P(xηρ) for ρ->0. Defining an operator P2 by

P(xηQ) = fi(Q) Cx(xη) + Pii^Q) (1.9)
we have

lim -§-=0
f
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as follows from (1.7). If

lim P2 = 0
ρ-0

(1.9) already gives complete information on the singularities of P near
ρ = 0. If, however, some of the matrix elements of P2 diverge at ρ = 0 the
product P has additional singularities. In this case we repeat the pro-
cedure for P2 and obtain

(1.10)
where

(1.11)

is a local, non-vanishing field operator. The function f2 is one of the
most singular matrix elements of P2. It diverges in the limit

lim/2(ρ)=oo,

but is less singular than fx

,. fliS) Λ

Proceeding in this way we construct operators Pk(x,ηρ\ Ck(x,η) and
functions fk(ρ) by the recursion formulae

(1.12)

(1.13)

where fk(ρ) is chosen to be one of the most singular matrix elements of
Pk. We continue this procedure until we arrive at an operator Pk+ί

which vanishes in the limit ρ->0. Then the operator product becomes

(1.14)

with

(1.15)
ρ-*0

(1.14) represents the principal part of the expansion near ρ = 0. The
functions fk carry the singularities of P and are ordered according to
decreasing strength of singularity

% 0 , lim/fe(ρ)=oo for k = 1,..., n- 1, (1.16)
fk

lim/M(ρ)=α) or lim/n(ρ) + 0 . (1.17)
ρ^ O ρ->0
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The field operators Ck are given by

Ck = lim ^ (1.18)
^ ° fk

and satisfy the causality conditions

[C k (x, V ),O(y)] ± =0, (1.19)
(x-)/) 2 <0

[C f c(x,ι f),C l(y,0]±=0 (1.20)

with commutators or anticommutators taken appropriately. O(y) denotes
a field operator which (anti)commutes with Aί9...,An at spacelike
distances.

In deriving the principal part (1.14-15) some assumptions have been
used which seem to be plausible but at present cannot be inferred from
Wightman's postulates. The precise formulation of the hypothesis needed
will be given in Section 2 (Eq. (2.15) and Hypothesis 1). Eq. (2.15) excludes
oscillations at ρ = 0. For models which violate this hypothesis the fol-
lowing alternatives will be found in Section 5:

(a) P(x9 ηρ) has no leading singularities as operator, i.e., to any matrix
element of P another one can be found which is more singular at ρ = 0.

(b) The remainder Pn + 1(x, ηρ) has no leading singularity as an oper-
ator, for some value of n. Then (1.14) holds with

^ 0 , lim/k(ρ)=oo for k~l,...,n9 (1.21)
fk

l i m ^ 0 .
«->° fk

In this case (1.14) gives the leading singularity for only some of the
matrix elements of P.

(c) (1.14) and (1.21) hold for any n, but no Pn vanishes at ρ = 0 with
all matrix elements.

In order to obtain the asymptotic expansion (1.4) we construct an
infinite sequence of operators Ck and functions fk using the recursion
formulae (1.12-13). If Pk vanishes at ρ = 0 we take/fc as one of the matrix
elements of Pk which vanish most weakly for ρ-»0. Under suitable
assumptions on the matrix elements of P (Hypothesis 2 of Section 2) it
will be shown in Section 4 that Pk and fk vanish stronger than any power
of ρ provided k is sufficiently large. With this we have

- +fk(β)Ck(xη) + Pk+1(xηρ) (1.22)

where

lim Pk+Λ*ηQ) =0 (1.23)
β-o ρ

N
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for any N provided k > k(N). In addition the functions fk satisfy

l i m%M-=0. (1.24)

The local operators Ck are given by (1.18) and can be chosen to be
linearly independent. The Eq. (1.22-23) represent by definition the
asymptotic expansion

P(*1Q)= ΣfMCk{xri). (1.25)

The following sections contain the rigorous derivation of these results.
In Section 2 the assumptions are formulated from which the principal
part (Section 3) and the asymptotic expansion (Section 4) are derived.
Alternatives to the assumptions and modifications are discussed in
Section 5.

2. General Assumptions

We consider field operators

O1(xl...,Oc(x) (2.1)

which satisfy Wightman's postulates of a local, relativistic quantum field
theory [14]. Each of the operators Oj may have several components Ojα

transforming under a representation of the homogeneous Lorentz group.
With Oj also the hermitian conjugate Of is listed in (2.1). Do denotes the
joint domain of definition of the smeared operators

Oj(f) = ί dxf(x) Oj(x) f e y(Rd, (2.2)

which is obtained by applying a polynomial of the Oj(f) to the vacuum
state Ω. Do is dense in the Hubert space 3t?.

In the work that follows a family

Q(g)= \dzx ... dzng{z1 ... zn)Q(Zl ... zn)

of operators in Hubert space is called a distribution in ^lmttZn(Δ)

if Qiθ) Js defined for every ge£fzχm.mZn on the dense set A and if each
matrix element

{Φ,Q(g)Ψ) Φ,ΨeA

is a distribution in ^ίmm.Zn(A). We further write

lim Q6(z1...zn) = Q(zί...zn) in ^..Zn(A) (2.3)
ρ->0

if
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and

lim(Φ,QQ(g)Ψ) = (Φ,Q(g)Ψ) for Φ e X , We A (2.4)
ρ—•()

(2.4) implies

lim(Φ,β f f(z 1...zn)«P) = (Φ,β(z1...Z π)<P) in ^ . . . Z n if Φ . f e d .
ρ->0

Instead of the operator product (1.2) we introduce the smeared operator

P(U ρ) = J dx dη t(xη) P(xηρ)

dη = dηx ...dηa.1 (2.5)

P(xηρ) = Aι(xί)...Aa(xa)

with the variables (1.5). Al9 ...9An denote linear combinations of oper-
ators Oj or derivatives thereof. Our aim is to study the behavior of P(ί, ρ)
for ρ->0. First we show that for every real ρΦO P(£, ρ) can be defined
as a distribution in S^η(D0). For Φ, Ψ e Do the matrix elements

(Φ,A1(f1)...Aa(fJΨ)=μx1...dxJ1(x1)..Ja(x^^
(2.6)

may be extended to distributions in the variables xί9..., xa. We introduce
new independent variables x, ηu ...,ηa-χ by (1.5). Then

(Φ,P(tρ) Ψ)=\dxdηi ... dna_γt(xΆι ... ηa^){Φ9P{xηQ) Ψ) (2.7)

is a distribution in the variables x, ηl9:..9ηa-i for ρ + 0. Likewise the
vacuum expectation values

<βi-β»>

with either

or

Qκ = P(xκη
iκ)ρ) (ρΦO)

may be interpreted as distributions in all the variables xκ, η™... η^.,-
From the vacuum expectation values (2.8) the operator (2.5) is constructed
on the domain Do in the usual manner. The distributions (2.7) are the
matrix elements of P(ί, ρ) between vectors Do. Hence (2.5) is a distribu-
tion in £%η(D0).

We state the following properties of P.
(i) Lorentz lnvariance. Under an inhomogeneous Lorentz trans-

formation

ηf

r = Aηr, Φ'=U(Λ9a)Φ, ψ'=U(Λ9a)Ψ
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the components of Pα transform according to

(Φ\PAt\Q) Ψf) = ΣD«>M)(Φ,PΛ(t,Q)Ψ) Φ e H , ΨeDo (2.10)

where D(Λ) is a finite dimensional representation of the homogeneous
Lorentz group.

(ii) Causality. Let t e 2fxn, fe@η be test functions satisfying

t(xηi...ηa-i)f(η) = O (2.11)

if (xr — y)2 ^ 0 for at least one r = 1,..., n. Then

y = 0 if ΨeD0. (2.12)

We want to formulate a hypothesis concerning the relative growth
of matrix elements of P for ρ->0. To this end we consider the set <stfN

of all functions

φ(Q) = Σ(Φκ,Pακ(ίκ, ρ) Ψκ), ΨκeD0 (2.13)

which do not vanish stronger than ρN in the limit ρ-*0, i.e.4

lim-^-ΦO. (2.14)

In (2.13) the Φκ are arbitrary vectors of Hubert space, the Ψκ are elements
of the domain Do. The tκ denote test functions in ^(R4a).

We first assume that the ratio of any given two functions of s/N has
only one accumulation point, i.e.,

l i m i φ > exists or lim %@- = oo . (2.15)
β-o φ2(ρ) ρ-o φ2(ρ)

We then define an equivalence relation in j / N . φ l 9 φ2 are said to
have the same behavior near ρ = 0

Φι~Φi

if their ratio is finite in the limit ρ->0

lim -^-ΦO, oo.
ρ->0 ψ2

Otherwise we say that φ1 and φ2 behave differently near ρ = 0 and use
the notation

ψi > ώ2 if l i m
 -T^- = °°

0
4 This includes the case that lim

Q^O ρ'
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and

0! <φ2 if lim -~- = ° •

With respect to the relation ~ we introduce equivalence classes of siN.
For two equivalence classes ^, W we write

if

l i m - ^ ^ o o for φe%, φ'eW.
Q-+0 φ

We formulate the following hypotheses:

Hypothesis 1. There are at most n functions (2.13) which do not
vanish at ρ = 0 and behave differently near ρ = 0. In other words, the
number of equivalence classes of si0 is finite.

Hypothesis 2. For every N there are at most n(N) functions (2.13)
which do not vanish stronger than ρN and behave differently near ρ = 0.
In other words, the number of equivalence classes of siN is finite.

Hypothesis 3. si denotes the set of all functions (2.13) without further
restrictions. (2.15) is again assumed for any two functions of si.

Let φ be a function of si and siψ denote the set of all χ e si with
χ < φ. Then we assume that si and any siφ contain maximal elements.

An element ψ of a subset & Q si is called maximal if

ψ>χ or ψ~χ

for any other χ e &.

3. Principal Part

The operator Pα(ί, ρ) was defined by Eq. (2.5) as a distribution in
Sfχη(D0). We prove for Pa the following

Theorem 1. Hypothesis ί is necessary and sufficient for the existence
of the principal part

P.(t,g)= ΣfMCkΛ(t) + R.(t,Q) (3 l)

with the properties
(a) The remainder R is a distribution in £^η(D0) and vanishes weakly

for ρ->0

(t,β)Ψ) = 0 for ΦeJf, Ψ e ΰ 0 . (3.2)
ρ->0
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(b) Near ρ = 0 the functions fk(ρ) are non-vanishing and ordered ac-
cording to decreasing singularity

lim A±±ψ-=0. (3.3)
e-*o fk(ρ)

lim/B(ρ) + 0 . (3.4)
ρ-*O

(c) The Ck(t) are linear operators on Do and distributions in ^η(D0).
The operators Ck(t) can be chosen linearly independent. The Lorentz
ίnvariance of the theory implies

Lorentz Invariance of Ck(t). Under a homogeneous Lorentz transforma-
tion (2.9) the components Cka transform according to

(Φ\ CkAt') Ψ') = ΣD«'M) (Φ, Cka(t) Ψ) ΦeJf, ΨeD0. (3.5)
α

The causality postulate implies

Locality of Ck(t).The operators Ck{t) and Oj(f) (anti-) commute

ίCMOj(r)l±Ψ = 0 for ΨeD0 (3.6)

if the test functions t e @xη and fe@y satisfy

t(xηί...ηa-1)f(y) = 0 for (x-y)2^0. (3.7)

The operators Ck(t) and Cz(s) (anti-) commute

{CUt)Φ,Cι(s)Ψ)±{Cf(s)ΦXk(t)Ψ) = O for Φ,ΨeD0 (3.8)

if the test functions satisfy

t(xηί...ηa-ί)s(yζ1...ζa_1) = O for (x-y)2^Q. (3.9)

Proof We first show that Hypothesis 1 follows from (3.1) and (a)-(c).
Let Φ G Jt?., Ψ G Do, then each matrix element of Pα is represented by

(Φ, Pa(t, Q)Ψ)=t fM (*> Cka(t) Ψ) + (Φ, Λ«(ί, ρ) Ψ)
fc = l

lim{Φ,Rx(t,ρ)Ψ) = O

which shows that J / 0 h
a s o n l y a finite number of equivalence classes.

We next prove that Hypothesis 1 is sufficient. If s/0 is empty

lim(Φ,Pβ(ί,ρ)?P) = O, ΨeD0

and we may set
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If s/0 is not empty we denote its equivalence classes by # l 5 . . . , c€n and
number them according to decreasing strength of singularities

<#,>-><#„.
Let

φ(ρ) = Σ (Φκ, PXκ(tκ, ρ) Ψκ) € «! (3.10)

be an element of (&1. Since either

lim(Φκ,Paκ(tκ,ρ)Ψκ) = 0
ρ->0

or

there must be a matrix element

fΛQ) = (Φ,P*(t,Q)Ψ)e«i Φ = ΦK, Ψ=ΨK, t = tκ, ά = aκ (3.11)

belonging to <g1 for at least one value of K. We will show that the limit

C^lim^-f (3.12)

exists in the weak sense and defines a non-vanishing field operator. First
we note that the limit

^° MQ)

exists for all Φe^Ψ eD0. It does not vanish identically since

(3.13) implies the existence of a vector X(ή with

P, f β ^ ψ\ = (Φ, X(t)) (3.14)

for every Φ e J ί , ΨeD0

 5.
X ^ C ^ ί ) ^ (3.15)

defines a linear operator C^ί) on the domain Do. This yields (3.12) in
the sense of weak convergence.

Since

(Φ.CWΪ H h m <ί F<> ^ -

This follows from the weak completeness of the Hubert space.
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the matrix elements (Φ, C1 (t) Ψ) are distributions in 6^η for every
Φ,ΨeD0. Hence

^ f (3.16)

exists as a distribution in £^η(D0).
Starting from

P1(ί,ρ) = P(ί,ρ), Q(ί) and Λ(ρ)

we will construct a sequence of operators Pk(t, ρ), Ck(ί) and functions
fk(ρ) which are related by the recursion formulae

^ f ΦO, (3.17)

n(ί ? β) = Λ(β) Q(ί) + Pfc+1(ί, ρ). (3.18)

We use the following hypothesis of induction:

(i) Distribution properties. For ρ Φ 0 the operator Pfc(ί, ρ) is a dis-
tribution in £%η(D0).

(ii) Growth of matrix elements for ρ-»0. Let ^0(P fc) denote the set
of all functions

φ(ρ)=Σ(Φκ,Pkaκ(tκ,ρ)Ψκ),

with the property

Then

if) a Ί^P XUΨκ cr <7t , i κ

Iim0(ρ) + O.

G Do , tκ e 99(R4a) (3.19)

(3.20)

ΣVj (3.21)
j = k

Under this hypothesis we will prove that (3.17) exists and that the
operator Pk+ί defined by (3.18) again satisfies the conditions of the
hypothesis.

First we choose the function fk(ρ) which will be used for defining Ck

as a non-vanishing operator. According to statement (ii) of the hypothesis
any function φe^k is also an element of <stfo(Pk) and can therefore be
written as

φ{ρ)=τ(Φκ,Pkaβιoρ)Ψκ), ΨκeD0.

Since either

]im(Φκ,Pk0ίκ(tκ9ρ)Ψκ) = 0
ρ-»0

or
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it follows

(Φκ>PkΛκ(tκ,Q)Ψκ)eVk (3.22)

for at least one value of K. We choose (3.22) as the function fk(ρ). As in
the case of Cx it follows that the weak limit (3.17) defines a non-vanishing
distribution in S^η(D0). By (3.18) the distribution properties (i) follow for

In order to prove (3.21) for Pk+ί we first show

j*o(Pk+1)£s/o(Pk)' ( 3 2 3 )
Indeed we have

Σ(ΦK, P k + 1 ^ ( ί κ , β ) Ψκ) = Σ (Φκ, P k ϊ κ (ί κ , β) Ψκ) e i o ( P , )

since
{Φ, Pk+1Jt, ρ) Ψ) = (Φ, PkJt, ρ) Ψ) - (Φ, PkΛ(t, Q)X)

X = (Φ, CkJt) Ψ) Ψ, fk(ρ) = (Φ, Pkr£ Q) Ψ).

Next we show that the type %>k is missing in s/0(Pk+ί). Since

lim M # M β l i m i*><f,<i>Ψl _ {φf c{{) ψ) =

holds for any matrix element of Pk+ί between Φe Jf, Ψ eD0 it follows

ta 777-0

for φ(ρ)estfo(Pk+1). Hence 0(ρ) belongs to a type ί? with ^ < ^ f c

Λ + I ) = 0 . (3 2 4 )

Finally we check that any c€ι(l>]) is contained in s/0(Pk+1). Let
φ * ( / > k), then (statement (ii) for Pk)

φ(ρ) = Σ (ΦK9 Pkaβκ, Q) Ψκ) = fk(g) Σ (Φκ9 Ckaκ{tκ) Ψκ)

+ Σ{Φκ,Pk + 1,aκ(tκ9ρ)Ψκ).

From fk e ζ€k and

(Φκ,Pk+i,«κ{tκ,ρ)Ψκ)<fk (3.25)

it follows that

and

φ(ρ)=Σ(Φκ,Pk+1>aκ(tκ,ρ)Ψκ).

Hence

1) for
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(3.23-25) imply the desired relation

α = k + l

This completes the proof of the hypothesis of induction.
Iterating the recursion formula (3.18) we obtain (3.1) with

Since ^ o (P w + 1) = 0 we have (3.2). / f c(ρ)e^k implies (3.3-4). Hence all
conditions (a)-(c) are fulfilled.

In order to check the transformation law (3.5) we assume that for
some value of k the relation

ΨεD0 (3.26)

has been shown for a Lorentz transformation (2.9). Dividing (3.26) by
fk(ρ) and taking the limit ρ^Owe obtain

ΨeD0 (3.27)

as transformation law for Ck. By the recursion formula (3.18) relation
(3.26) is then also true for Pk + ί.

For the proof of the local properties we assume as hypothesis of
induction that

(i) the (anti) commutation relation

[Pk(ί, ρ), O//)] ± Ψ = 0 , Ψ 6 Do (3.28)

holds for test function te£fχrp feSfy which satisfy

ί(*^i - 'Jα-i)/ϋ') = 0 (3.29)

unless

( X - J 0 2 < O and (xr-y)2<0, r = l α, xr = x + ρ^iy). (3.30)

(ii) The (anti) commutation relation

(Pk(ί, ρ) Φ, Cj(s) Ψ) ± (Cf(s) Φ9 Pk(t9 Q)Ψ) = 0

for Φ,ΨeDOi j = l fc — 1

holds for test functions t e @aη, s e @vζ which satisfy

t(xη1...ηa-1)s(yζ1...ζa_1) = O (3.32)

unless (3.30) is valid.
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(iii) The (anti) commutation relation

(Pk(t, ρ) Φ, Pk(s, σ) Ψ) ± (Pk(s, σ)* φ, Pk(t9 Q)Ψ) = 0

for Φ,ΨeD0

holds for test functions t e 0XIJ1, s e Θyζ which satisfy (3.32) unless

(x-y)2<0 and (x r -y π ) 2 <0

= x
(3.34)

Under this hypothesis we will prove that the operator Pk+1 again satisfies
the conditions (i)-(iii).

Suppose the test function t e @xη and fe @v satisfy

ί(*ft...*β-i)/(y) = 0 if (x-y)2^0. (3.35)

Then (3.28) holds provided ρ is small enough that all x + ρηr in the
support of t are sufficiently close to x such that (3.29-30) is satisfied. For
matrix elements between vectors Φ,Ψ eD0 one obtains

0 = (Φ, [P(ί, ρ), O;(ί)] ± y) = (*, P(t, ρ) Ψ!) ± (Φ; P(ί, ρ) !P)

Ψ' = Oj(f)Ψ, Φ' = O?{f)Φ.

Dividing by fk(ρ) and taking the limit ρ^-0

o = (Φ, Q(ί) y ) ± (Φ; ck(t) ψ) = (Φ, [Q(ί), oy(/)] ± y)

follows. Since this relation holds for any Φ e Do we have

[CJk(ί),O/(/)]±5ϊr = 0 ΨeD0 (3.36)

for test functions satisfying (3.35). (3.28) and (3.36) imply

[Pk+1(ί, ρ), O7 (/)]± Ψ = 0 f G D 0 (3.37)

for test functions which satisfy (3.29) unless (3.30) is valid.
Dividing (3.33) by fk(σ) and taking the limit σ->0 we find that (3.31)

is also valid for j = k6. Dividing (3.31) by fk(ρ) and taking the limit
ρ->0 we obtain

(cfc(t) Φ, c/5) ψ) ± (cf(s) Φ, ck(ί) y)=o

for Φ,ΨeD0, 7 = 1,...,*

It is used here that the adjoint operators Cf(t), Pt*(ίρ) are defined on Do and satisfy

weakly on Do. A proof of this statement will be given in a separate paper by comparison
of the expansions of Pi (tρ) and Pf(tρ).
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for test functions satisfying

t(xηί...ηa-1)s(yζί...ζa_1) = O if (x-y)2^0. (3.39)

F r o m (3.31) and (3.38)

(P k + I (t) Φ, Cj(s) Ψ)± (Cj(s)* Φ, Pk + 1(t) Ψ) = 0 ,

Φ , « F e D 0 , J = 1 fc,

follows for test functions which satisfy (3.29) unless (3.30) holds.

For test functions ί, s with (3.32) unless (3.34) the relations

ds9σ)Φ9Pk+1(t9ρ)Ψ) O

for Φ,ΨeD0

follow from (3.33), (3.31) (with j = k) and (3.38).

The relations (3.37), (3.40-41) confirm the local properties (i)-(iϋ) for

the operator Pk+ί. (3.36) and (3.38) represent the local properties (3.6-9)

stated in Theorem 1.

We finally prove that the Ck can be chosen to be linearly independent

without changing the properties (3.1-9). Suppose there is a linear relation

with all aκ =j= 0. We express the Ckκ with the highest subscript b = kκ by

b-l

Q = - Σ βkCk
k = ί

Then

k=l j=l

The new coefficients again satisfy the conditions (3.3-4). By induction

all linear relations among the Ck can be eliminated until an expansion

(3.1) with linearly independent Ck is obtained. This completes the proof

of Theorem 1.

4. Asymptotic Expansion

Concerning the asymptotic expansion of P(ί, ρ) near ρ *= 0 we state

the following

Theorem 2. Hypothesis 2 is necessary and sufficient for the asymptotic

expansion

H + 1(t,Q)) (4.1)
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with the properties
(a) the remainder Pk+1 is a distribution in ^χη(D0) and satisfies

l i m = 0 k >

e->o o"
ΦeH, ΨeD0,

lim(Φ,p ( t g ) ^ = 0 ( 4 3 )

(b) ί/ze functions fk satisfy

lim%lM=0. (4.4)

(c) 77ιe Ck(ί) are linear operators on Do and distributions in S%η(D0).
It can be arranged that a finite number of Ck(t) are linearly independent
Moreover, the operators Ck(t) have the invariance and locality properties
stated in Theorem 1.

Proof Let & denote the set of all functions (2.13) which satisfy (2.14)
for some value of N. We have

« = Σ *N.
N = ί

We denote the equivalence classes of M by

* Ί > ••• >^k> "
where

are the equivalence classes of jtfN. The induction procedure of the last
section is then easily extended to any value of k. To this end statement
(ii) (below Eq. (3.18)) is generalized to

(ii) Let ^N(Pk) denote the set of all functions

φ(Q)=Σ(Φκ,Pkaκ(tκ,ρ)Ψκ)

Φκe3>?, ΨκeD0,

with the property

t h e n

Eq. (4.2) then follows from the fact that the set ^ N ( P k + 1 ) is empty for
k>n(N).

8 Commun. math. Phys., Vol. 24
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We finally have

Theorem 3. Hypothesis 3 is necessary and sufficient for the expansion
(4.1) with properties (a), (b) and (c) except for Eq. (4.2).

For the proof we construct an infinite sequence of equivalence classes

<e1><e2> -" ( 4 5 )
of si in the following way. ^ is the set of all maximal elements of si.
Let φ be an element of # k . Then ^ f c + 1 is defined as the set of all maximal
elements of siφ. The induction procedure of the last section can then be
applied to the sequence (4.5).

5. Miscellaneous Remarks

Throughout this work Eq. (2.15) was assumed which excludes oscil-
lations at ρ = 0. If (2.15) is violated operator product expansions may
still be set up by considering special sequences ρn with lim ρn = 0.

The Hypotheses 1-3 can be relaxed in many ways by restricting the
test functions and state vectors in the definition of the functions (2.31).
We list the following possibilities:

(1) The test functions tκ are different from zero for space-like η only

tκ{x,η) = 0 if ηj^O.

(2) The test functions tκ are different from zero for time-like <η only

tκ(x,η) = o if η}£0.

(3) The Fourier transforms of tκ have compact support.
(4) The vectors Φκ, ψκ represent states of bounded energy-momentum.

The definition of classes siN is then modified accordingly. If Hypotheses 1
or 2 are used with (4) the expressions

(Φ,Ck(t)Ψ) (5.1)

might not define linear operators Ck(t) in Hubert space. But (5.1) may
still be interpreted as a bilinear form in Φ and ψ.

We next discuss the alternatives which occur in case Hypothesis 1 is
not valid in any acceptable form. Let s/0 be the class of functions (2.13)
which do not vanish for ρ-^0 and are defined with appropriate restric-
tions on the test functions and state vectors. If Hypothesis 1 does not
hold there are an infinite number of equivalence classes in si0. They are
totally ordered by the relation >. We then have the following cases

(a) There exists no maximal element among the equivalence classes
of si0. Then to any function (2.31) which does not vanish at ρ = 0 another
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function φ' in jtf0 can be found such that

lim —— = oo .
ρ->0 φ

This means that P(ί, ρ), considered as an operator, does not have a leading
singularity.

(b) There exists a maximal element (^ί among the equivalence classes
of jrf0. Then a sequence of classes

> ». >Vj> ... (5.2)

can be constructed such that Γ, is the maximal element of the difference set

We then have the two possibilities
(bx) The sequence (5.2) terminates for j = m because Δs has no maxi-

mal element. Then (3.1) holds for n = m, but some matrix elements of R
diverge for ρ->0 and the operator R does not have a leading singularity.
Eq. (3.1) gives the leading singularity for at least some matrix elements
of P.

(b2) The sequence (5.2) does not terminate. Then (3.1) holds for any n,
but some matrix elements of R diverge for ρ->0.

The form of the principal part and the asymptotic series is of course
not unique. New operators C'k and functions fk may be introduced by
certain triangular transformations without changing the conditions
(3.2-6) and (4.2-4). These problems will be discussed in a separate paper.

One of us (W.Z.) thanks Dr. G. DelΓAntonio for many helpful discussions. We are
grateful to the members of the Aspen Center for Physics for their hospitality during our
stay at Aspen where this work was begun.
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