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Abstract. In [1] it was shown how to attach a boundary to any space-time. In the
present paper a boundary is constructed for any bundle associated with the frame bundle
of a space time. In such a way limits of tensor fields at boundary points of a space-time are
defined. Using this we show that the Lorentz metric has always a unique continuous
extension to the ^-boundary of the space-time.

1. Introduction

In a recent paper [1], one of the present authors described a con-
struction of a boundary M to any incomplete space-time M. The con-
struction determines the point-set and topological structure of M
uniquely. The question, if the notion of vectors, tensors, metric, ect,
could be given a good sense at the points of M, remained open. We shall
show that there is a natural and very general way to do this. The notation
of [1] will be used throughout.

Tensors can be considered as objects determined by their components
in a linear frame and a transformation law of these components. Now, the
construction of fc-boundary yield a useful by-product — the boundary
L{M) of the linear bundle. The idea is to regard the points of L(M) as
generalized frames and to define tensors by means of their components
therein. When the manifold is extendable beyond the boundary, this
definition of boundary tensors coincide with the usual one. We have,
moreover, a topology on the space of all such tensors: two "near" tensors
must have "near" components in "near" frames. More generally, all
associated bundles of L(M) can be completed in this way.

Some simple applications to the tangent bundle of two-dimensional
space-times is given in Section 3.
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In Section 4, the Lorentz metric is defined in the boundary points.
The Lorentz metric on M can be regarded as a differentiable function
g: T(M)-*R such that its restriction g\Tp{M) to the tangent space Tp(M) is
a quadratic function of signature ( + ,—,—,—) for every p e M . Then,
natural generalisation would be a continuous extension g of the function
g to T(M\ where T(M) is the completition of the tangent bundle T(M)
as defined in Section 2. T(M) is dense in T(M\ so if g exists, it is unique.
We shall show that g always exists, and that its restriction g\^ to Tp is a
quadratic function of signature ( + , —, —, —) for every peM such that
Tp is a linear space.

2. Associated Bundles

Let Z be a differentiable manifold, on which G acts differentiably to
the left. Then, G acts as a topological group on L(M)xZ to the right by
the rule (u, z)- g = (u- g.g'1 • z). Denote Z(M) the set of all orbits of
G in L(M) x Z. The map ^ : L(M)xZ-*Z(M) sends every element of
L(M) x Z into its prbit. The requirement, that n1 be continuous and open
defines a topology on Z(M). The topological space Z(M) contains the Z
associated bundle Z(M) of L(M) as a subspace; Z(M) will be called
fc-completition of Z(M). The map n2 : £(M) x Z-»L(M) sending every
pair (u, z) into u is continuous and open [3]. Let X e Z(M). n^iX) is a
class of elements of L(M)xZ having the form (u- g,g~x • z), where
w e L(M) and zeZ are fixed, while g runs through G; therefore %2{

ni * PO)
= u-G and 7c(7c2(7cf 1(X))) is_exactly one element of M. If we define
Kz = n°7i2

o ni\ nz: Z(M)->M is a map, and TTZ must be continuous and
open, because n, n2, and n1 are. nz is called projection of Z(M) onto M.
The restriction of %z to Z(M) is the bundle projection of Z(M).

Lemma 1. It holds

(1)

(2)

) , (3)

(4)

Fig. 1



The b-Boundary of Tensor Bundles 287

Proof. (1) follows directly from the definition of nz. (2) follows from
the relation %2(n^1(X)) = u • G. (3) follows from the definition of nz.

lfuen~1{p), then n1(uxZ)Cnz
1(p), because of (1), n2(uxZ) = u, and

n(u) = p. Let X e nz* (p) and (v, z) e rcfx (X). Then there is g e G such that
v = u-g and this implies (w, g - z)en[1(X). From this, we obtain even
n1(uxZ) = nz

1 (p), that is to say, (4).
Let u e L(M) and Gu be the set of all x e G such that u-x — u. Gu is a

subgroup of G, called fix-group of u. If w e L(M), GM contains only identity
e. If v = u - g, g e G, then Gv = g'1 • GM • g. If GM is non-trivial, TT(W) is called
a degenerate point of M. G acts freely on the fibre of any non-degenerate
point p, and there is a unique matrix a(v,u)eG such that v — u-a(v,u)
for every two u, v en~1(p). The map a:n~1{p)x n~1(p)^>Giscontinuous,
for p e M even differentiate.

The following two Lemmas show what the sets n^ip) look like.

Lemma 2. Let peM, uen'1^) and Z/Gu be the topological space,
whose elements are orbits of the group Gu in Z and whose topology is
determined by the requirement, that the map nu:Z-*Z/Gu sending every
point ofZ into its orbit be continuous and open.

Then, n^ip) is homeomorph to Z/Gu.

Proof. Eq.(4) implies that the map cpu\Z^n~1(p) defined by cpu(z)
= n^u, z) is onto. cpu is continuous and open, because n1 is. Let zl9 z2 be
two elements of Z satisfying (Puiz^) = cpu(z2). Hence, there is g e G such
that {u*g,g~x -z±) = (w, z2), i.e., geGu and z2eGu-z1. The map <p'u: Z/Gu

-^nz1ip) given by <p'u = cpu ° n'1 is, therefore, one-to-one, and furthermore
continuous and open, so cp'u is a homeomorphism, q.e.d.

Lemma 3. Let p be a non-degenerate point of M and Z be a vector
space, on which G acts linearly to the left. Then n'1^) is a vector space
isomorph to Z.

Proof. The map cpu is a homeomorphism of Z onto n^ip); hence,
<pu defines a linear structure on n^ip) by the rules:

IfAeR, X, Yen^ip), then

X.X = <pu{X. q>uHX)\ X+Y = cpu{cp-\X) + q>-\Y)).

It is easily verified that all the corresponding axioms are satisfied. More-
over, the structure does not depend on the particular choice of u e n*1^):
choose v e T I " 1 ^ ) ; then <pv(z) = (pu{a~x(u, v) • z), so that (p^iX) = a(u, v)
• cp~1(X). This implies

<pv(X - cp;HX)) = q>u{a-\u, v)-X. a(u, v) • cp'1 (X)) = cpu(X • q>
1 q>u(a-\u, v)(a(u, v) • q>;\X) + a(u,

q.e.d.
21 Coramun. math. Phys., Vol. 23
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At this stage, it can be already recognized, to what extent our main
goal is reached. If Z(M) is a fo-completition of a tensor bundle Z(M\ then
n^ip) is a tensor space if and only if p is non-degenerate. There is no
natural way to define tensors in degenerate points.

An example of degenerate point is the cusp point of the ordinary
conus: define the positive definite metric

on a two-dimensional manifold M with coordinates r,(p,0<r,0^(p<(po,
cpQ identified with 0. Then the fo-boundary consists just of one point r = 0.
The series of frames un in points defined by their components rn = 1/w,
cpn = 0 with frame vectors Xn = (1,0), Yn = (0, n) converges and defines a
boundary point of L(M). Now, take the series vn of frames in the same
points obtained by parallel transfer of un along the line r = rn. The
length of the line in L(M) is cpo/n, whereas vn is always rotated by the same
angle of <p0 relative to un. Thus, un and vn define the same point of L(M\
but vn = un- g, where g is non-trivial.

In order to vizualize, what a geometrical meaning the boundary
points of Z(M) have, let us state the

Lemma 4. Given a curve C: (0,1] ->M in M, C((0,1)) C M, p = C(l) e M
and an arbitrary continuous field u(t) of linear frames along C (i.e.,
n(u(t)) = C(t)) defining an end point uen'^ip). Let a curve z:(0,1)->Z
in Z have the property: there is zeZ such that, for every neighbourhood
U of the set Gu- zinZ9a8 can be found satisfying: d > 0 and z((l — S, 1)) C U.

Then the Z-field X: (0,1)-»Z(M) along C defined by

has a well defined limit limX(t) = n^u, z) in Z(M).

Proof. Choose a neighbourhood V of X in Z(M). 7^ is continuous, so
7cf 1(V) is a neighbourhood of (uxGu- z). Now, there is 5 > 0 such that
the curve (u(t), z(t)) lies entirely in 7uf 1(F) for t > 1 — 5; then

q.e.d.
Lemma 4 implies in particular that a tensor field along a curve

terminating in a non-degenerate boundary point has a limit, if its com-
ponents in aparallelly propagated frame have a well-defined limits when
approaching the boundary. And conversely, to every boundary tensor
such a field can be constructed, taking, e.g., the components constant.
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3. Accessibility

We choose now Z = T = R4, so that every zeZ has four components
z\ i = 0,..., 3, and define the action of G on Z as follows

The corresponding Z associated bundle is the tangent bundle T(M).
The tangent space TJM) to M in p is defined by Tp(M) = 7rf 1(p). The
tangent vectors to M in p are defined by their components in linear
frames. This definition is convenient, if we know what a linear frame is
before we know what a tangent vector is, as in the case of the boundary M.
For points of M, another definition is usually used (cf. [2], p. 69) - a
tangent vector is a class of smooth curves and a linear frame is an ordered
four-tuple of linearly independent tangent vectors. This reversed approach
emphasizes that property of tangent vectors which is basic for applica-
tions : every smooth curve through peM has a tangent vector at p and,
for any tangent vector X at p, there is at least one smooth curve having
X as its tangent vector.

It is, therefore, of some interest to know what relation the smooth
curves have to the tangent vectors at the boundary points as they were
defined in the preceding Section. The following approach seems us to be
natural. Let C: (0,1] -• M be a map with properties:

1) C((0,l))cM,p = C(l)eM,
2) C is continuous on (0,1] and smooth on (0,1). We shall say that

the curve C has a tangent vector X e Tp at p, if there is a continuous map
C: (0,1] -• f(M) such that C(t) is tangent to C for all £e(0,1) and
(7(1) = X.

The set Ap c Tp consisting of all tangent vectors X at p such that at
least one curve C exists having X as its tangent vector at p will be called
accessibility of the point p.

The following simple Lemma enable us to illustrate the meaning of
our construction.

Lemma 5. Denote Jt the two-dimensional Minkowski space-time with
the metric ds2 = dt2 — dx2 in some coordinate system t, x9 L{M) its linear
bundle with the projection n and T(Ji) its tangent bundle with the projection
%T. Let M be a subspace of J( such that the boundary of M in M is a
piece-wise Cl-differentiable curve C. Then M = C, L(M) = n~1(C\

t
By means of Lemma 5, the accessibility can easily be determined in

the following cases as listed in the Table 1.
We observe that the point p of M, at which the boundary M is C1,

satisfies the following condition: Let Ap be the boundary of Ap in Tp;
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then, for every neighbourhood U oiAp in T(M\ there is a neighbourhood
Up of p in M such that AqcU for any <? e UpnM.

These examples suggest that accessibility provides information about
C1 -differentiability of M in regular, piece-wise differentiable cases. More
detailed analysis goes beyond the aim of the present paper.

Table 1

M peM

t-\x\<0 x(p)>0
t — |JC| < 0 x(p)<0
t-\x\<0 x(p) = 0

((x-x(p))/x2(p))cos(l/x(p))
t<-l x = 0 x(p) = 0 t ^ - l
t -s in( l /x)<0 x=t=O

In the first column, the condition is given that is satisfied by the points of M. In the
second column, the condition is given that is satisfied by the coordinates of the point peM,
whose accessibility Ap is described in the third column by means of a relation between the
coordinates of a point of Ap. Ap is regarded as a sub-set of Jt, because Tp is isomorph to
Jl for every peM.

4. Lorentz Metric

A Lorentz metric on M can be considered as a differentiable function
g: T(M)->R such that the restriction g\T of g to Tp is a quadratic form
of signature ( + ,—,—,—) for every peM.

Definition. Lorentz metric on M is the continuous extension g of the
function g to T(M).

Theorem. Continuous extension g: T(M) -+R of the function
g: T(M) —> R is in every point of M well-defined. If Tp is a linear space,
then g\T is a quadratic form of signature ( + , —, —, —).

We show some Lemmas before approaching the proof of the Theorem.
Consider a positive definite Riemannian space Vn on which an

involutive fe-dimensional distribution S is given. Suppose that the set
Q of all maximal integral manifolds is a differentiable manifold and that
the projection nQ mapping a point of Vn into the integral manifold passing
through it is differentiable. Because Vn has a positive definite metric, S
determines uniquely an orthogonal distribution S1. Clearly Tu(V

n)
= 5M©Sj- holds and (TCQ)̂  induces a vector space isomorphismus
S$-+T1C{U)(Q). Therefore a tangent vector Z e Ta(Q) defines uniquely a
vector field Z along the integral manifold a, which is orthogonal to a at
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any point, by the condition {n^Z = Z. Now we can formulate

Lemma 6. / / g(Z, Z) is constant along UQ 1(<X) for any Z e Ta(Q), then
gQ(Z,Z): = g(Z,Z) defines a positive definite metric on Q, called the
quotient metric, which satisfies

2)*X, {nQ\X) ^ g(X, X\ XeTu(V
n). (5)

Furthermore

dQ(cc, P) = d(x, %Q 1 (p)) = d(n ~1 (a), y) = d(%Q* (a), %Q 1 (/?)),

holds. ^

Remark. Eq. (6) means that the integral manifolds are equidistant
and that the distance is given by the quotient metric.

Proof. From the definition of Z corresponding to Z it is clear that
gQ is well defined. To prove (5) we decompose Xe Tu(V

n) into its com-
ponents in Su and S^. Then

g(X, X) ^ g(X\ X1) = gQ((nQ)*X, (nQ)*X)

implies (5). To prove (6) consider a curve q(t) joining a and p. This curve
defines a 1-parameter family of integral manifolds of S. The orthogonal
curves have the same length as q(t) and this together with (5) implies (6).

Let us now turn to the frame bundle.
In general, L(M) consists of several components, which are isometric.

Choose arbitrary one of them and denote it by LC(M). Let OC(M) be the
set of all orthonormal frames in LC(M). OC(M) is a component of the set
of all orthonormal frames in L(M). Furthermore, it is a closed, ten-
dimensional sub-manifold of LC(M). Denote by Gc the fix-group of LC(M)
in L(M). Elements of Gc act on LC(M) as diffeomorphisms, thus every
set of the form OC(M) • g,ge Gn is a closed, ten-dimensional sub-manifold
of LC(M), called Lorentz sub-manifold. Denote by J£?r the fix-group of
OC(M) in LC(M). <£c is a sub-group of the Lorentz group ££ including the
component of identity of S£. The coset space S£jS£c gives the type of
orientability of M [1].

Lemma 7. The Lorentz sub-manifolds form a differentiate ten-
parametric congruence of ten-dimensional equidistant closed sub-manifolds.
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Proof. Denote by Q the set of all Lorentz sub-manifolds of LC(M). The
map 7iQ: LC(M)^>Q sends every ueLc(M) in the Lorentz sub-manifold
OCEQ including u. The requirement, that nQ be continuous and open,
defines a topology on Q.

Choose peM. There is a neighbourhood U of p in M and a differen-
t i a t e and open map rj:n~1(U)^>Gc with the following properties:

The map xp : n~1(U)-+U x Gc defined by

= (n(ulrj(u)) (8)

is a diffeomorphism onto.

r}(u-g) = rj(u)-g. (9)

1 &c. (10)

The properties (8) and (9) follow immediately from the definition of a
principal bundle (cf. [2], p. 294); since OC(M) includes the holonomy
bundle, the "Reduction Theorem" ([4], p. 83) implies that there is a local
orthonormal cross section in LC(M) from which we easily have (10).

The inclusion map iv: n~1(U)^>Lc(M) is a differentiate open map,
because 7c~1(C7) is open.

Every <xeQ defines a non-empty set ocv = 7t~1(U)nnQ1(a). If a and P
are two distinct elements of <2, then the sets QLV and pv are disjoint.
Moreover, n~l(U) = (J aU9 because LC(M) = (J UQ1^). Denote by Qv

oceQ <xeQ

the set of all av and nu:n~1(U)^Qu the map sending every u e TT~1((7) in
the set ocU9 in which u lies. The requirement, that nv be continuous and
open, defines a topology on Qv. It is easily seen that cpx defined by
<PI=TZQ° i\j° Tijj1 is a map, ̂  : Q^-^g; cpx is one-to-one, continuous and
open, so cp1 is a homeomorphism.

JS?f is a closed sub-group of Gr; the set GJS6\ of all left cosets S£c • gf
is, therefore, a differentiable manifold, and the projection map n#: Gc

-> Gr/iff is differentiable and open. From (9) and (10) follows that cp2

defined by (p2 = 7l^°Y\°'Kij1 is a map, (p2''Qu^Gc/^c is one-to-one,
continuous and open, hence cp2 is a homeomorphism.

Denote by cp : Q -> Gf/J^e the homeomorphism defined by(p = (p2°(p:[1.
From the construction, it may easily be seen that

(p(nQ(Oc(M) • #)) = n<?(g).

Therefore, 9 does not depend on U. The map cp defines a differentiable
structure on Q by the requirement that cp be a diffeomorphism. Further-
more, we have
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i.e., every point u e LC(M) has a neighbourhood, on which nQ is diffe-
rentiable, because cp'1^^ and n are. This implies that nQ is differentiable.

Now, it is clear that the Lorentz sub-manifolds form a differentiable
ten-parametric congruence {GJS£C is ten-dimensional).

The group Gc acts on GJS£C to the right as a group of diffeomorphisms
([2], p. 230) by the rule (i?f • x) • g = £>c • xg, so

' 9 •

This action can be carried over to Q in the following way:

i.e.,
(p-1((p(a))<g = <p-1((p(a)-g). (13)

With regard to the differentiability of cp, the action is differentiable. From
(9), (11), (12) and (13) we have

nQ(u • g) = nQ{u) • g . (14)

We will now show, that a quotient metric gQ in the sense of Lemma 6
exists. Choose oceQ and consider the corresponding Lorentz sub-
manifold 7iQ1(a). Take any E of the Lie algebra of Gc such that the vector
field E is orthogonal to UQ 1(a) at one point. Because the tangent space of
TZQ 1(OC) is spanned at any point by Bt and c\kE\ with c\k = const, E is
orthogonal to TIQ1^) at any point. The field E determines uniquely a
1-parameter sub-group g(t) of G and (14) implies that (nQ):¥Ev is the same
tangent vector in Ta(Q) for all points v e UQ 1(a). Conversely every vector
in Ta(Q) can be constructed in this way. As by the definition of the
bundle metric g(E, E) = const, we can apply Lemma 6 and conclude that
on Q a quotient metric exists with the properties (5) and (6). Hence the
Lorentz submanifolds are equidistant.

Lemma 8. Let {un} and {vn} be two Cauchy sequences of points from
OJM), u = lim wM, v = lim vn, and xeGc exists such that v = u • x. Then

n—> oo n^> oo
XG £P

Proof. Suppose that x$J£c. {un-x} is a Cauchy sequence and
\im(un'x) = v [1]. The points un-x lie in the Lorentz sub-manifold

«-*• oo

OC(M) - x 4= 0c(M), which contradicts Lemma 7.
Proof of the Theorem:
Let us denote by 0c(M) the closure and by 6C(M) the boundary of

OC(M) in LjM). The Theorem 4.2 in [1] implies that n~1(p)n0c(M) + &
for every p e M. As Gc is a topological transformation group on Lc(M),
we have then w- J£cCn~1(p)n0c(M) for every wG7r~1(p)n0r(M). But
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from the Lemma 8 it follows that, at the same time, u •
nOc(M). So, if p = n(u),

(15)

for any u e OC(M).
Let p G M and Xen^jp). The class n^iX) includes at least one pair

(w, z), uen~1(p)n0c(M). If (u\ z') is another such pair, then, because
of (15),

u' = u • x

where x e <£c and y e Gu. Suppose y$£?c and choose a sequence {un} in
0C(M) converging to u. The sequence {un • y} lies in the Lorentz sub-
manifold OC(M) • y 4= OC(M), but it has the same limit as {un} has. According
to the proof of Lemma 6, this is impossible. Therefore, we have always

u' = u

z' = x2

where xl9 x2 e ^ f . It follows that every Xen^ip) is, in this way, mapped
in a class ifr • z of T/Sec. Let us denote this map by \i: TC^1 (/?)-• T/JS?f.
Now, define the function / : T->R by /(z) = (z0)2 - (z1)2 - (z2)2 - (z3)2;
clearly f(x • z) = /(z) for any xe<£c\ then, ^ = / ° // is a well-defined map
of 7rf x(p) in .R. This construction can be performed in every point p of
M, so the function g is well-defined on T{M). Obviously, on T(M), g
coincides with the Lorentz metric g on M. If Tp is isomorph to T, then g
is a quadratic form on Tp with just the right signature. It remains to show,
that g is continuous.

Let X e T(M) and n1(u,z) = X. Choose a sequence {Xn} in T(M)
converging to X, and a sequence {Uk} of open neighbourhoods Uk of the
point (u, z) e L(M)xT converging to (u, z). Then 7c1(l/k) is a neighbourhood
of X in T(M) and there is Nk such that, for any n > Nk9 Xn e 7c1(l7k), and
{Nk} is a non-decreasing integer sequence. This means that n^1(Xr)
nUk + 0. Choose (wn, zn)G(yrfx(Xw)nC7fc) for Nk<n^Nk+1. The sequence
(wM,zw) converges in L(M) x T to (M, z) and 7T1(MII,ZII) = ^B. According to
[1], there is a sequence {vn} with the following properties

%(^O = ^ if ^ = «(w«»O »̂»
t?nepc(M)

lim t;n = M, lim a(un, vj = e.
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But then lim z'n = z and we have \img(Xn,Xn) = g(X,X). This implies
n—• oo w~* oo

that, for any s > 0, there is a neighbourhood Ux of the point X e T(M)
such that

\g(Y,Y)-g(X,X)\<s (16)

for every Ye(UxnT(M)). From this it easily follows that (16) holds
for any Ye Ux, because T(M) is dense in T(M).
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