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Abstract. We propose a limiting procedure for obtaining physical states for an
infinite non-relativistic Fermi system. We take the thermodynamic limit of vector states
in the Fock representation of the C.A.R. algebra, representing a condensate state of
"atoms" each of which is formed by 4 fermions. In a simplified example considered in
detail, the limit state has a simple decomposition into the product of two B.C.S. states.
If B+ is the operator creating the "atom" from the vacuum |t/;0F>, it is proved that the
states obtained by taking the thermodynamic limit of the vector states corresponding

oo

to (B+)n \xp0F} a n d E Zn/2(B+)n/(nl)2 |y>o,F> respectively, coincide on the gauge-invariant
n = 0

elements of the algebra for a suitable value of 3.

1. Introduction

We shall present here a procedure for obtaining states over the algebra
of the anticommutation relations (C.A.R. algebra) which are locally
normal, translation invariant and not quasi-free. We recall that a "quasi-
free" state or "generalized free" state is characterized by the property
that its truncated (n, m)-point functions W*m vanish if n + m > 2.

In the simple case considered in this paper, the state of the system
belongs to the closed-convex hull of the set of the quasi-free states when
the thermodynamic limit is performed. However, the procedure we
propose is of a completely general character, and it is probable that new
physical states may be found working along the lines of the present work.

Our state is constructed by means of the following procedure1:
i) We include the one-dimensional system in a finite box of linear

dimension L.

* Partially supported by C.N.R.
1 This procedure has been already indicated in the unpublished report [1]. The

idea of including four-particle correlations in a Fermi system is quite old: see, e.g. Flowers
[2] and Bremond and Valatin [3]. However, to the best of our knowledge, no workable
example of physical state for the infinite system which includes four-particle correlations
is known. The state proposed in ref. [3] is a product state of finite dimensional type in
Powers terminology [4]. Hence by Theorem 5.20 of Ref. [4], this state becomes quasi-
free in the thermodynamic limit if we require translation invariance.
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ii) We consider a suitable sequence QLN of vector states in the Fock
representation of the C.A.R. algebra; these states QLN represent a
physical situation with N/4 condensed "atoms", each of which is formed
by 4 fermions.

iii) We take the thermodynamic limit, in the weak topology, of the
sequence QL N (in other words, we let L->oo, A/-»oo, while the density
N/L is equal to a constant value d, and we compute the limit of the
(n, m)-point correlation functions Wnm).

The methods we shall use are adapted from statistical mechanics
and have been successfully tested [5] in the elementary case of the
B.C.S. state. In this case the "atoms" mentioned are replaced by Cooper
pairs. It follows (see Ref. [5]) that the thermodynamic limit of the
sequence {gLiN} is the gauge-invariant B.C.S. state2. It is well known

that this state can be decomposed into the integral j —— of gauge-

dependent B.C.S. states over the phase 8 of the gauge group [7] [8].
Furthermore the gauge-dependent B.C.S. state is the thermodynamic
limit of a vector state arising from the vector eB+ |ty>OjF>, where B+ is
the operator creating a "Cooper pair" and \xpOtF} is the Fock vacuum.

In our case, too, the thermodynamic limit of the states QLN can be
V de

decomposed into the integral j ——of gauge-dependent states. However,
since now the "atoms" are not pairs of particles but are composed of
four particles, it turns out that these gauge-dependent states arise from

oo m+y
the vector £ -T-^IVO.F)-

n = 0 \n')

The form chosen for the operator B+ has been suggested by the
necessity of simplifying the calculations. With this choice (see Eqs. (6),
(12)), it turns out that in the thermodynamic limit the state QL N becomes
simply the product of two gauge-invariant B.C.S. states. Probably more
interesting states may be obtained by taking more general form of the
operator B+.

2. The Canonical State

We use the same notations as in Ref. [5]. The field operators in the
Fock representation nF of the C.A.R. algebra 2l(L) constructed over the
Hilbert space J§?2(L) are aF(f) and its hermitian adjoint aF(f)+. Hence
heuristically they are defined by3 :

M / ) = j aF(x)f(x)dx; aF(f)+ = J aF(x)+ f$)dx (1)
L L

2 Of course this result has long been known to physicists. See for instance Ref. [6].
3 We indicate with the same symbol the "box" L and its linear measure.
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where aF(x) is the Fermion "field", fe££2(L), IV>O,F> denotes the Fock
vacuum and Hp denotes the Hilbert space of the representation n\.
Finally we set:

f{) ikjX' XGL' kj=jl~; J = ̂ ±^±2"- (2)

and
(3)

The operator that creates from the Fock vacuum |V>O,F)
 t n e "atom"

of particles mentioned in the introduction, is defined by*:

KL=~ +f +f c^k^aU^aUy (4)
j — — oo y = — oo

(the label 4 indicates that Bl L creates 4 particles).
Without loss of generality, we can assume that c fulfils the conditions:

c(k, h) = c{h,k)\ c(-Kh) = c(k,-h) = -c(k,h). (5)

Hence BlL can be written simply as:

KL = +f +f c(kp kr)a^a+_kja^a\ • (6)

(A sufficient condition for the operator B% L to be bounded is

CO 00

5: x \c(kJ9kr)\<a*).

We define now a sequence {i?^} of vectors v%]L e H^ by:

^ V I ^ > for w = 0 '1 '2--

Let iVop be the total number operator. Then each vector \v^]Ly is an
eigenstate of Nop corresponding to the eigenvalue N = 4n. Furthermore
|t4M)

L> defines a vector state QLN on the algebras 9I(L') {LgL) by the
formula:

(8)
4,L\V4,L/

4 While the author was using more complicated operators Bl L creating four particles
in a state with zero total momentum, G. Gallavotti suggested the simple form (4) for
the operator Bl L.
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The limit state for the infinite system is given by (when the thermo-
dynamic limit exists and is unique):

QBA,d = weak limit QLN

AT->oo

and is defined on all the local algebras %(L).
For reasons that will be apparent later, we shall call QBA d the canonical

state.
We already know an elementary case in which the limit (9) exists:

assume that the function c is of the form:

c(k,h) = Z(k)tth) where £(-fc)=-£(fc). (10)

In this case B% L = (#2,L)2> where:

As said in the Introduction, the thermodynamic limit of the sequence
QL,N is equal to the gauge-invariant B.C.S. state, for large classes of
functions £. Let us now take for c the more general function:

c(r,s) = ?;l(r)l;1(s) + Z2(r)Us) (12)

where the functions ^l9^2 h a v e disjoint supports EUE2. Furthermore
the functions £l9 £2 are supposed to be sufficiently regular for the results
of [5] to be applicable.

Hence we have:
2 2 (13)

where both B± and B2 are of the form (11), i.e.:

Bt= i w « ; * = i>2. (14)

Since Ex and E2 are disjoint, we have:

LBuBn_ = lB2,Bn~=0 (15)
and of course:

[Br , f lJ ] -=O. (I6)

Let us compute the norm of \v^Ly. Using Eqs. (13), (15), (16) and
taking into account the property that the Fock state is a product state
[4] with respect to any orthogonal decomposition of the one-particle
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Hilbert space £?2{L\ we have:

& ,t 0
n n • ln\ /ti\

V V I I I I /tef' I R2sCR+'>2s'li;i1' \
^ 2. L L/ <VO,FI-OI (-Oi ) IVO,F>

s=o S' = o \ s / \ s /

(2n)!(n!)2 ^ Vs.

It is convenient to define the quantities:

afL= E W ^ W ^ . - ^ J 2 for i=l,2. (18)

Setting ^4,w = < ^ )
L | ^ " ) L > and using Eq. (17) of [5], we have:

<n= tBL(s) (19)
s = 0

where:
L 1 ( ^ 2 2 2 ^ % L ( 2 0 )

Let us denote by T. lim. the thermodynamic limit with JV-> oo, L->oo,

AT
— = d, and let us define:

X-/

d.is) = - ^ ; d2(s) = 4 w ~ 4 s = d - dM (21)

g1{dl)=T. lim. — loga(
2

1
s
)L; gi{d2)=T. lim. — loga2

2
M^2s (22)

4-s , L 4 « — 4 s _ , JL

2 dgi 2 ^g2

= « d d l ; 5 2 ( ^ 2 ) = ^ d d 2 - ( 2 3 )

We know that the limits ^x and g2 exist and are differentiable functions
of the densities dl9 d2 respectively, for all 0 < d1 < dlmax, 0<d2< d2>max
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(see Ref. [5]). Furthermore it can be easily proved that these limits are
uniform in d1,d2 [9]. We shall see that an analogous result holds for

T. lim. — logflj,,, for all 0<d<D = inf. {d1 max,d2 m a x}. We use the

maximum term method: let us assume first that T. lim. —logBL(s)

— = d L
exists; since: L *

n

max BL(s)^ £ £L(s) <; (n + 1) max BL(s) (24)
we have:

T. lim. — log max BL(s) <, T. lim. —

g T. lim. —log f(n + 1) max ,BL(5)

^ i - 1 1 / ^ 1 , r / x

= T. lim. —log(rc + l) + T. lim. —log max B^is)

"u-i L ^ L °=s="
= T. lim. — log max BL(s).

~L~d

Therefore:

T. lim. —log a £ = T . lim. —-logJ5L(s*) (26)

where 5* is a value of s where BL(s) is maximum. On the other hand,
using Stirling's formula, we can deduce from Eq. (20) that for 0 < d < D

F(d1)=T. lim. -

( 2 7 )

= y djlogdt + d 2 l o g d 2 - d l o g y

In order to find the maximum of BL(s) for 0 ̂  s ̂  n (or, which is the
dF

same, for 0 ̂  ^ ^ d) we set -—- = 0. Since d2 = d-d1,wz obtain:

( 2 8 )
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Taking into account Eqs. (23), we have finally:

(29)

Eq. (29), and the condition d± + d2 = d, constitute a system of two
equations in two unknowns. Living aside the discussion of the existence
of the solution (df, d%) of this system, let us assume that such a solution
exists and is unique (it is easy to find pairs of functions £l5 £2 such that
this is the case; we shall see later an example). Then from Eqs. (26), (27),
we obtain :

g(d)=T. lim. —logab9H
—=d L

(30)

We shall now prove a simple product property of the T. limit of the
sequence {^L>4w}. Let AX,A2 denote two elements of the algebra 9l(L),
where At is generated by creation and annihilation operators with
momenta belonging to Et (i=l, 2).

Taking into account Eqs. (19), (20), and recalling that the Fock state
is a product state with respect to any orthogonal decomposition of i f 2(L),
we have:

QLAn(AA2)= ^ ^ ^ (31)

5 = 0

s = 0

where ^L1)4S,^L2)4»-45 denote the vector states arising respectively from
( £ i + ) 2 s f e > and (B2

+)2("-s) |tpo» (see Eq.(9) of Ref. [5]).
Consider now the function BL(s): from the existence of the limit (27),

and the fact that this limit is a differentiable function of d1, it follows
Ld*

(see, e.g. Ref. [10]) that BL(s) has a sharp peak for 5 = 5*= l , the
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width of the peak being of the order5 j /Z , as is the usual behaviour of
the canonical partition function with respect to the number of particles.
Since in our case the function F(d1) corresponds to the free-energy per
unit length of a "one-phase state" it follows [10] that for any s > 0

E BL(s)
T. lim. ^ = 1 (32)

where:

J8= j s : d f - e < - ^ - < d f + e|. (33)

Furthermore we have [5]:

T.Um.

T lim. Q^4n^s(A2) = Qf2\A2) (35)
—T~~d2

where ^ (i = 1, 2) are two gauge-invariant pure B.C.S. states determined
by the relation (see Eq. (36) of [5]):

= f Mm S (fffff t ̂
fc for »=

3l«KW + 1

From relations (31) through (35) and the fact that the limits (34), (35)
are uniform with respect to the densities dh it follows that:

T. lim. QLAn(AiA2) = G ^ J e g W • (37)
4/J , 1 2

Therefore our state has a simple product decomposition in the
T. limit: Let us decompose the one-particle Hilbert space <£2{R) into
the direct sum of three Hilbert spaces Hl9H2, H3 that are defined by6:

Hi = {f:f€Sgf2(R)9 suppor t / ££ ,} for i = l , 2 , 3 (38)

-j +oo

where E3=R-(E1vE2) and /(fe)= —j=- ( e'ikxf{x)dx. Finally let

9l(J3i) (i= 1,2, 3) denote the C.A.R. algebra over Hi9 and let gOtF denote
5 Taking dx as independent variable, the width of the peak is of order 1/j/Z, and

hence tends to zero in the T. limit.
6 The sets Et are supposed to be symmetric with respect to the mapping k^y — k.
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the Fock state. From what has been said, it follows that:

The states g(
dl can be decomposed into an integral of gauge-dependent

B.C.S. states, i.e! (see Eq. (133) of [5]):

QZ= f " ^ r Q&WM f^ * = 1,2. (40)

Hence we have, omitting for simplicity the restrictions to the subalgebras:

_ 2* ddj_ 2? dd^ (1) (2)

0 Z7T 0 Z7C

Since the product of two quasi-free states is quasi-free, it follows
that QBA d belongs to the closed convex hull of the set of the quasi-free
states.

3. The Grand Canonical State

As said in the Introduction, also the gauge invariant state QBA d can
27i j n

be decomposed into the integral J —— of gauge-dependent states. Let

us seek these gauge-dependent states.
We know that by taking the thermodynamic limit of the vector

states corresponding to CB2,L)WIV>O,F)
 a n d exp(|/5^2>L)|t/;o,F> respectively

(see Eq. (11)), we obtain the gauge-invariant and the gauge-dependent
B.C.S. states for the infinite system. It has been proved in [5] that these
states coincide on the gauge-invariant elements of the algebra for an

appropriate value of 3, the relation between 3 and d = being the

same as the relation between activity and density in statistical mechanics.
In order to obtain similar results in the present case, it is necessary

to make use of an idea due to G. Gallavotti7.
Let us restrict ourselves to the case considered by Eq. (10), and let

us define the quantities a\ „, b\n by:

<e^B+^Wo,F\enB+2'L^,F>^ tainf (42)
w=0

J j V o . F > = Etf.,3". (43)

Private communication.
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In the analogy with statistical mechanics that has been extensively
applied in [5], the expressions (42), (43) play the role of grand partition
functions. Hence for the methods of statistical mechanics to be applied,
it is necessary that logaf „, logbj „ be extensive quantities in the thermo-
dynamic limit. It is indeed true that logaf,,, is an extensive quantity for
large n, L. What can we say about logfoj „? We have

(44)

= - ^ r <(BtL)2nWLo,A{BiL)2nwL
o<F) = - ^ [ (2n)!] 24> 2 B

so that —logbj w->oo in the thermodynamic limit, and the analogy

with statistical mechanics does not work. In particular it is not true
that the states (B^L)n\ipofF} and e ^ ^ l y ^ F ) become equivalent on the
gauge-invariant part of the algebra in the thermodynamic limit.

Then Gallavotti suggested to the author that he consider the vector
\L, 3> defined by (see Eq. (7)):

n
oo _*2 / p + \n oo w

\L, 3>= V . —±2il—V>o F > = / r K V ' 3>0- ^ ^

Hence:

<L, 31L, 3> = £ 3 M « } L I < }L> = £ <*3" (46)
«=0 «=0

and it follows from Eq. (44) that the expression logaj M = log#j: n/(2w)!
is an extensive quantity in the T. limit when c(r, s) = £(r)£(s). Therefore
in this case the results of statistical mechanics stating the equivalence
of the canonical and grand-canonical ensembles can be applied, so that
the vector |L, 3) gives rise again to the gauge-invariant B.C.S. state.

Gallavotti conjectured that if A is a gauge-invariant element of the
algebra, the state a, defined by:

QJA)= lim N~>O."J.V*V •-,<»/ (47)
L-KX) (L, 3|L, 3)>

coincides with QBA d on the gauge-invariant elements for an appropriate
value of d, even when the function c(r, s) is not of the form £(r)£(s). We
can easily verify that Gallavotti's conjecture is true in the case considered

in the previous section (see Eq. (12)), since the factor8 . — in

8 Of course the factor — - ^ works equally well.

20 Commun. math. Phys., Vol. 23
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formula (7) assures the existence of the limit T. lim —-logaj n = g(d);
An , L
~L=d

generally the function g turns out to be a differentiable concave function

of the density and the function a\n$ has a sharp peak for n = d(%)-—,
where:

The inverse
The limit:

function 3(d

P(3) =

!)of

I.->oc

1

• L

the

-r

E 4fI«4,»3"

L aArtnl
n = 0

function d($)

log <L, 31^8:

coincides

>

with e

(48)

(49)

exists for all 3§; 0, and we have:

^ (50)

etc. Everything works as in the usual formalism of statistical mechanics
[9-11]. For these reasons we call £3 the grand-canonical state.

Example. Let E1,E2 be the following disjoint subsets of the real
linetf:

where fcMAX is a positive number, and let ^ be the characteristic function
of the set Et (i = 1, 2). Then Eqs. (18), (20) and (22) become:

• • • » '-

/2v-2n'
(v!)2 /n\2 ( v -25

j (53)
(w!)2(2v-2n)! \ s /

1)] (54)
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k
where at = _MAf (i = 1,2). Furthermore ^(d:) = (ai—l)~i. The maximum

2nd

of BL(s) is reached for — = df = —-, i.e. for 5 = —. Putting s = —- +1,
LJ JL JL Z*

the behaviour of BL(s) near the peak is given by:

/ }\2 2
2v~2n+1 —^i-

BLls(t)~]~ - ^ , e v " w . (55)
{n\)2(2v-2n)\ n]/{v-n)n

Since both v and n are proportional to L, it follows that the width
of the peak is of order j /Z, as it should9.

Finally, g(d) is equal to the following differentiable concave function
k

of the density d for all d <
n

d (56)

where a = — = MA
7
X , and:

n nd

The correlation functions of the states QBA d and ̂ 3 can be easily
computed. For instance the Fourier transforms of the (1,1), (2,0) and
(4,0)-point functions for the state £3 are given by:

Wi.i(Pi.«i) = ̂ (Pi-«i)Ki(Pi) + « 2 ( P i ) ] ^ - (58)

(59)

r- (60)

where:

i + P2)<5(P3 + PJ s ign(PiP3)-^(Pi + P3)^(P2 + P j signiPiPi) tCA.
(61)

9 The following asymptotic formula can be easily proved:

(v\)222v~2n

a\ n = —̂ -==• [1 + o(n, v)] .
' {nl)2(2v-2n)l]/^i

20*
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Since the function W2>0 vanishes while W40 is different from zero,
£3 is not a quasi-free state. And being the weak limit of a sequence of
normal states, @3 is locally normal. Translation invariance can be
checked from the form of the correlation functions. Finally, defining:

Qite(A) = e,(TeA) for AeW (62)

where xe is the automorphism of the algebra generated by the gauge
transformation, i.e.:

?eMf)~] = eiea(f) (63)

we have:

In Jn

QB4,d= J - ^ f t . * - (64)

In fact the state on the R.H.S. of Eq. (64) vanishes on the non gauge-
invariant monomials of the algebra and coincides with Q% on the gauge-
invariant monomials.
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