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Abstract. A Markov process which may be thought of as a classical lattice spin system
is considered. States of the system are probability measures on the configuration space,
and we study the evolution of the free energy of these states with time. It is proved that
for all initial states the free energy is nonincreasing and that it strictly decreases from
any initial state which is shift invariant but not an equilibrium state. Finally we show
that the state of the system converges weakly to the set of Gibbsian Distributions for the
given interaction, and that all shift invariant equilibrium states are Gibbsian Distributions.

1. Introduction

In this paper we study a model of a classical lattice spin system which

is also a Markov process. We let Z be the integers and consider the

lattice Z v . At each point of the lattice we have a particle which is spinning

either up of down. Thus the configuration of spins can be represented

by functions, ξ, from Z v into { — 1,1} with the interpretation that the

spin at the site x is up (down) if ξ(x)= 1(— 1). For each subset R of Z v

we have a number JR, and throughout this paper it will be assumed that

JR = JR+X for all x e Z v , (1.1a)

and

there is a positive integer L such that if 0 e R π 1 Ki

and R is not contained in [ — L, L ] v then JR = 0.

Expressions like [ — L,L]V will always mean [ —L, L ] v restricted

t o Z v .

Let σR(ξ) = Π £(χ) a n d l e t β > ° τ h e n w e d e f m e

xeR

c(x,ξ) = exp{β £ JRσR(ξ)}.
Rax

The Markov process, ξ(t), can then be described intuitively as

follows: if at time t the configuration is ξ(t\ then the particle at x reverses

1 This work was done while the author was a postdoctoral fellow in the Adolph C.
and Mary Sprague Miller Institute for Basic Research in Science.
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its spin some time during [t,t-\-Δ t] with probability

All of the particles on the lattice are doing this independently of each
other; except of course the frequency at which a particle flips over,
c(x, ξ(t)\ is affected by the spins of the other particles.

It is clear that what we are describing is the infinitesimal generator
of the process. Thus if E = { — 1,1}ZV is given the product topology and
/ is a continuous real valued function on E which depends on only
finitely many coordinates, then the infinitesimal generator, 91, of the
Markov process is given by

= Σ Φ> ξ) U(ξx) ~ /(£)] , (1.2)

where ξx is the function which is equal to ξ except at x where it is equal
to -ξ.

The equation in (1.2), or more precisely its consequencs Lemma (2.3)
below, is closely related to what is often called the Master equation.

This model seems to have been first proposed by R. Glauber [3].
However, for the case of an infinite lattice, it is not at all obvious that
there exists a Markov process whose infinitesimal generator is given
by (1.2) or that (1.2) is enough to determine the process uniquely. These
problems have been solved recently by R. L. Dobrushin, 1.1. Pyatetski-
Shapiro, and N. B. Vasilev in [2] and by T. Liggett in [8].

If A is a Borel subset of £ let Pξ(ξ(t)eA) denote the probability
that the configuration is an element of A at time t given that at time
zero it was equal to ξ. Then if μ0 is a probability measure on the Borel
sets of E we define

μt(Λ)=jP^(ξ(t)eA)μ0(dξ). (1.3)
E

If μ0 is the state of the system at time zero, then μt is the state at time t.
We call states μ0 which have the property that μ0 = μt for all t ̂  0

equilibrium states.
As in [2] or [5] it can be shown that the Gibbsian Distributions

in the sense of Dobrushin [1] are equilibrium states.
In section 2 we define the free energy per site of a state μ (denoted

by A(μ)) in the usual way and prove that A(μt) is a nonίncreasίng function
oft.

In section 3 we strengthen this result and prove that if μ0 is shift
invariant but not a Gibbsian Distribution, then A(μt) is strictly less then
A(μ0) for all £>0. We also prove that if μ0 is shift invariant, then μt

converges weakly to the set of Gibbsian Destributions. In the case
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where the Gibbsian Distribution is unique this gives us an ergodic
theorem. These results show that the only shift invariant equilibrium
states are Gibbsian Distributions and that a variational equilibrium state
in the sense of D. Ruelle [9] page 187 is a Gibbsian Distribution. This
last result is already known (see O. Lanford and D. Ruelle [7]).

The techniques used in this paper are the same as those in [6];
however, the results here are more complete.

2. Free Energy

If A is a finite subset of Z v we will let S(Λ) be the set of functions
from A into {-1,1}. For η e S{A) we let B(A, η) be the Borel set in E
defined by

B{Λ, η) = {ξ: ξ(x) = η(x) for all xeA}.

ΊϊΛ = l-N9 NJ we write S{N) instead of S([-JV, iV]v) and B(N, η)
instead of £([ - JV, JV]V, η). If A = [ - N - L9 N + L] v\[ - N, iV]v we write
S(N,L) for S{Λ).

The free energy per site of an arbitrary state μ at temperature 1/β
is then defined to be

p ( H [ £ μ(B(N,η))U(N9η)
lηeb{N) O \\

+ /Γ 1 Σ μ(B(N,η))lnμ(B(N,η))\.
ηeS(N) J

Here U(N, η) = Σ JRσR(η) and the summation is taken over all

Remark. If we set P(N,η) = exp{ — βU(N,η)} then we may rewrite
(2.1) to get

^(μHlimsup/ΓW+lH Σ
*->°° ηeS(N)

(2.2) Theorem. Let μ0 be an arbitrary state and μt be as in (1.3).
Then A(μt) is a nonincreasing function of t.

If we were dealing with a system of finitely many spins, instead of
infinitely many, this would be a standard result (see for example M. Kac [4]
page 98). Lemma (2.8) below is essentially Theorem (2.2) for the case
of finitely many spins.

The proof of Theorem (2.2) is accomplished by a series of lemmas.
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If η e S(N) and ψ e S(N, L) we let ψη be the element of S(N + L)
which is equal to η on [ — JV, iV]v and is equal to ip on

(2.3) Lemma.

- ^ A(B(JV, if)) = Σ Σ
" f ψ X

- Σ Σ Φ> V?) ft(B(N + A ψη)).
ψ X

Here the summation over ψ extends over all elements of S(N9 L) and the
summation over x is over all elements of [ —iV, iV]v.

Because of (1.1b), if x e [ — N, NY, then c(x,ψηx) and c(x,ψη) can
be defined as in the introduction.

Lemma (2.3) follows immediately from (1.1b) and 1.2). The proof
is left to the reader.

(2.4) Lemma.

= Σ Σ Σ Φ, v*
ψ η X

- Σ Σ Σ c(χ,
ψ η x

Proof. The first equality follows by simply exchanging the order
of summation and differentiation and then using the product rule. The
only difficulty occurs if μt(B(N,η)) = 0 for some η. In that case if

— μt(B(N, η))> 0, then both sides are minus infinity; while if

— μt(B(N,η)) = 0, then by first using (1.2) to show that μt(B(N,η)) has

two continuous derivatives we see that

Thus if we interpret OlnO to be 0, which we will do throughout, the
equality still holds.
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The second equality follows by using the results of Lemma (2.3).
From now on we will drop the subscript t from the notation.

(2.5) Lemma.

Σ Σ Σ' Φ> Ψnx) μ(B(N + L, ψηx)) InΣ Σ Σ
ψ η x

-ΣΣΣΦ,ψη)μ(B(N + L,Ψη))ln-μ^N^
La L^ La -v-'rw r r v 4 ' ^Ύ UJ "" p(X[ γj)

S 2eκ(e~ί + 2K) (2N + l)v~ xLv,

where Σ' is the sum over all XG [-iV,iV]v\[-ΛΓ + L,N-L]v, and

Σ
RBO

Proof. Noting that (ηx)x = η and that the map η-+ηx is a bijection of
S(N) with itself we see that the expression on the left hand side of (2.5)
is equal to

Note that μ(B(N + L, ψη)) ̂  μ{B(N, η)\ Therefore if a factor of the form
inx — lnO appears in (2.6), it is multiplied by zero, and that whole term
is equal to zero. If μ(B(N,ηx)) = 0 and μ(B(N,η))>09 then

μ(B(N + L, ψη))>0 for some ψ and (2.6) is equal to minus infinity.
Thus, since we are trying to bound (2.6) above, we may assume that if
μ(B(N, η)) > 0, then μ(B(N, ηx)) is also greater than zero for all x.

Let ln+ x = ma,x(lnx, 0). Then (2.6) can be bounded above by

ψ η x

μ(B(N,η)) μ(B(N,ηx))

Since xln+(x x)^e \ our last expression is less than or equal to

eκe~' Σ Σ μ(B(N, if J) + 2Keκ £ ' £ μ(B(N9 η)).
x η x η

The number of terms in the summation on x is less than 2(2JV + l)v~ * Lv,
and for fixed x the summation over η is equal to one. Thus substituting
2(2N + l) v - 1Lv for each of the double summations completes the proof.
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The difference between the expression appearing in the statement
of Lemma (2.4) and the left hand side of the inequality in Lemma (2.5) is

La Lu La
ψ η x

" Φ,ψηx)μ(B(N + L,ψηx))In

-ΣΣΣ"
La La La
ψ η x

,ψη))ln

(2.7)

where Y^' is the summation over x in [ — N + L, N — L] v .

From (1.1b) we see that i f x e [ — N + L,N — L] v , then c(x, ψη) does
not depend on ψ. Thus we may perform the summation on ψ and obtain

Σ [ Γ ^(^5
) " Γ c(x, , i,))] /n

Let

and

x — xlnx—ί if

- 1 if x =

F(μ,N,η,ξ) =

(2.8) Lemma.

•)) P(N,ξ)

if μ(B(N,η))>0

- o o if μ(B(N,η)) = 0 and

0 if μ(β(N,f?)) = μ(β(JV,ξ)) = O.

, ξ)) > 0

P(N,η)

, N, »f, q J c(x, f/J F(iV, f/J/P(iV, η).= Σ Σ"
η x

Proof. We write ηeS(N)asψξ, where ψ e S(N - L, L) and ξ e S(N - L).
For fixed ψ consider the kernel 9Iψ( , •) on S(N -L)x S(N - L) given by

c(x, ψδ) if 7 = ^

if 7 = ^

0 otherwise.



Lattice Spin System 93

Then the left hand side in the statement of the lemma can be written

r i r v o r ,* .Λ ../D, AT ... ̂  i« I*(B(N> ψy)) (2.9)
ψ L δ γ

SΆψ has the following properties:

<5,y) = O for all δ, (2.10a)

X P(N, ψδ) %(δ, y) = 0 for all y. (2.10b)
δ

The first of these properties is obvious from the definition of 2ϊφ and the
second follows from an easy computation using the definitions of
P(., •) and c( , •)•

Using (2.10a) and (2.10b) it is easily seen that (2.9) is equal to

\ > Ψy, Ψδ) sya, y) P(N9 ΨS)/P(N9 Ψyj
ψ I δ γ

=Σ Σ Σ
V? γ <5Φy

We may delete the terms where δ = y because

F(μ, N, η,η) = 0 for all η .

The proof is completed by substituting the definition of %ψ into
our last expression.

Returning to the proof of Theorem (2.2) we remark that it will be
sufficient to show that for some constant C independent of N

ηeS(N) Γ\Γ4,η) (2.11)

^ Σ
Lemma (2.4) gives us an expression for the derivative of the left hand
side of (2.11) which we split into the two terms in Lemmas (2.5) and (2.8).
Lemma (2.5) gives us a bound on the first term of the form CNV~X

9

and Lemma (2.8) shows that the second term is nonpositive. This last
statement follows since the function F is nonpositive. Thus the derivative
is bounded above by CAT"1 and (2.11) follows.

3. Shift Invariant States

We begin this section with a description of the Gibbsian Distri-
butions on E. The reader is referred to [1] where this notion is first
defined and studied. Our notation is the same as in Section 2.



94 R. Holley:

For ψ e S(N, L) let λψtN be the measure on S(N) given by

f° r s o m e Ά e S(N - L)

0 . otherwise,

where Z~1(ψ,N) is the normalizing constant which makes λψtN a
probability measure. Let

S(N) = {ξeE:ξ(x)=l if xφ l~N,Nγ} .

There is an obvious identification of S(N) with S(N) and by means of
this identification we may think of λψtN as a measure on E. Let /LN be
any convex combination of the λψtN, where the averaging is done over ψ.
If we do this for each N we get a sequence {λN} which, since E is compact,
has a weakly convergent subsequence, λNh->λ. We denote the set of all
λ obtained in this manner by si. si is the set of Gibbsian Distributions.

A state μ is called shift invariant if for all finite Λ, all η e S(A), and all
aeZv

where ηa is the element in S(Λ + a) given by

η*(x) = η(x-a). (3.1)

Let Ji be the set of all shift invariant states with the weak topology.
We need the following facts about the elements of M.

If μ0 e M, then μt e Jί for all t > 0. (3.2)

The map (μ0, t)->μt is continuous in the ,~ ~.
product topology on M x [0, oo).

In the definition of A(μ) the limit supremum
is actually a limit. That is, if μ e Jί, then

(3 4)

An easy proof of (3.2) and (3.3) can be given by making use of the
proofs of existence of the Markov processes. These proofs are however
quite long and irrelevant for our present purposes; therefore, we refer
the reader to [2] or [8].

A proof of (3.4) can be found in [9] page 180.
If m is large enough so that 2m — 1 ̂  L, let

Hm(μ) = ΣΣF(&2m~ Uη,ηx)Φ,rjx)P(2m~ Uηx)/P(2m~Uη), (3.5)
η x



Lattice Spin System 95

where the summation on η is over all η e S(2m - 1) and the summation
on x is over all xe [-2m + 1 + L , 2 m - 1 -L]\

Comparing the definition of Hm with the tight hand side of the
expression in Lemma (2.8), we see that Hm represents the rate that the
free energy in the cube [ - 2 m + 1,2W- l ] v is decreasing due to the flips
of the particles inside the cube [ - 2m + 1 + L, 2m - 1 - L]v. Observe that
if μ is shift invariant, then the two cubes used in the definition of Hm(μ)
could be centered at any point of Z v and yeild the same value for Hm(μ).
We will make use of this observation in the proof of the next lemma.
One other important property of Hm is that it is upper semi-continuous
on JK. This follows easily from the definition of F given in section 2.

The next lemma says that for shift invariant states the rate of decrease
of the free energy in a cube grows at least as fast as the volume of the
cube.

(3.6) Lemma. IfμeJί, then Hm{μ) ̂  2V Hm _ x (μ).

Proof. Since F is nonpositive, Hm(μ) is less than or equal to the
expression obtained if the summation on x is only taken over the 2V

disjoint cubes of side 2m-2L-2 which are in the corners of the cube
[ - 2m + 1 + L, 2m - 1 - L] \ Consider the cube

D = [ L + l , 2 m « l - L ] v .

Writing each ηeS(2m-l) as ψξ, where £ e S ( [ l , 2 m - l]v) and
V>eS([-2 w +l,2 M -l]Λ[l,2 w -l] v ),wehave

Σ Σ F(μ> 2M - 1, η, Πx) Φ , nx) P(2m - U ηx)/P(2m - 1, if) π 7,
η xeD W'Ί

= Σ Σ Σ F ^ 2m ~ i> Ψί> ΨU C(X> ΨU P£m -1 ψξx)/P(2m -1, ψξ).
ξ xeD ψ

The idea is to show that for fixed ξ and x

Σ F(μ, 2m - 1, ψξ, ψξx) c(x, ψξx) P(2m - 1, ψξx)/P(2m -l,

^ F(μ, 2*"-1 - 1, ξ\ ξa

x+a) c(x + a, ξa

x+a) (3.8)

where α = (-2m~1,..., - 2 m " 1 ) e Z v .
If (3.8) is true, then since ξ^ξa maps S([l, 2m - l]v) one to

one onto S(2m~1 - 1) and x-^x + a maps D one to one onto
[-2 W - 1 + 1 + L , 2 W - 1 - 1 - L ] V , we see by substituting (3.8) into (3.7)
that (3.7) is bounded above by Hm_1(μ). The same argument holds for
each of the 2V corners of the cube. Thus the lemma will be proved as
soon as we establish (3.8).

From (1.1 a) and (1.1 b) we see that for x e D
c(x, ψξx) = c(x9 ξx) = c(x + a, ξa

x+a)
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and also that

P(2m - 1, ψξx)/P(2m - 1, ψξ) = P(2m~1 - 1, ξ ; + β )/P(2"- 1 - 1 , ξfl) (3.9)

Thus we only need to show that

"-1-Uβ,gJ. (3.10)

lϊ μ{B{2m-l,ψξ)) = 0 and μ ( β ( 2 w - l,ψξx))>0 for some tp, then (3.10)
follows immediately from the definition of F. If μ(B(2m-l,ψξ))
= μ(B{2m - 1, ψξx)) = 0, then F{μ, 2m - 1, ψξ, ψξx) = 0, and we may delete
such ψ from the summation. Thus we may assume that the summation
is only over those ψ for which μ(B(2m— l9ψξ))>0. (3.10) then follows
by substituting the definition of F and the using (3.9), Jensen's inequality
(Fo is concave), and the shift invariance of μ.

(3.11) Lemma. H(μ) = β~1 lim ( 2 m + 1 - iyvHm(μ) exists for all μ in

Jί (it is possibly minus infinity) and is upper semί-cantinuous. Moreover,
if μ0 E Jί, then

A{μt)-A{μ0)^\H{μs)ds.
o

Proof. Let G(m)= Π &+2- 2)v/(2j+2~ l)v.
j = m

Then by Lemma (3.6)

Therefore, G(m)(2m + 1 — l)~v Hm(μ) is a decreasing sequence of upper
semi-continuous functions on Jt. Hence the limit exists and is upper
semi-continuous. Since G(m) approaches one as m approaches infinity,
this limit when divided by β is equal to H(μ).

From the proof of (2.11) we know that

Σ
ηeS(N)

is a nonincreasing function of t. Therefore an application of Lebesgue's
Theorem and Fatou's Lemma yields

P(N,η)

d
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Using (3.2) and (3.4) together with this inequality we get

A(μt)-A(μ0)

f A [ - 1,η))ln μf^" U f jds

This last inequality follows exactly as in the proof of Theorem (2.2).
Since 0 < G(m) < 1 and Hm(μ) ̂  0, it follows that Hm(μ) ̂  G(m) Hm(μ).

Therefore by monotone convergence we have

A(μt)-Λ(μ0)

S lim sup I β-\2m+1 - I )" v G(m) Hm(μs) ds = f H(μs) ds,
m^oo 0 0

and the proof is complete.

(3.12) Lemma. Let μeJί.If μφstf then H{μ)<0.

Proof. For each N the measure μ(B(N, •)) is defined on S(N)9 and
just as in the description of si we may think of it as a measure on E.
It is clear that as N goes to infinity μ(B(N, •)) converges weakly to μ.
Thus to complete the proof of the lemma it will suffice to show that
if H(μ) = 0, then μ(B(2m- 1, •)) is equal to one of the λ2m-i used in the
description of si. Since

if H(μ) is zero then Hm(μ) is zero for all m. But from (3.5) we see that if
Hm(μ) = 0, then for all ηeS(2m-l) and all xe [ - 2 m + 1 + L , 2 W - 1 - L ] v

we have
P(2» - 1, η)/P(2m - 1, ηx) = μ(B(2m - 1, η))/μ(B(2>» - 1, ηx))

or else (3.13)

Thus if ψeS(2m-l-L,L) and <f and ξ" are in S(2 m -1-L), then

P(2» - 1, φ^/P(2 w - 1, vί") = ̂ (^(2m - 1, ψξ'))/μ(B(2m - 1, K")),

or else (3.14)

- 1, V{")) = 0

Indeed, there is a sequence x lJx2» •••̂fe s u c h that ξrf = ("'((ξχi)X2'")Xk9

and (3.14) follows by applying (3.13) k times. (3.14) is the same as the
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statement that μ(B(2m- 1, •)) is equal to one of the λ2m-1 used in the
description of si.

(3.15) Theorem. Let μeJί and μφstf. Then there exists a weakly open
set Gμ containing μ and ε, <5 > 0 such that if v0 e Gμ and 0 ^ s ^ ε , then

A(vs)-A(v0)S-δs.

Proof. By Lemma (3.11) H(μ)<0. Therefore, since H is upper
semi-continuous, there is a δ > 0 such that if

then G1 is open and contains μ. From (3.3) it follows that there is an
open set G2 in M x [0, oo) containing (μ, 0) and such that if (v0, s) e G2,
then v ^ G j . Since (μ,0)e G2, there is an ε>0 and an open set GμCJi
such that Gμ x [0, ε) C G2. Thus if Vo e Gμ and 0 ^ s < ε, then H(vs) <-δ.
The proof is completed by an application of Lemma (3.11).

(3.16) Corollary. Let μ^eJί and suppose that ίn-»oo and that μtn

converges weakly to μ. Then μestf.

Proof. This follows immediately from Theorems (3.15) and (2.2) and
the easily verified fact that there are two real numbers m and M such
that for all states μ we have m ^ A(μ) ^ M.

(3.17) Corollary. Let G be a weakly open subset of Jί which contains
S4CΛM, and let μ0 e Jί. Then for all t sufficiently large μt e G. In particular
if the parameters are such that there is a unique Gibbsian Distribution,
then the state at time t converges weakly to that Gibbsian Distribution as t
goes to infinity.

Proof. Jί is weakly compact, therefore Corollary (3.17) follows from
Corollary (3.16).

(3.18) Corollary. All shift invariant equilibrium states are Gibbsian
Distributions.

A shift invariant state μ is said to be an equilibrium state in the
variational sense if it satisfies

A(μ)= inf A(v)
veJί

(see Ruelle [7] pages 187-190).

(3.19) Corollary. An equilibrium state in the variational sense is a
Gibbsian Distribution.

Proof. This is an immediate consequence of Theorem (3.14).
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