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Abstract. A previously described method to obtain the asymptotic forms of vertex
functions at large momenta is, with the help of Wilson operator product expansion
formulas, extended to momenta where the vertex functions of the zero-mass theory
underlying the asymptotic forms are infrared singular. To obtain from asymptotic forms
information on asymptotic behaviour requires assumptions on the behaviour of the
zero-mass theory in the limit of infinite dilatation. One particular set of assumptions is
discussed and found to pass a simple consistency test; this set of assumptions leads to
power laws, or slight modifications thereof, with coupling-constant-independent exponents.
The detailed discussion is given for the φ4 model.

Introduction

Of great interest in quantum field theory is the asymptotic behaviour
of vertex functions (VFs) (i.e., the amputated one-particle irreducible
parts of Green's functions)1 Γ(p1 ... p2n), Σp = 0, as the momenta become
large. We formalize this question by investigating

f(λ) = Γ((λPi + rj ... (λp2n + r2J), Σp = Σr = 0, (0.1)

for large λ. In perturbation theory one obtains [1—3], formally,

fW=λ2* £ f /^~*M (0.2)
k = 0 1 = 0

where the even integer 2α is Weinberg's [1] asymptotic exponent and
depends on n and the momenta p^ ...p2n, and each fkl is an infinite
power series in g. Keeping in (0.2) only the k = 0 part defines the asymp-
totic form (AF) of/(A); keeping also the parts with k^m defines the
AF of mth degree2.

1 For conciseness, we write formulas for the gφ4 theory, the considerations of this
introduction and in essence of the whole paper being valid, however, for all renormalizable
field theories.

2 If we use the term AF without specifying the degree, we mean the AF of zeroth
degree.

4 Commun. math. Phys, Vol. 23



50 K. Symanzik:

That the AF of any finite, in particular of the zeroth, degree ap-
proximates f(λ) at large λ in the obvious sense is an assumption always
made but impossible to test without performing all the relevant summa-
tions in (0.2), for which no technique is available yet.

The renormalization group approach [4, 5] reveals certain general
relations between the fkl. These relations allow e.g. to calculate easily
the term in fol of lowest appearing order (n + / if n ̂  3) in g (the "leading
logarithm"), of next to lowest order, etc. The sums of those terms yield,
however, expressions (see Refs. [5,6,7]) that make no sense for λ
sufficiently large. Thus, though one may hope that it is not necessary
to go beyond /c = 0, he must attempt to deal with the corresponding
complete /-sum, i.e., with the precise AF. The renormalization group
technique indeed leads to certain formal properties of that AF.

Recently [8] we have developped a new tool to study the AFs of
VFs, namely, insertion of a (possibly, generalized [9]) mass term into
the Lagrangian, the infinitesimal operation thereto resulting in certain
simple inhomogeneous partial differential equations (PDEs) ((1.12)
below, abbreviated ΘfiΓ = AΓ) being obeyed by the VFs. For any Γ,
that solution Γfls of ΘfiΓas = 0 which approaches Γ for small mass is the
AF of Γ, and actually is the VF of a certain zero-mass theory [10].

Γas has, due to masslessness of the particles3, infrared (UR) singu-
larities at certain momenta at which Γ itself is not singular. At these
momenta, which we call exceptional momenta [10], the correct AF of Γ,
denoted by Γ ,̂ is not obtained by restriction of Γαs, and $/Γ^Φθ due
to the nonnegligibility of ΔΓ relative to Γ at large momenta (or, at
fixed momenta but small mass). Furthermore, while for nonexceptional
rnomenta pi in (0.1) the AF (fe = 0 in (0.2)) Γas is independent of the r f,
this does not hold4, at exceptional momenta, for the Γ .̂

In this paper we show, by treating a number of examples, how at
exceptional momenta5 the correct AF of Γ, Γ ,̂ is obtained through
analysis of A Γ. If for A Γ, which then has the same asymptotic exponent
2α in (0.1) as Γ, its AF AΓ^ is inserted into the PDF, Φ^Γ&S = AΓ&& is
the correct equation, whose solution approaching Γ for small mass being

3 The possibility of particle interpretation of the zero-mass theory is, however,
special to the φ4 model and is absent in QED [10].

4 The AFs of higher degree always depend on the η; if all r, are zero, the fkl with k
odd vanish.

5 In the analysis of short-distance behaviour of operator products using Wilson
expansions [9,11-13] one is led for the singular c-number coefficient functions to precisely
the problem of behaviour of simple VFs at exceptional momenta, see e.g. the examples
in Section III.4. This also holds for the short-distance behaviour of products of currents
in theories with internal symmetry, to whose Green's functions involving current operators
the techniques of this paper are easily extensible (cp., e.g., Ref. [14]).
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the sought correct AF of Γ. At occasion, the PDE turns out actually to
be homogeneous, AΓ^ being proportional to Γ .̂

The tool to obtain ΛΓM are Wilson's operator product expansions
[9,11], more precisely, certain generalizations of formulas derived in all
order of perturbation theory by Brandt [12] and Zimmermann [13].
For those formulas we shall use we sketch an elementary proof in
Appendix A.

The renormalization group technique should yield, in the examples
we treat, the same result as we obtain. However, the technique described
here has advantages. It is simpler6 and, since it relies directly on power
counting, more transparent, and is the more economical one since it
delegates an important, and apparently the largest possible, part of the
analysis to formally rigorous, nonasymptotic, considerations.

The relation to zero-mass theories behind the AFs is here not less
close than it is in the renormalization group approach, and actually
more explicit. If in (0.1) the ri are zero, the AF of second degree is easily
obtained, for nonexceptional momenta pi9 by solving the PDE with ΔΓ
replaced by its AF, AΓ^, which has asymptotic exponent two less than Γ
itself, and we carry this out for the inverse propagator. In principle,
AFs of arbitrarily high degree can be constructed by using more and
more accurate, and suitably generalized, Wilson expansions; however,
this leads quickly to considerable complications, and is actually an
academic exercise as long as even the AF of zeroth degree is not yet really
understood.

The AFs, due to their containing unknown functions, do not yet
allow any statement on the asymptotic behaviour of the VFs. To make
progress in that direction one presently has to resort to assumptions.
We discuss in particular the assumptions7 made implicitly by Wilson
[15] and other authors (for references, see [15]). As there is no apriori
(nor, we believe, physical) reason for the correctness of those assumptions,
we attempt to construct a consistency argument in their favour. That
argument, which uses properties of zero-mass theories, we have not
carried through completely. However, because of the importance of the
problem, we give the sketch of its present stage.

The first two sections are reviews included for the convenience of
the reader. Section I describes the technique of mass vertex insertion.
Section II concerns the AFs at nonexceptional momenta and their
relation to zero-mass theories, some properties of these theories, and

6 If one makes full use of the technique described in Appendix B, no asymptotic
analysis of any vertex function is required, whereby the most laborious part in the usual
renormalization group calculations to determine nonleading logarithms is avoided.

7 In this context, stronger assumptions are made in QED by Baker and Johnson
([16], and references therein).
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the characterization of exceptional momenta in terms of UR singularities
of VFs in zero-mass theories.

In Section III the AFs of some VFs, and of the mass VF, at exceptional
momenta are obtained, as well as the AF of second degree of the inverse
one-particle propagator. In Section IV we discuss the assumptions,
mentioned before, that have been made to arrive at statements on
asymptotic behaviour, sketch the attempted consistency check concerning
those assumptions, and describe the resulting asymptotic behaviours of
VFs. In Appendix A we give an elementary derivation of the Wilson-
Zimmermann formulas [13] used in Section III. In Appendix B properties
of the zero-mass theories are discussed in detail, and in particular also
the UR singularities relevant for Section III. Appendix C treats the
relatively academic problem of mass vertex insertion as non-infini-
tesimal operation.

I. Mass Vertex Insertion

In this paper, for simplicity we only consider the theory of a scalar
Hermitean field φ with Lagrangian density

, dφ) = ̂ dμφd»φ -±m2φ2

(' }

but all conclusions hold, with small modifications that are then indicated,
in QED (cp. Ref. [10]).

The connected Green's functions8 are denoted by G(xί ... x2n) and
their amputated one-particle-irreducible parts (VFs) by Γ(xί...x2n),
with Γ(xy)= — G(xy)~1 in the convolution sense. Their Fourier trans-
forms are introduced by

(2π)4δ(Σp)Γ(Pl ... p2n)= J dx, ... dx2ne
i'1Xί + " + iP>»x*»Γ(x1 ... x2n) .

In renormalizing [5,19,20] the theory (I.I), the renormalization
conditions

. P 4 s y m m . p t . = ~ *0 I - c

are imposed, the symmetry point being defined by pipj = ̂ m2(4δij— 1).
The one-parameter family of theories with Lagrange function

Ls(φ, dφ) = L(φ, dφ) - s±Z3Am2

uφ
2 (1.3)

The concepts and notation used here and later on are described in Refs. [17,18].
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leads [8] to VFs

Γs(pi ...p2nim
2,g) = Z(sΓnΓ(Pl ... p2n; m2(s\g(s)} (1.4)

such that

= {(dm2(s)/ds) [_d/dm2(s)\ + (dg(s)/ds) [3/S0(s)] - n(d\n Z(s)/ds)} (1.5)

Γ(Pί ...p2n;m
2(s\g(s)).

Except in Appendix C, where finite s will be considered, we will need
(1.5) only at s = 0. Using (1.3), we have [8]

(1.6)

• [Γ(fc(- k)pι . . . p2n) + factorizing terms if n ̂  2]

where G(k)= — Γ(k(—k))~1. We normalize the inserted mass term such
that

(1.7)

whereupon all JΓ(p! ... p2w) can be calculated [8]. Setting

(1.8)
where

φ(g)=l+0(g2) (1.9)

we show in Appendix A that

ΔΓ(p, ...p2n)
„ (110)

= -$im2φ(g) <TN2{φ(Q)2}φ{pl) ... φ(p2n)Yΐo*

in the notation9 of Zimmermann [13]. In field operators,

Z,Am2:φ(x)2: =m2φ(g)N2{φ(x)2} (1.11)

i.e. our mass term is a multiple of the finite local operator N2{φ(x)2}.
(1.5) gives10 for s = 0

! ...p2n;m
2,g)

- 2ny(g)} Γ(p, ... /72n; m2, g) (1.12)

9 However, our Fourier transforms differ by powers of 2π from Zimmermann's.
10 Arguments for the Eqs. (1.12) were given independently of Ref. [8] by C. G. Callan

[21].



54 K. Symanzik:

where
oc(g) = m-2(dm2(s)/ds)\s = 0 ,

= (dg(s)/ds)\s=0,

These functions are calculated [8] from (1.12) by requiring the
conditions (L2a, b, c) to hold. The result is

S (L14b)

c0 = (2113π4)-1. (I.14c)

Occasionally we will write (1.12), using (I.14a), as

AΓ(p1 ...p2n;m
2λ~2,g)

2λ-2,g). (1.15)

II. Asymptotic Forms, Zero-mass Theory, and Exceptional Momenta

We wish to study the VFs for large momenta. For the time being,
it is convenient to multiply all momenta by a scaling factor λ and to
consider λ-» oo. For dimensional reasons,

Γ(λPί ...λp2n;m
2,g) = λ4-2nΓ(Pί ... p2n;m

2λ-2,g) (III)

and likewise for the (dimensionally equal) ΔΓ.
A brief discussion of the results of Weinberg [1], Fink [2], and

Kinoshita [22] relating to the large-Λ, dependence of (II. 1) is given in
Ref. [10]. We here immediately proceed to use (1.15). Its inspection
suggests to introduce

βte)= ldg'β(gT1 = -bό1g-1-bo2b1lng + ρ()(g0) + ρίg + - . (11.2)
go

As (1.1 4b) must be considered to be a meaningful series (e.g., an asymptotic
one) for #-»0, and since b0 >0, ρ(g) increases from — oo as g runs from
zero through positive values, until it approaches a value g^ such that11

lim ρ(g)= oo. We will in all of the following, except in Section IV, for

11 The alternative possibility, that ρ(g) does not increase to oo for increasing g, is
briefly commented upon in Section I V.I.
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definiteness choose g to lie inside this interval although we know of no
reason why (the renormalized) g should e.g. take positive12 rather than
negative values. In this interval, the inverse function ρ"1 is unique, and
we can define13 the monotonically increasing function

g(λ) = Q-1(lnλ2 + ρ(g)). (113)

Its behaviour at Λ-»0 is obtained from (II.2) and (II.3) by iterative
solution, yielding

2 - 1 - 1 - + '"

where the omitted terms have a limit for λ-*Q. For strictly perturbation
theoretical purposes one uses the, otherwise useless, expansion

Σ (nlΓ1(^λ2Πβ(g)d/dgγ-1β(g) (11.5)

that follows directly from (II.3) and (II.2).
We now define, shortcutting the discussion of (1.15) given in Ref. [10],

- dλ'2λ'-2ΛΓ(p, ...p2n',m
2λ'-2,g(λ'^λ)} (11.6)

f dgfβ(g
g ( λ ' - l λ )

if it exists, which is then easily checked to be a solution of the homo-
geneous PDE to (1.15), and thus has the form

where

= exp [_2b^c0g + ».]. (Π.8)

Since the last term in (II.6) vanishes for λ-+ oo if it exists at all, we may,
in view of (II. 1), expect λ4~2nΓas(pί ... p2nl m2λ~2, g) to be the asymptotic
form (AF) of λ4~2nΓ(pί ... p2n\ m2λ~2, g) in the sense of the Introduction,
as will be verified below.

We first consider (II.6) in perturbation theory. In all graphs con-
tributing to AΓ there is the inserted mass vertex carrying the factor

12 In QED, the analog of g in this paper is the square of the charge and thus positive.
This is the main reason why we do not consider negative g here.

13 This function is denoted by g(λ~l) in Ref. [10] and should not be confounded
with 0(s) of (1.4).
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m2λ'~2 due to (1.7). g(λ'~1λ) involves, due to (II.5), to every finite order
in g only finite powers of InΛΛ Thus, the existence of the /Γ-integral is
lost only if the momenta are such that the explicit factor λ'~2 from the
extra mass vertex is compensated by a quadratic UR divergence stem-
ming from the, in the limit Λ/-> oo vanishing, mass mλ'"1. Such (sets of)
momenta that the integral does not exist are called exceptional momenta
[10] and will be characterized later. At such momenta, the asymptotic
exponent 2 — 2n of A Γ, in the sense of Weinberg [1], the reduction from
4 — 2n (cp. (II. 1)) being due to the extra propagator denominator, is
raised to 4 — 2w, the asymptotically dominant routing [1] of the external
momenta through the graph sparing the mass vertex. - Outside of
perturbation theory, we note that g(λ'~1λ)-*Q as Λ/-»oo such that the
exponential in (II.6) then has the limit a(g)n. While the mass in ΔΓ goes
to zero at λ'-»oo, the coupling constant does so too, and we shall find
below that the rate it does so is just the one consistent with the assumption
that it is only at exceptional momenta that ΔΓ in (II.6) is not decreasing
like λ'~2 times some power of In λ\ or, see Section IV, a power of λr

smaller than two. This consistency will be more and more apparent as
we follow up what it leads to.

Thus, to every finite order in perturbation theory, and more generally
in the sense of the foregoing remarks, at nonexceptional momenta

rfo..^^-^^ (II.9)

where, in perturbation theory, g(λ) should not depend on λ more strongly
than logarithmically14, and, outside of perturbation theory, g(λ) should
not increase as λ-+ oo. From (II.9) and (II.7) follows for nonexceptional
momenta

0u-i)

Thus, Γas is obtained from Γ by taking a zero-mass limit15 whereby,
however, the coupling constant goes to zero simultaneously and a
certain /l-dependent factor must be applied. This factor has the limit
a(g)n, however, in perturbation theory, it gives, via (II. 5), a power series
in InA2. Since the limit in (11.10) also exists in perturbation theory,
where it means that, in each order of g, all powers of In λ2 not accompanied
by one or more factors λ~2 cancel, an intricate cancellation of powers
of In A2 takes place. Outside of perturbation theory, (11.10) shows that,
for the zero-mass limit to exist, the coupling constant must go to zero

14 With g(λ) = g, (11.9) shows that Γαs is the AF of Γ in the sense of the Introduction.
15 That the Γαs describe a zero-mass theory can be seen directly from (11.13) below.
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at just the rate at which it goes to zero in ΔΓ in (II.6); in view of the
integral equations [8] that define A Γ and which contain again essentially
only the functions Γ (at nonexceptional momenta for them), this is the
consistency argument concerning the behaviour of A Γ in (II.6) mentioned
before.

It is instructive to look at (11.10) in an elementary perturbation
theoretical manner. For an irreducible n ̂  3 graph, and momenta non-
exceptional in the sense of Weinberg [1], the zero-mass limit exists as
the asymptotic exponent is 4 — 2n and the logarithmic exponent zero,
cp. (II. 1). When insertions are made in the graph the logarithmic ex-
ponent increases [2] due to renormalization momenta being scaled
down together with the mass, and the logarithmic terms in (11.10),
arising from use of (II.5), are so devised as to cancel all nonzero-exponent
terms, with g(λ) in the Γ-argument related to 4-vertex-part insertions
and the exponential factor to propagator-corrections insertions. This
shows that Γαs is obtainable from Γ as follows, referred to later as the
"elementary recipe": Replace all momenta pt by λpt, factor out /I4"2",

.and make an expansion, for large /I, in terms of powers of In λ, powers
of In λ multiplied by λ ~2, by λ~ 4, and so on, as in (0.2). The A-independent
terms in this expansion define Γαs, the reason being that g(λ~l) in (11.10)
due to (II.5) does not bring negative powers of In/I. On the other hand,
Γas(λpι • •. λp2n' >m2,g) is obtained, by virtue of (II.9), from the described
expansion by keeping all terms not containing negative powers of λ, and
is, using (II.7) and (II. 1), obtained more simply by

Γas(λp1 ...λp2n;m
2,g)

= λ4~2nΓas(Pl ... p2n; m2, g(λ)) exp [- 2nT dg'β{gT^(g')].
L 9 J

These recipes are the same ones as the renormalization group method [5]
leads to, except that there, β(g) and γ(g), or g(λ) and a(g)~1a(g(λ)), must
be determined by special asymptotic considerations involving the
renormalization functions, while here these functions were obtained by
a technique, Section I, not involving any hypothesis concerning asymp-
totic behaviour.

The foregoing recipes show that, in perturbation theory, the intro-
duction of the Γas is a gain only if they can be obtained directly, avoiding
the highly uneconomical "elementary recipe". The obvious direct way
is their construction as the VFs of a zero-mass theory, and is described
in Appendix B. That in all limit formulas in this section, exceptional
momenta had to be avoided (and, in Appendix B, necessitate special
provisos) means, see (11.10), that the VFs Γfls of the zero-mass theory are
singular at exceptional momenta in virtue of the zeroness of the physical
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mass, while for finite mass, for (11.10) to be meaningful, there should
not be a singularity at such momenta.

We first consider Euclidean momenta16. Ruelle [23] has shown
that VFs are regular17 at such momenta if the mass is positive, and so
also for zero-mass except where some nontrivial partial sum of momenta
vanishes. Thus, Euclidean exceptional momenta are at most those
where some such partial sum vanishes. In the model (I.I), inspection of
Feynman graphs shows that these partial sums must be even ones for
an unboundedness to arise, in virtue of phase space and selection rules.
Furthermore, the singularity will be logarithmic if only one such partial
sum vanishes; if two nonoverlapping such partial sums vanish the
singularity will be quadratic, and so on, the degree of UR singularity
corresponding to the increase of asymptotic exponent 2α in (0.2) over
4 — 2n. Since ΔΓ, to which, cp. (1.10), Ruelle's analysis also applies, has
already one "even" vertex at zero momentum, one vanishing nontrivial
even partial sum of momenta leads already to quadratic UR singularity
and thus to divergence of the integral in (II.6), in conformity with the
nonexistence of Γas at such momenta due to logarithmic UR singularity.
This, as well as the detailed discussion of examples in Section III, points
to the consistency of the assumptions concerning behaviour at exceptional
momenta, made earlier in this section, also outside perturbation theory.

For real Minkowski momenta, Ruelle [23] has shown that VFs are
regular except where the square of a nontrivial partial sum of momenta
lies on the relevant mass spectrum. However, at such momenta, the VFs
need not actually be singular, e.g., Γ(p( — p)) is generally regular away
from mass thresholds, such that in all finite orders of perturbation theory
only lightlike p is an exceptional momentum. More generally, lightlike
partial sums of momenta play a role comparable to vanishing partial
sums of momenta in the Euclidean case discussed before. Expressed
differently, if momenta become large we have, with respect to the
A-dependence in (0.1), an "essentially Euclidean" situation if no squares
of such momenta, or of partial sums of such momenta, do not become
(absolutely) large, or if, in coordinate space, approaches to coinciding
arguments are from space- or timelike, but not from lightlike directions
(cp., e.g. Ref. [13]). At the present time, however, we cannot give a
general discussion of Minkowskian exceptional momenta.

The zero-mass theory is discussed in Appendix B. Here we only make
two observations [10]. First, all members of the family of zero-mass

16 These are momenta such that the Gram matrix ptpj has real elements and is
negative semidefinite and of rank ^4. Such momenta can be realized by vectors the
zeroth components of which are imaginary, the other components real.

17 We disregard here and below the possible singularities brought about through
the amputations. There are none such in perturbation theory.
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theories considered here are related to each other by dilatation and re-
normalizing the VFs, as follows from (11.11) or also (11.10) and as will
be discussed in terms of renormalization conditions in Appendix B.
Second, the zero-mass theory is a particle theory18 since its VFs can be
conventionally normalized. Namely, (II.7) with (II. 1) yields

(Π.12)

1 ί dg'β(g'Γ1γ(d')\
0U) -I

Letting Λ,->0 gives on the r.h.s. the asymptotic VF of the interaction-free
theory, which is ip2, such that hereby the l.h.s. becomes ia(g\ showing
that the φ... in (II.7) are, for λ = l , conventionally normalized zero-
mass-theory VFs. This theory possesses scattering amplitudes since
pf = Q, V f , although not "essentially Euclidean", appears for general sets
of momenta not to be exceptional. - However, in (II.2) we made use of
g(λ)-+Q as λ-+Q, such that the correct normalization cannot be verified
in perturbation theory where (II.5) is relevant, and where (obtainable,
e.g., from (11.12) directly in the form (11.14))

~P)'m '^ (11.13)
oo fc —1 v ;

k = l 1 = 0

(II.7) shows, however, that the r.h.s. equals

λ2a(g(λ)Γ1Γas(λ- lp(- λ' V); m2, g(λ))

such that, choosing λ2 — — m~2p2 and using (11.13)

fc=ι

which, with (II.5) inserted, is a reordering of (11.13). In (11.14) the sum-
mation that makes (II.4) applicable can be performed and so the claimed
normalization verified.

To conclude this section, we note that, using (II.l), (II.9), and (II.7)

t) ... (λp2n + r2li); m2, g) - Γ(λp, ... λp2n; m2, gft
nlΓas((P,+λ-ίr1)...(p2n + λ-1r2^ (11.15)

-Γas(Pl ...p2n'>m

18 The alternative would have been an "infra particle" theory [24], such as QED
with respect to the electrons. In Ref. [10] it is shown that zero-mass QED is "infra" at
least with respect to the photons.
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for sufficiently large λ, with Σp — Σr = 0, provided the momenta pt are
nonexceptional, because the set of sets of such momenta is open. Since
the Γαs are regular at such momenta, the square bracket on the r.h.s. is
O(λ~l) for λ finite. As λ increases, g(λ) increases and the properties of
the Γfls become uncertain, as discussed in Section IV, however, in all
finite orders of perturbation theory g(λ) gives, due to (II.5), rise only to
finite powers of In λ such that in all orders of perturbation theory the
l.h.s. in (11.15) vanishes as λ-+αo, which affirms the statements made on
(0.1) and (0.2) in the Introduction at least in all orders of perturbation
theory. In Section III we shall find that those statements are not true
for exceptional sets of momenta p f.

III. Asymptotic Forms at Exceptional Momenta

The reason for the nonexistence of Γαs in (II.6) at exceptional momenta
is that then in (1.15) ΔΓ is not negligible relative to Γ. Thus, we have to
analyse ΔΓ asymptotically, since it is only at Λ,->oo that we hope to
profit from (1.15). Once its (true) AF AΓ^ (as discussed in Section II,
AΓαs never exists) is found and inserted into (1.15) in place of ΔΓ, we
shall see that the resulting PDE is always easily solved by Ansatz,
leading to the (true) AF Γαs of Γ, to be contrasted with the nonexisting
Γαs of (II.7) or (11.10). We will discuss in detail only the simplest cases,
sufficient to display the technique.

1 1 Li. Four-point Vertex Function

ForΓ((Λ,p! 4-rJ ... (λp4 + r4)) with Σp = Σr = Q, according to Section II
the momenta are exceptional if and, to the extent as we consider only
a Euclidean situation, only if p1 + p2 = Pa + P4 = 0 etc., i.e. for

Γ((λp + r1)(-λp + r2) (λq + r3)(-λq + r4)) .

We first consider q = 0, p φ 0 (and p2 Φ 0). (A.ll) gives

{φ(λp + r i) φ(- λp + r2)} 0(r3)

+ G(λp + i(rx - r2)) G( - λp + i(r2 - r,)) . (III.l)

• Γ((λp + ifo - r2)) (-λp + \(r2 -

As λ -+00 the first term on the r.h.s. behaves like λ~6(\nλ)β and thus is
asymptotically negligible relative to the second term, which like the l.h.s.
behaves like λ~4(lnλ)β'. Leaving the detailed discussion of the last factor
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in (III.l) (whose nontrivial r 3 ?r 4 dependence proves the nonvanishing
of the l.h.s. of (11.15) as λ-> oo for the present exceptional momenta) till
Section III.2, we see that we need only consider Γ(p( — p)00) further.
(1. 12) and (1. 10) give

where (A. 12) is used. Since the "negligible" term vanishes for p-»oo
like p~2(lnp)β, (111.2) gives the homogeneous PDE

where we have introduced (cp. (I.14b)19

! 4

 2

 2 2 (IH 4)

(III.3) is solved by

• \ j dx(TN2 {φ(x)2} N2{φ(Q)2} 0(0)φ(0)>Pr°P + negligible

) = a(g)2h(g)Ψp(-\nm2 + ρ(g)) (III.5)

with a(g) from (II.8) and

h(g) = exp

with gl appropriately chosen. (III.5) entails

ΓaJλP(-λp)00 m2,g)

= Γas(p(-p)00; m2, g(λ)) exp -

to be contrasted with (11.11), and Γ^ is obtained e.g. from

Γa_s(p(-p)W m2,g)

= Urn ir(P(-p)00;m2λ-2,g(λ-1)). (III.8)

• exp ί

19 Note that all parametric functions of g to be introduced in this section are, as
those in (1.9) and (1.14), real since all PDEs hold in particular at Euclidean coordinate
space points where the VFs and A Γ are real.
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to be contrasted with (11.10). Although the "elementary recipe" given
after (11.10) is 20 again applicable, (III.8) shows that the limit in (11.10)
does now not exist, but that an extra factor (using (III.5) and (II.4))
h(g)h(g(λ~1))~1~h(g)(bQ\nλ2)i must be inserted to compensate for
the singularity of Γas at the exceptional point where, as we see here, Γas

actually vanishes. The singularity of the zero-mass-theory function will
be analysed directly in Appendix B, cp. (B.12).

As to the sum of "leading logarithms", since Γ^= — ig(ί +0(0)),
(III.7) gives with (III.6)

Γas(λp(-λp) 00; m2, g) = - ig(ί - b0g\nλ2Γ f + nonleading (III.9)

while for nonexceptional momenta, the exponent is — 1 (see [8],
Section 1.3). The reduction of the exponent can be mnemotechnically
described as : Of the three channels, one is exceptional (i.e. transmits
zero momentum).

We turn to pφO, (p±^)2φO, P 2 ΦO, ?

2 ΦO in Γftλp + rJ (-λp + r2)
(λq + rz) ( — λq + r4)) where for simplicity we will only consider r^ =r2

= 7*3 — 7*4 = 0; the formulas for the more general case give a dependence
of the AF besides on p and q only on rx + r2 = — r3 — r4 and are straight-
forward generalizations (1.12) gives

(-

= iκ(g)Γ(p(-p)QO)Γ(q(-q)QQ) + negligible

with

κ(g)= -±

where the last step in (III. 10) involves (A. 12) applied twice. Into

(111.12)

from (III. 10) we insert (III.5) and obtain21 easily

Γa,(p(-p)q(-q)im2,g)

(111.13)

+ a(g)2Ψpq(-lnm2

20 However, the AF at exceptional momenta are not obtainable by specializing

the AF at general (i.e., nonexceptional) momenta, as comparison of (III.5) with (II.7)

shows, and as was discussed in Section II.
21 The case p= ±q is presumably solved by (III. 13) with κ(g')-^2κ(gf) but we have

not proven this.
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whereof the first term is a particular solution of the inhomogeneous
equation, while the second term is the general solution (cp. (II.7)) of the
homogeneous one, and we have introduced

k(g)= f dgfβ(g'Γίκ(gf)a(gf)2h(g')2 = -g^(l+0(g)) (111.14)
92

with 02 appropriately chosen, and use of (III.6), (III. 11), and (I.14b).
(III. 13) gives, written in full,

4 f t dg'β(g'Γί7(9'^\Γ(p(-p)q(-q) m2λ^,g(λ-1))= Jim exp
Λ—>• oo

+ ίj-

' Γ(p(- p)00; m2λ~2, g(λ~ί)}Γ(q(- q)W; m2!'2, g^1))}. (111.15)

This shows, comparing with (11.10), that the singularity of Γαs must be
removed by a subtraction, rather than compensated by a factor as in
(III. 8), but that the "elementary recipe" remains valid since the sub-
tractive term does not contribute thereby. The factor of ΓΓ in the curly
bracket goes for Λ->oo like ig(λ~l}~1, thus giving, using (III. 8), as sub-
traction a term g(λ~^)~* times a product that has a limit by itself, such
that Γas is infinite at the singularity (p( — p)q(— q}\ p φ q φ 0 rather than
zero as at (p( — p)00) as we found from (III.8). The extraction of the
singular part of the zero-mass-theory function will be performed in
Appendix B, cp. (B.14).

III. 2. Mass Vertex

We call mass vertex the last factor in (III.l) and write

i<TN2 {φ(0)2} Φ(r3)φ(r4)y^ = f(r3r4; m2, g] (III. 16)

For this function, (r3 + r4)
2 Φ 0 characterizes nonexceptional momenta.

For any momenta, we have

2{φ(0)2}m (ΠL17)

This is derived22 by writing the N2{φ(Q)2} part of (III. 16) as a cut-off
momentum space integral with cut-off dependent factor, and applying

22 Another derivation of (III. 17) results from applying (9/ι4 to both sides of (III.l),
with Γj = r2 = 0, and equating the terms on both sides that do not vanish for λ-+ oo.
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(1.12). Hereby also the (m- and 0-dependent) factor must be differentiated,
which gives rise to a multiple of Γ, the coefficient being obtained from
the normalization condition [13] Γ(00)=l and occurring already in
(III.4).

Inspection of graphs shows that the first integral in (III. 17) is negligible
relative to the homogeneous term for r3->oo, r4->oo, unless these
momenta are exceptional, i.e. (r3 + r4)

2 +-» oo. Thus, in the nonexceptional
case

Wto + η(g)]fas(w,m2

9g) = 0 (IILlSa)

leading to

fas(r3r4;m
2,g) = h(gΓ1Ψr3r4(-l*m2 + ρ(g)) (IΠ.lSb)

and

with again the "elementary recipe" being applicable.
In the exceptional case, we only consider r3 = λq + s3, r4 = — λq + s4,

^f2 Φ 0, and will moreover set 53 = s4 = 0 for simplicity. Then, using (A. 12),
(III. 17) reduces to

^o + η(9Ϊ\ Γajq(-q); m2, g) = ίκ(g)ΓaJq(- q)W; m2, g) (111.19)

where we have used (III. 11). Using (III.3) we obtain easily

Γas(q(-q)im2,g)

= ia(gΓ2h(gΓ2k(g)ΓaJq(-q)Wι m2, g) (111.20)

where (III. 14) is used and the last term is the general solution of the
homogeneous PDE. The relation to the zero-mass theory is, written in
detail,

= l i m e x p - dg'P(gT^(gf)f(q(-q);m2l-\g^)) (111.21)
^°
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which shows that fas defined through use of (III. 18), does not exist at
the exceptional point, its singularity being removed in (111.21) by a sub-
traction similar as in (III. 15), though the "elementary recipe" remains
valid. The factor of Γ in (111.21) being the same as of ΓΓ in (III. 15),
the subtractive term in the curly bracket in (111.21) is, using (III.8),
proportional to g(λ~l)~^ as l-»oo, or, including the overall factor,
proportional to g(λ~l)~l ~b0\nλ2. The extraction of that singularity in
the zero-mass theory will be shown in Appendix B, cp. (B.16).

We insert (111.20) into (III.l) and obtain for \p2\ $> \q2\

= ia(gΓ2h(gΓ2k(g)ΓaJp(-p)W; m\ g)ΓaJq(- 4)00; m2, g) (111.22)

While the first term on the r.h.s. is the same as in (III. 13), the second one
differs from the one in (III. 13), inspite of (III.5), as a consequence of the
unsymmetric asymptotics23. Namely, while Ψpq is symmetric in p and q,
(111.22) is not,, since due to Γ ŝ - - ig(ί + 0(0)) and ΓM = 1 -f 0(g2) from
(IIL22), (III.6), and (III. 11) follows

Θq(- him2 + ρ(g)) = 2g-(l + 0(g)) (ΠL23a)

which differs from

Ψq(- Inm2 + ρ(g)) = - ig*(l+0(g)) (ΠI.23b)

obtained from (III.5) with (III.6). Reinserting (111.23) into (111.20), with
w 2->w 2A~ 2 gives with (III.9)

f(λq(—λq); m2, g) — nonleading terms

2 + (111.24)

(cp. (1.14)) which can to this order easily be checked directly.

Ill 3. One-particle Propagator

From (1. 10) and (III. 16) we have

(-p)) = AΓ(p(-p))=-im2φ(g)f(p(-p)). (111.25)

Denoting the AF of second degree of Γ(p( — p)), which includes the terms
0(1), as ΓJίp(-p))9 we have from (111.25)

®/*2ΓaM-p})= -im2φ(g)fas(p(-p)}> (IΠ.26)
23 In Weinberg's [1] terminology, we are now treating Γ(ηίη2p(-ηίη2p)η2q(-η2q)),

rather than Γ(ηp(—ηp)ηq(—ηq)) in (111.14).

5 Commun. math. Phys., Vol. 23
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Inserting here (111.20) with (III.5) we find easily by Ansatz

ΓOS(P(- p); ™2> 9) = ras(p( - P) m2, g)

~ίm2a(g)h(g)e-^]dgfβ(g'Γίφ(gf)eρ(9Ίa(grίh(gfΓ1 (ΠI.27)
o

• \fjp(-P)> ™2> 9) + ίa(gΓ2h(gΓ2(k(g') - k(g))ΓaJp(- p)00; m2, 0)]

where the last term is the general solution of the homogeneous PDF
and must be set zero, in virtue of our choice of integration constants, as
we will now prove24.

For any c(g) that is C°° for g > 0 and bounded at g-+Q by a negative
power we have by repeated partial integration, using (II.6),

e-^]dgfβ(gTίe^c(gf)= £ \_-β(g)dldg]*c(g) (111.28)
0 n = 0

as an asymptotic series. Using this in (111.27) shows that the first two
terms on the r.h.s. possess power series expansions in g and reduce, as
g->0, to the correct value ίp2 — ίm2 of the l.h.s. Thus, the last term on
the r.h.s. must have a power series expansion in g and vanish for 0-»0,
and must for m2 -»0 vanish in all orders of g since then the asymptotic
behaviour of the l.h.s. is correctly given already by the first term on the
r.h.s. alone, in virtue of its definition, the other terms giving only
m2[ln(p2/m2)]^ corrections. Because of (II.8), Ξp( — him2 + @(g)) must be
a power series in g(( — p2/m2)^) = g+ b0g

2\n( — p2/m2)H— With only
p2-dependent coefficients. The vanishing at m2 -> 0 then allows to conclude
the vanishing of the coefficients one by one, q.e.d.

III. 4. Other Vertex Functions

From (A. 11) we get easily

)r3...r2H) (111.29)

for /l-*oo, p 2φO, the main term going like (lnλ)β' as we showed in
Section III.l. (111.29) shows to which extent (11.15) is violated and, if
n g: 3, the asymptotic behaviour λ4 ~ 2n (In λ)β" in the case of nonexceptional
momenta pt surpassed, as a consequence of the UR- divergence of order
2n — 4 of the zero-mass-theory function Γas(p( — p) 0 ... 0) .

24 It can be proved even simpler by inserting in (II.6) the AF of AΓ, whereupon the
last term in (111.27) does not appear. The way over (111.26) is, however, more instructive.
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If one wishes in the present case to obtain the AF of second degree,
i.e. to order λ~2, not only must in (111.29) the last term also be analysed,
for which it suffices to use Zimmermann's [13] δ = 4 formulas, instead
of δ = 2 in (111.29), but the AFs ofΓ(λp( - λp) 00) and of the now appearing
additional functions

Γ(λp(-λp)QQOQ), (ΠL30a)

(d/drj Γ((λp -±r)(-λp-±r) rO)|r=0 > (ΠL30b)

(d2/drμdrv)Γ((λp-ϊr)(-λp-$r)rO)\r=0, (ΠL30c)
and

(d2/drμ dsv) Γ((λp - i (r + s)) (- λp - \ (r + s)) rs)U=0 (IIL30d)

to accuracy λ~2 are needed, which are, for all these functions, the AFs
of second degree. To obtain these AFs, one again uses mass vertex in-
sertion and expands the ΔΓ according to δ = 4 formulas [13]. One
thereby obtains a coupled system of PDEs which we will, however, not
discuss here.

It is obvious that, if one wishes to obtain the AF of a VF where e.g.
two pairs of arguments become large at the same rate (cp. (III. 13)) or at
different rates (cp. (111.22)), suitable generalizations and, possibly,
extensions of the technique of Sections III.l and III.2 should be used.
Ultimately, one might thereby arrive at such a detailed description of
the asymptotic behaviour, in terms of AFs that do suffice in all finite
orders of perturbation theory, with logarithmic terms completely de-
scribed, as envisaged by Weinberg [1], and this in principle, cp. (111.27),
for not only the lowest degree.

IV. Considerations on Asymptotic Behaviour

The AFs obtained in Sections II and III do not yet yield statements
on the asymptotic behaviour of the functions in question because we
obtained no information on the functions φpί...( — Inw2 + ln/ί2 + ρ(0))
of (II.7) and corresponding ones in Sections III.l and III.2, except that
these are VFs and mass vertex functions and, in the case of exceptional
momenta, their nonsingular parts, of a certain zero-mass theory, as
discussed in Appendix B. That information does not relate, however,
to the Λ,->oo behaviour of those functions.

One method available now is perturbation theory. It yields easily
the leading logarithmic, next to leading logarithmic, etc., approximations
of these functions, samples of which are (IΠ.9), (111.24), and formulas
in Section 1.3 of Ref. [8], and obviously of no use for Λ,->oo. Since no
other rational technique than perturbation theory is yet available, one
may resort to assumptions.
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IV.Ϊ. Preliminary Discussion

We combine (II. 11), (II. 1) and (II.9) to

Γ(λPl...λp2n;m
2

9g) (IV.l)

= λ4-2nΓas(p, ... p2n; m2, g(λ)) expί-2/f dg'β(gT1 ?(</')

+ 0(λ2~2n(lnλ)β)

valid (concerning the last term, in all finite orders of perturbation theory)
for nonexceptional momenta. (IV.l) is applicable for arbitrarily large λ
only if g(λ) is defined, i.e. if the integral in (II.2) diverges for g-^g^
from below, where g^ is the first25 zero of β(g) for positive g, or g^ = oo
for positive β(g). This is violated if for β(g) e.g. the approximation by
the first term in (I.14b) is inserted. No inconsistency of the theory would
follow yet, but (II. 11) would define an extension of Γfls (which should,
in virtue of (II.6), exist for all g for which Γ exists) in g into regions where
it was not originally defined or, if defined, assumed in the original de-
finition different values. An inconsistency [25] can only be construed
if assumptions on Γas are made that in effect exclude such behaviour.
Such assumptions are suggested by the interpretation of Γαs as zero-
mass-theory VF. Therefore, we only consider the more comfortable
situation with £(#)—»oo for g-^g^ further.

The possibility that g^ is finite26 was noted by Gell-Mann and
Low [4]. The integral in the exponent in (IV.l) is, using (II.2) and (II.3),

g(λ) g(λ)

ί φWΓM0') = ]>(0oo)lnλ2+ ί dg'β(g'Γ1[.y(9')-y(gJ] (IV.2)
g 9

provided y(g00) exists. The last integral may or may not converge as Λ,-> oo
but it will in any case be negligible relative to the first term on the r.h.s.,
which gives in (IV.l) a factor /l~4ny(έloo). This factor governs the asymptotic
behaviour in (IV.l) if Γas(pί ... p2n m2, g^) exists, and this is now assumed
(implicitly in Ref. [15], and together with more restrictive assumptions
in QED27 in Ref. [16]) in view of the perturbation series in g^ of that
function.

The hook is that the last argument is apriori unfounded. Namely,
also the exponential factor in (IV.l) is for Λ,-»oo a power series in g^
(times a power series in g) and only what we know more about it reveals

25 We forego, for brevity, the discussion of more general possibilities. Cp., e.g., Ref. [15].
26 All of the following holds also if g^ = + oo, however, then the assumptions necessary

to make further look less natural.
27 In QED (see Ref. [8]), the analogous assumption for the inverse photon propagator,

together with assumed fϊniteness of em

2, implies the fϊniteness of the bare charge (cp. Refs.
[4, 16]). The bare coupling constant in the present model is discussed in Section IV.4.
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that under the assumptions mentioned before it diverges. Extracting
from Γas(p1 ... p2n; m2, g(λ)) a factor \_f(g(λ}}~]n where f(g(λ)) is a power
series in g(λ) of peculiar behaviour as gW-^g^, and postulating for the
remainder a g(λ}^g^ limit would mean to declare zero-mass-theory
functions normalized differently than those given by Γas to be more
appropriate for a description of that theory in the g^g^-limit.

For the present model, we showed in Section II that the VFs

a(g(λ)ynΓas(Pι - Pinτm2>θW) = Φpl...p2n_l( — lnm2 + Inλ2 + ρ(g)) (IV.3a)

are conventionally normalized VFs of the zero-mass theory such that,
forming these in (IV. 1) and assuming for them a g(λ)-*g^ limit (which,
of course, does not exist in perturbation theory with respect to #), the
phenomenon of changed power behaviour as /l-> oo disappears. In view of

however, the limit functions would necessarily be scale invariant, and
Pohlmeyer [26] has shown that scale-invariant zero-mass theories are
free ones if they satisfy certain axiomatic requirements. Since we see no
reason to abandon these requirements, in (IV. 1) the factor of λ4~2n

would thus vanish for λ-+ao, if n ̂  2, making the assumption discussed
here, which would lead to "canonical dimension" of the field operator 28

in the present usage of that term (see, e.g. [27]), complicated to pursue
further. In this context, it should be noted that the possibility of con-
ventional normalization of the Γas is special to the present model and
does not exist e.g. in QED [10], and thus appears incidental and not
connected with large-momenta behaviour.

While this remark only discredits a finite λ->oo limit of (IV.3),
there is arbitrariness in the assumption that Γas(p± ... p2n\ m2, g^) exists.
In this situation, one may resort to (II.6), which we write

= Γ(Pι •-P2n'>m2>dW)
9(λ)

2 AΓ(p1...p2nιm
2μ 2,g(λμ 2n J

As λ -+00 we may suppose the first term on the right hand side to have a
limit since for the nonasymptotic theory, g^ is not expected to be a
peculiar value of the coupling constant, although it is one for the asymp-
totic theory since, to obtain such zero-mass theory from the family of
zero-mass theories discussed in Appendix B requires an infinite dilata-

28 For present interpretations of, e.g., deep-inelastic electron-proton scattering
"canonical dimensions" need apply only in certain cases of exceptional momenta without
necessarily requiring the limiting zero-mass theory discussed above to exist.
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tion, see, e.g. (11.11). Thus, the interest centers on the integral in (IV.4),
which becomes for λ->oo

CO

J dμ2

 μ-2-*«*«-> AΓ(Pl ...P2n ,m
2μ-2,gJ

1

and again one may assume the integrand to exist as the definition of
ΔΓ through integral equations (see Ref. [8]) does not involve the asymp-
totic theory, however, the convergence of the integral is now in question.
It is comforting that there is now some latitude in admissable asymptotic
behaviour oΐAΓ(...;m2μ~2, g^) for μ->oo, i.e., rather weaker statements
on the asymptotic behaviour of ΔΓ suffice to support stronger statements
on the asymptotic behaviour of Γ(...;m2 λ~2, g) as λ-^co but we are
dealing with a different function the asymptotic behaviour of which
must be analysed separately. Clearly, this will require new assumptions,
and so forth.

IV.2. Consistency Argument

We will show here that under certain conditions, it is consistent
to assume that certain asymptotic functions have limits as g^g^
We consider only the inverse propagator since the necessary calculations
were performed in Section III. 3. If we specialize (IV.4) to that case, we
see that the integral, with A Γ replaced by its AF, was already evaluated
in (111.27) with the last term to be omitted and g to be replaced by g(λ\
the left hand side being the closer approximation to Γ than Γαs.

We must now assume that not only y(g00) but also η(gao) exists.
Then, assuming for simplicity that the last integral in (IV.2) converges
and also the corresponding one with y(g) replaced by η(g\ one proves
by direct estimate under suitable continuity assumptions that

lim a(g)h(g)e~^ dg' β(g'Γ* φ(gf)e^a(gT1 %'Γ1

0~*e"> o (IV.Sa)

if that exists and the denominator is positive. Likewise one obtains

lim a(g)~lh(gΓl e~Q(9}

-

(IV.5b)
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if that exists and the denominator is positive. Thus, assuming

and fas(p(~P)l m2> #) a^ to have limits as g-^g^ is, under the conditions
just given and presupposing Γ(p( — p)00;ra2, g) to exist thereby, con-
sistent on the present level. Of course, a sharpening of this consistency
test would require increasingly many asymptotic and simply para-
metric functions to have limits as g-^g^. In the following, we abstract
from the special case considered here.

IV.3. Statement and Discussion of Assumptions

The consequences of the following assumptions for asymptotic
behaviour will be given in Section IV.4:

Assumption A : All functions Γ and mass vertex functions Γ in the finite-
mass theory have limits for g^g^ at fixed momenta. (Remark: the
reason for including mass vertex functions will be discussed below.
g^ is defined by

βίdg'β{grl=+*>, 000 ΦO.

Assumption B: All functions of g alone that are directly obtained from
perturbation expansions, rather than in solving a PDE of the type
(1.12), have limits for g^g^ Furthermore, the limiting values of some
of these functions obey certain constraints. (Remark : Examples are
β(g\ with β(gj = 0 if #«, < oo, y(g\ φ(g\ η(g\ κ(g\ against ρ(g\ a(g\
h(g\ k(g\ the constraints being of the variety needed for (IV.5).)

Assumption C: The following functions have limits for g-*g^ at fixed
momenta
a) all asymptotic functions Γαs and certain mass vertex functions
Γαs at nonexceptional momenta
b) all asymptotic functions Γ^ and certain mass vertex functions
jf^ at exceptional momenta at which the corresponding Γas and
Γas are logarithmically singular. (Remark: We may define those
functions that were not defined precisely in Section III, by the
"elementary recipe" since it was found to yield the correct result
in those cases but cannot be expected to be valid at stronger than
logarithmic singularities of the Γαs or Γαs. This is the reason for the
restriction made, rather than the expectation that the assumption
concerning the limit would be unsound for more singular cases.)

Assumptions A and B are natural ones as g^ is apriori no peculiar
value of the coupling constant. Clearly, B is more comfortable if g^
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is finite [4]. Assumption C, however, is much too strong to be directly
acceptable. Therefore, we replace it by

Assumption C : a) Γas(p(-p);m2,g) and Γas(pί ... p4;m
2,g) have at

p2=—m2 and at the symmetry point PiPj= — i(4(5^ — l)m2 re-
spectively, limits as Q-^Q^
b) Certain functions of g alone, defined by limiting processes from
the finite-mass theory, have limits as g^-g^.

From Ca), we can consider all functions Γas for arbitrary momenta
being constructed in the way described in Appendix B for the conditions
(B.I), in a perturbation expansion if nothing better is available, in terms
of the new renormalization conditions of the zero-mass theory described
by the Γas. Formulas (B.12, 14, 16, 17) then allow to define the Γ^, fas9

and ΓQS directly in terms of that theory provided the functions v(g\ and
χ(r, s;m2,#), σ(r2m~2,g\ τ(r2m~2,g\ the latter e.g. for r2 = —m2 and
s = r, have been obtained and have the property stated in Cb). It would
be desirable to obtain these functions directly for g^g^ in terms of
functions of the limiting theory and so to replace assumption Cb) by a
weaker one. To this end, one would in formulas analogous to (B.4, 13, 15)
set both total momenta occuring nonzero and would go to the limit of
one total momentum zero through a limiting process within the zero-
mass theory. With this, and (B.16), in mind we included also mass vertex
functions in Assumption C.a).

The result of the consideration in Section IV.2 and of the foregoing
observations is that the Assumptions A, B, and C, or preferably C,
are consistent.

The g->0oo limiting theory has the property that follows from (11.11)
and(IV.2)29

such that it is scale-invariant 30 with, however, "change of dimension"
unless yfeoJ^O, a case that would imply the asymptotic theory to be
the free one [26] met already in Section I V.I. Clearly, the theory admits
conventional normalization only in this special case. From (III.7) follows

Γ^p(-μp)00;m^ = μ~8y^^ (IV.7)

which conforms with (IV.6), using (B.9-11), for a zero-mass theory.
Similar simple transformation formulas hold for the other Γas and for
fa, and 4.

29 It is not necessary to assume that the last integral in (IV.2) converges as g(λ)->gm.
30 It appears that a local zero-mass theory that satisfies (IV.6) should also be con-

formal-invariant with the same anomalous dimension \+2y(gaύ). This was suggested
to the author by K. Wilson, to whom the author is indebted for a discussion of this point.
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While the present Γas and Γ^ have, e.g. using the "elementary recipe",
expansions in g^, (IV. 6) and (IV.7) do not, of course, hold in those ex-
pansions, as they would otherwise be identities in g^ with the exponents
some power series in g^, and consistency with (11.11), which is an identity
for the series representing Γαs, would require the exponent to be g^-
independent and thus to be precisely 4 — 2n. That Γαs is not, however,
scale invariant identically in g is trivial, cp. (11.13). Thus, with the Γas

in (IV.6) defined31, in principle, by the expansions in gx (IV. 6) represents
a condition on g^ from which, one could think, g^ together with the
exponent could be determined without need of referring back to β(g)
and y(g\ Such use of (IV.6) might be related to fixed-point concepts
of Wilson [15].

IV.4. Possible Types of Asymptotic Behaviour

Under the assumptions of Section IV.3, (IV. 1) gives with (IV.2) for
nonexceptional momenta 32

= λ4-2»-4»'fc->ιteΓ2^

where the r(g)- and ω(/l)-factors come from the last term in (IV.2), and
ω(λ) will, if not constant for λ-+co9 not be as strongly /l-dependent as
a power. For exceptional momenta, e.g., Γ(λp( — Λ,p)00;m2, g) a similar
formula deducible from (IΠ.7) holds. From positive-definiteness [28]
in the case n = 1 follows that y(g^) ^ 0. For y(g^) = 0, the first term on the
r.h.s. of (IV.8) is zero for n ̂  2, and proportional to p2 for n = 1, because
of (IV.6). Among the possibilities here under consideration, this one
appears us to be the most attractive. It corresponds to a vanishing bare
coupling constant (for the definition, see Ref. [10], Section VI), while
y(^00)>0 would lead to an ambiguous bare coupling constant.

As an example of a possibly non-power-type asymptotic behaviour,
we consider the mass vertex of Section III.2; the result for

Γ(λp(-λp)λq(-λq)',m2,g),

31 To use instead the more direct definition of the zero-mass theory given in Appendix B,

(IV.7) should, with the help of (B.2), be transscribed into a relation involving Γ0 and

Ko = V(gJ.
32 (IV.8) shows that if in (11.10) on the r.h.s. g(λ~l) is replaced by g and g by g(λ\

that side would, under the assumptions validating (IV.8), have a limit (though not in perturba-

tion expansion in g) with on the l.h.s. g replaced by g^. - In (IV.8), the last term on the r.h.s.

can, for n = 1, not be inferred from (111.27) and could also be larger than indicated, since

it is open how fast Γas{p^ ... p2n',
m2>dW) should approach its supposed limiting value as

gW^ g^, which is a peculiar value of this parameter in the zero-mass theory.
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on the basis of (III. 13), cp. (III. 15), would be similar. From the consequence
of (111.20)

(-λq); m\ g) = ΛfoΓ1 h(g(λ)) fajq(- q) m\ g(λ)}

-i(k(g(λ))-k(g}}a(g(λ)}-2h(g(λ))-ι h(gΓl Γa^(q(

follows: If 2y(g00)-\-η(gaΰ)>0, the asymptotic behaviour is

dg'β(grί(n(g')-n(gj) ίτ\ μ

• {Γja(-q)l m2, 0 J - \ (2y(gx) + ηigJΓ1 κ(gj Γω(ςι(- q)00;m2 ,g J} .

If 2γ(ga>) + η(gao) — 0 the curly bracket herein becomes replaced by

{fa_,(q(-q) ,m2,gx)-iκ(gJ\nλ2Γ^(q(-q)()Q ,m2,gx)}. (IV.lOb)

If 2γ(gao) + η(ga.1) < 0, the dominating term is

where

For non-overall scaling, appropriate formulas follow from (11.15),
and less trivial ones from (III.l), (111.29), and, more interestingly, (111.22),
cp. the remarks made there. It is seen that, although the assumptions
of Section IV.3 lead essentially to power-behaviours, the "dimensions"
[15] hereby differ in general from the one in the simplest case (IV.8),
and, under circumstances as in (IV.lOb), non-pure-power behaviours
result. The exponents and characteristic constants are independent of
the actual coupling constant g, which, e.g., in (IV. 8) enters the leading term
only through the factor r(g)~2n. However, the closer g is to g^, the
sooner will the asymptotic form be reached, because of the #(/l)-dependence
ofΓα s in(IV.l).

Conclusion

After a review of the mass-vertex insertion technique and of previous
results on asymptotic forms at nonexceptional momenta and the zero-
mass theory relating to them, we derived the asymptotic forms of some
simple vertex functions and of the mass vertex at exceptional momenta,
at which the asymptotic forms for general momenta are inapplicable
due to ^^-singularities of the zero-mass theory. We showed that these
new asymptotic forms are related to zero-mass vertex functions from
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which the L/J^-singularities are extracted sometimes in a subtractive,
and sometimes in a multiplicative manner.

All these asymptotic forms yield no information on the asymptotic
behaviour of the functions considered without knowledge of the behaviour
of the zero-mass theory in a certain limit, expressible as an infinite dilata-
tion in a family of zero-mass theories all related to each other by finite
dilatations. Concerning this, we discussed some assumptions, and in
particular one set of assumptions (which, in QED, would imply the
finiteness of the bare charge) for which we gave a consistency argument,
with the help of considerations on the zero-mass theory. The resulting
asymptotic behaviours are power laws or slight modifications thereof,
with the exponents being coupling-constant independent, but these
forms are reached the sooner the closer the coupling constant is to a value
distinguished in the zero-mass theory. We do not, however, consider
the aforementioned particular assumptions as physically compelling.

Appendix A

Elementary Derivation of Some Expansion Formulas

We first derive the formula

<T: φ(x)φ(y): φ(zj ... ψ(z2ll)> = <TN2{φ(x)φ(y)}φ(Zl)... 0(z2J> (A.I)

+ <T: φ(x)φ(y):

in the notation of Zimmermann [13]33 extensively used in Section III.
We have [20, 29, 30] for connected Green's functions

G(xyzί ... z2n) = G2ί(xy, zί ... z2n)

+ Jf du dv G(xyuυ) i G2ί(uv, z, ... z2n) (A.2)

+ Σ
partitions

k+l=n+l

Here underlining an argument means propagator amputation, and
G2t is that part of the connected Green's function that is two-particle
irreducible between the first and second sets of arguments, with
G2i(xy,zlZ2) = 0.

We now use a matrix notation [31] that allows easy manipulations.
The Bethe-Salpeter (BS) equation is written

= B + /GB. (A.3)

33 However, we use the Fourier transforms

φ(x) etc.
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Here / is the 4-point VF, B the BS kernel (which in the model (LI) involves
a logarithmically divergent constant, so that for ίiniteness we should
first consider the regularized theory, see, e.g., Ref. [18], and go to the
limit in the final equations), and G stands for the pair of propagators.
Momenta are indicated as

etc., and are suppressed if internal and integrated over (with a factor
i(2π)~4 supplied), or if external (left entry, right exit, and throughgoing
or total) and kept general. In (A.3) it is understood that internal momenta
fit unless one momentum is indicated to be kept fixed, such that that
factor is constant in the internal-momentum integration, as below
in (A.7).

N o w 0 0 o o o o
/) (A.4)

and, using (A. 3) twice,

0 0 0 0 0 0 0 0
/-/ = B-B + ( / - / ) G B + /(G-G)B + /G(B-B)

o o o o o (A.5)

Together,

1 + G / = (1 + G /) [1 + G(B - B) (1 + G/) + (G - G)/] . (A.6)

Furthermore, from (A. 3)
0 0 ^ 0 0 Λ 0 0 0 0
/-/° = B-B° + /G(B-B0)

such that
o on o o n ° ° o ^ ,
/ = (/° + β-fl°)[l-G(fl-fl0)]-1 (A.7)

where the inverse is defined by expansion, and

0 0 0 0 ^ 0 0 0 Λ „

1 + GI = (1 + GI°)[1-G(B-B°)']-1. (A.8)

Inserting (A.8) into (A.6), we obtain

1 + G/ = (1 + G/°°)(1 +1/1/0 (A.9a)
where

--l. (A.9b)

Herefrom
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inserted as G(xyuv) into (A.2) gives (A.I) upon addition of disconnected
parts. The kernel W is finite in perturbation theory and allows its left
arguments to coincide as power counting [32] easily shows, whereas
Gl is logarithmically singular thereby. Thus, in (A. 10) that singularity
is separated off and seen to be factorisable. The formula

<T: φ(x)φ(y) : Φ(k,)...φ(k2n)γ™» = <TN2{φ(x)φ(y)} φ(k,).

+ < T: φ(x) φ(y) : φW(0)>elemi < TN2{φ(±(x + y))2} φ(kj . . . φ(/c2n)>prop

(A.11)

in Zimmermann's [13] notation is obtained from (A.I) by removing
one-particle reducible parts, and amputation. In (A. 11), the first two
"prop" can also be replaced by two "elem".

In Section III we use special cases (n + / = 2) of

< T: φ(x)φ(y) : N2{φ(u,}2} . . . N2{φ(Ul)
2} φ(z,) . . . φ(z2π)>elem

= <TN2{φ(x)φ(y)}N2{φ(Ul)
2} ... N2{φ(ul)

2}φ(z1) ... φ(z2n)^™

+ <T: φ(x)φ(y) : 0(0)0(0)>elem (A. 12)

N2^^
The definitions, in the approach of Zimmermann [13], of the functions
involving several N2 -operators are for n + / ̂  2 straightforward general-
izations of those in (A.I) involving only one N2-operator since no new
vertex parts arise (in contrast to /=!, n = Q). The definitions of these
functions in the spirit of this Appendix require tools developped else-
where (Section V.2 of Ref. [18]) and are left to the interested reader.
In either approach the proof that the first term on the r.h.s. of (A. 12)
allows x-+y (unless /= l,n = 0, for that case, cp. e.g., (111.20)) rests on
power counting in precisely the same way as for / = 0, the only difference
being that the vertices on which external momenta act are now, besides
three-leg ones, also two-leg ones.

In Section III.4 δ>2 is mentioned. The δ = 3-forms34 of the (5 = 2-
forms (A.I) and (A. 12) can be simply derived as above, whereby now at
some steps of the manipulations not only the first but also the second
term in a Taylor expansion at zero momentum is subtracted. Only for
δ ̂  4 the present method loses its simplicity due to combinatorial complex-
ities of the variety of, but more cumbersome than, those in Ref. [20].
This also applies to the higher-δ forms of (A. 12).

34 δ is the dimension [9] ascribed to the operator in the Λ^-product, which characterizes
the number of subtractions made when building up the renormalized Feynman integral [13].
When δ exceeds the actual dimension d, subtractions are made that would not be necessary
to give a finite Feynman integral.
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We finally prove (1.10). ΔΓ in (1.6) can for n = 1 be written35

AΓ = γ + γ G / (A.13)

where y= — iZ3 Am2, the coefficient of the bare vertex, which is taken
at zero total momentum. (A.9) gives

AΓ = γ(l + Gfr)ίl-G(B-B°)Γ1=ΔΓ°(l+W) (A. 14)

which is, using (1.8), (1.10) for n = ί. (1.10) for n> 1 then follows by use
of (A.2).

Appendix B

Properties of the Zero-Mass Theory

We noted in Section II that it is economic, and found in Section IV.2
that it is significant, to be able to deal directly with the zero-mass theory
as such. This construction will now be described.

For the VFs Γ0 of the zero-mass theory we choose the renormaliza-
tion conditions36

Γ0(00;172, 7) = 0, (B.I a)

Γ0(p(-p); U2, V)\p2 = _u2=-iU\ (B.lb)

^o(PιP2P3P4; U2, F)|symm.pt.= -IV (B.lc)

where U2 is a mass squared, V dimensionless, and the symmetry point
is defined by Pipj= — i(4<5ίι7 — 1)U2. The recursive construction [33]
of the VFs Γ0(p1 ... p2nl U2, V) as power series in V proceeds for n^ 3
in the usual way. For n = 1 and n = 2, the final subtraction must be made
such as to impose (B.I). We denote the unrenormalized n= 1 VF, i.e.,
the one before the final subtraction, by Γu(p) and form the finite function

Γ(P, Po) = Γu(p) -(p- Po

- i (P ~ Po)μ (P - PoX (S2/Sp0μ Sp0v) Γu(p0)

where p0

2 = — I/2, e.g. using

, Po) = Ί(P~ Po)μ (P ~ Po)v (p ~ Po)*
i

• J dx(ί - x)2 (d*/dqμ 8qv dqκ)Γu(q)\q=po+x(p.po)
o

35 Again, for rigour, regularization should be applied in the first stages.
36 As the possibility of conventional normalization, discussed in Section II, is not

verifyable in perturbation theory, we do not attempt to implement it at this point.
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and for the third derivative the expression given by Johnson [20]. In

Γ0(p(-P)l U\ V) = Γ(p2) = Γ(p, po) - A(p0) - pμB»(Po) - \ pμpv C"v(p0)

the functions A, B, and C are determined from (B.I a, b), and one obtains

Γ(p2} = Γ(p, po) - Γ(0, p0) - pμB»(p0) + P

2Γ(Po

2) + 2{pp0)
2Γ(p0

2)

where
Bμ(po) = (3/Spμ)Γ(p,p0)\p=0,

Γ'(po2) = (Po2Γ * LΓ(Po

2) + Γ(0, po) + i p0μ

Γ"<Po2) = ϊ(po2Γ2PoμBHpo),

and

0

2) = Γ(-L7 2 )=-it/ 2 .
For n = 2 we use

Γofo ...p4;U
2

9V) = Γu(p1 ...p4}-Γu(pv ... p4)|Symm.pt. - *V

where ΓM is the function before the final subtraction, and the ΓM-difference
is finite and easily calculated in a variety of ways. In these calculations,
Γ(0,p0) and B^(p0) are finite, the (according to (11.14), fictitious) UR
singularity appearing only in the second derivative at p = 0 for phase
space reasons (cp. (11.13)), and the p0-dependence cancels out.

We now discuss the family of theories so constructed. For unchanged
theory, U2 in (B.lb) is not fixed since its change can be compensated
by a change of normalization of all VFs without change of the physical
content of the theory. Then Fwill change, however, such that simultaneous
change of V and U2 describable by V(U2) does not change the theory
physically. On the other hand, a change of U2 without a change of V
means a dilatation and yields a physically different theory. Thus, there
is a one-parameter family of physically distinct theories, all related to
each other by dilatation, with no intrinsic dimensionless parameter
definable. Since such a result is also immediately deduced from the prop-
erty (II.7) of the l.h.s. of (11.10), we expect, and will verify below, that the
zero-mass theories described by the Γas can be related to the ones described
by the Γ0. - These conclusions are not altered if the possibility of con-
ventional normalization is exploited: Imposing, e.g., instead of (B.lb)
lim (p2)~ίΓ0(p( — p); U2, V) = i again makes, for unaltered theory,

P2->0

V a function of U2, and as there is no distinguished value for I/2, U2 = 0
leading to V = 0 in (B.I c) according to Section II, or to UR -divergent V
in perturbation theory, the impossibility of introducing an intrinsic
dimensionless parameter remains. - It must be noted that the conclusions
of this paragraph depend on the non-scale-invariance of the zero-mass
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theory (a scale invariant one anyway not being of interest [26]) which
holds in perturbation theory, see, e.g., (11.13) and (Π.14) where, using
(1.14), aw = -2bό1c0 ΦO and α21 = -2c0.

We now set

Γas(Pι •..P2n >m2,g) = Z(gΓnΓ0(p1 ...p2n',m
2,V(g)) (B.2)

where we have set U2 = m2 for simplicity, and used that dimensionless
parameters can only depend on g. Now, from Γas satisfying the homo-
geneous PDE (1.12),

{m2[_d/dm2^+β(g)(dV(g}ldg)[_dldV] -2ny(g)-nβ(g)(d\nZ(g)/dg)}
(D.J)

-ΓΌ(P! ~P2n>m >V)\V = V(g)=Q

Using this for n = 1 at p2 = - m2 and for n = 2 at the corresponding
symmetry point yields

β(g)(dV{g)/dg) = V2R(V)
and

2y(g) + β(g] (d lnZ(g)/dg) = V 2 S ( V )

where R and S are power series in V. The first relation gives37 V(g} = gP(g]
and then the second Z(g) = l+gQ(g\ with P and g power series in g.
Using these expressions in (B.2) gives all functions Γas in terms38 of the Γ0.

We now show how in the zero-mass theory the singularity structure
found in Sections III.l and III.2 can be displayed such that Γαs and Γαs

of those sections can be obtained directly from the zero-mass theory.
We use the notation of Appendix A. One easily verifies

(B4)

37 That this and the following relation do not involve glng follows directly from
(B.2), (B.I), and the fact that the Γas are power series in g. The described, complicated
construction of V(g) and Z(g) by use of (B.3) avoids, however, the exceedingly complicated
determination of the Γas also at the renormalization points. Actually, with V(g) and Z(g)
determined, the renormalization conditions for the theory described by the Γas can be
determined from (B.2) and these functions calculated without need of referring back to the Γ0.

38 The parametrization (B.I) of the zero-mass theory is closely related to the re-
normalization conditions used in QED by Gell-Mann and Low [4]. However, the theory
(B.I) is a zero-mass theory whose relation to AFs, and not directly to asymptotic behaviour,
is given by (II.6) (which e.g. allows to consider corrections, see Section IV.3) and (II.9)
rather than by less precise statements. By this two-step-, in the place of the one-step procedure
of Ref. [4], statements correct to all orders in perturbation theory (and, e.g. in those state-
ments that rely on (II.4) rather than on (II.5), going beyond it) are separated from assump-
tions on the behaviour of the zero-mass theory as g-^g^, or, equivalently, V(g)^> V(g00) = V^.
That Vn is a particular value of V and not just any value is seen from the infinite dilatation
implied, and the discussion of Sections IV. 1-3 addresses itself to this point. - That there are
different types of zero-mass QED, was observed by Baker and Johnson [16].
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where

o (R5)

.[/-(1 + /G) (£-£)]
and 0

N = l+<(G-G)H° (B.6)

where the < sign means to integrate over the (relative) momentum to
its right. In (B.4-6), the total momentum in H, and in all kernels /, G, B
without 0 on top, is fixed at some nonzero (more precisely, not lightlike)
value, and the inverse in (B.5) is defined by expansion. H is UV- and,

o o
even in a zero-mass theory, UR convergent, the latter since BP — B°
vanishes for p-*0. In contrast, N is UV- but, in a zero-mass theory,
not UR convergent. Thus, with total momentum r (r2 Φ 0), and comparing
with (II. 10),

(E.I)

exists and can, in terms of the Γ0-theory, directly be calculated as

f? = Z(gΓ2 >HS(p2, r2 m2, V(g)) (B.8)

by virtue of (B.2). Comparing (B.4) with (III.8) and using (B.7) we learn
that

lim \h(g(λ))h(gΓίN(r2m-2λ-2 g(λ)}-] = N(r2m-2 g) (B.9)
λ-»0

exists and that

Due to (B.9)

(- I;g((-r2/m2)*)) (B.ll)

and thus can be calculated if only Λ/( — 1 g) = v(g) = 1 + 0(g) is known,
which can be obtained from (B.9), setting r2 = — m2 by the "elementary
recipe" of Section II. Choosing for definiteness r2 = —m2 in (B.7-10)
we have

Γajp(- P)00; m2, g) = v^Γ1 Z(gΓ2pH°(p2;m2, V(g)) (B.12)

where the evaluation of H$ with r2 = —m2 is understood. We have not
attempted to calculate v(#) in terms of the zero-mass theory (cp. Sec-
tion IV.3). - We note that, outside of perturbation theory, from (B.9)
6 Commun math. Phys., Vol. 23
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N(-λ~2'9g(λ))~h(g)v(g)(b0\nλ~2)* as /l-»0, displaying its l/K-singu-
larity39.

Manipulation of (A.3) and use of (B.4) gives

/ = M(r, si m2, g) - favf//0)-1 (< (G - G)Hs)rf (B.13a)

where (r is in each case the total momentum)

with
r , ,~y

i.e.
0 0 0 0 Λ 0

K=[/-(B-B)(l + G/)] [l + G(B-B)(l + G/)+(G-G)(B-°B)(l + G/)Y1

and 5 Φ 0 (more precisely, s2 Φ 0). The two terms in M(r, 5) are separately
UV- and, in the zero-mass theory, L/.R-convergent. The last term in
(B.I3a) is r- and s-dependent, however, its UK-singular part is r- and
s-independent since (B.13a) is an identity. Comparison of (B.13a) with
(III. 15) and (III.8) gives

+ iχ(r, s; m2, g)ΓαJp(-p)W; m2, g)ΓαJq(- ^)00; m2, βf)

where

- - r s m2 F < ^

is a function obtained in the zero-mass theory (B.I), and

χ(r, 5; m2, g) = lim {α(^)
~ (B.14c)

+ ilΓαJs(- 5)00; m2, ff)] -1 h(g)^ h(g(λ}} (< (G - G) Hs) (m2λ2, g(λ))}

where the notation means that the last factor is to be evaluated with
mass mλ and coupling constant g(λ), and (111.14) is used. In (B.14b) the
limit exists, as in all such formulas in this Appendix, in all orders of
perturbation theory such that the "elementary recipe", applied only to
the last term in the limitand, is applicable; outside of perturbation

theory, the first term in the curly bracket is (see (III. 14) and (II.4)) essentially
proportional to (lnλ~2)^ and so behaves therefore also the second term.

39 That this singularity is not proportional to In λ 2, as (B.6) might suggest, is due to

the UR singularity of °A/°, which arises from °£?° then occurring in (B.5).
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We have not attempted to calculate χ directly in terms of the zero-mass
theory.

Finally, we consider the mass vertex of Section III.2. We write it as
o
Γq and express it with the help of the mass vertex Γ at nonzero total
momentum as

Γ = L-L(G-G)>°/ (B.15a)
with

L=Γl + GB-B)(l + Gf) + (G-G)(B-QB)(l + GI)Tί

as is easily obtained by manipulating (A.3). L is UV- but not UR-con-
vergent, the L/£-divergence (for zero mass) being, however, solely due

to the one of Γ stemming from its imposed normalization Γ° = 1, see
(III.ISc). Inserting (B.15a) into (111.21), using (III.ISc) and (B.14c) we
find easily

fajq(-q);m2,g) (B.lόa)

-i(2π)-4 j dq'fas((q' + \r) (- q' + $r); m2, g) [1 + K]^(q'9 r, q; m2, g)

with

Hm [k(g)-k(g(λ))
~ (B.lόb)

+ ia(g(λ)}2h(g(λ}}2 [Z(G - G) > (m

wherein it is understood that the square bracket is evaluated with mass
mλ and coupling constant g(λ). In (B.lόa) it is used that the kernel /?
does not require any factor for the zero-mass limit in the sense of the
theory (B.I) to exist (nor any Z(g)-factor: /?αs = /?0)> an^ the asymptotic
mass vertex at nonzero total momentum is needed. It is from

Γ = Γ0[l-G(fl-β°)]-1=Γ0[l + S]-1

and (III.ISc) calculated as

4-([l+5αs]-^τ(r2m-2,^) (B.17a)

where

τ(r2m-2,g)= lim {higΓ^ig^f^m2!2^^))} . (B.17b)
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In (B.17b), the mass vertex to be inserted is e.g. calculated from

The point of the relatively complicated formulas (B.14) and (B.16)
together with (B.I 7) is that it suffices to determine the functions χ, σ,
and τ for r2 = — m2 and, e.g., r = s, similarly as we simplified (B.10) to
(B.12); their values for arbitrary r2 (with, in case, r = s), if desired, can
be obtained from transformation formulas analogous to (B.ll).

Appendix C

Noninβnitesimάl Mass Vertex Insertion

The theory (1.3) can for all s > — 1 be constructed to arbitrarily high
orders in perturbation theory by adaption of a method developped
elsewhere (Section V.2 of Ref. [18]) in connection with problems con-
cerning symmetry breaking. That nondifferential method is, however,
more complicated than the differential one described here which,
although the problem at hand is an academic one, appears to be in-
structive.

We compare (1.5) with (1.12) and find, using (I.14a),

dg(s)/d\nm2(S) = β(g(s)) (C.la)

and dlκZ(s)/dlnm2(s) = 2y(g(s)) (C.lb)

± ...p2n\m2(s\g(s))

We set n = 1, pl = — p2 = O40 and obtain, using (1.8),

AΓ(W;m2(s\g(s))

= Z(s)(dlnm2(s)/ds)-ίld/ds^Γs(QO;m2,g)=-ίm2(s)φ(g(s)).

Since, using (1.3), techniques of Ref. [8], (C.3), and (III.4),

= Z(sΓ2(d\nm2(s)/ds)2l-^ίm2(s)φ(g(s)) ]2

• j] dxdy<TN2 {φ(x)2} N2{φ(y)2} φ(Q)φ(0)ys prop

= - ίZ(sΓ2(dlnm2(s)/ds)2m2(s)φ(g(s))η(g(s))

= -i[dlds] [Z(sΓ1(dlnm2(s)/ds)m2(s}φ(g(s)J]

= -ί[_d/ds-]u(s)
40 The reason for this choice rather than, e.g., pl

2 = p2

2 = m2, is that the necessary
calculations were already performed in Section III.
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we have

du(s)/d\nm2(s) = Z(sΓlη(g(s))u(s) (C.4)

wherefrom

m2(s)

\nu(s)= J m2(sT1dm2(sf)Z(sr)-1η(g(sf)) + const. (C.5)
m2

The scale of s is fixed by the convention (1.7), see (I.13a) and (I.14a), as

dlnm2(s)/ds\s=0 = l (C.6)

which yields the const in (C.5). Thus

d In m2 (s)/ds
(C 7)

= m2φ(g)Z(s)m2(sΓ1φ(g(s)Γi exp[the integral in (C.5)]

and, finally,

m2

m2(s')

• exp

Using in the integrands the solutions of the differential Eqs. (C.I) as a
function of ra2(s), or, more conveniently, of g(s\ gives s, and, by inversion,
all functions m2(s\ g(s\ and Z(s), can ultimately be obtained as functions
of 5, to arbitrarily high order in g.

(C.I) gives with (C.I) and (C.6)

d2\nm2(s)/(ds)2\s=0 = 2y(g) - φ(g)'ί φ'(g)β(g) + η(g) - 1 = f(g) - 1

wherefrom
m2(s) = ι

That f(g) is 0(g) from (III.4) comes from the fact that L in (I.I) involves
in δm2 a term oc#G(00) usually hidden by the use of Wick contradictions;
since such contractions, however, depend on the bare (or, alternatively,
the true) mass, if one keeps the contraction fixed but changes the bare
mass, an effect in order g arises.
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