
Commun. math. Phys. 22, 269—279 (1971)
© by Springer-Verlag 1971

A Class of Analytic Perturbations
for One-body Schrδdinger Hamiltonians

J. AGUILAR and J. M. COMBES
Centre de Physique Theorique — C.N.R.S., Marseille, France

Received March 2, 1971

Abstract. We study a class of symmetric relatively compact perturbations satisfying
analyticίty conditions with respect to the dilatation group in Rn. Absence of continuous
singular part for the Hamiltonians is proved together with the existence of an absolutely
continuous part having spectrum [0, oo). The point spectrum consists in 1R — {0} of finite
multiplicity isolated energy bound-states standing in a bounded domain. Bound-state wave
functions are analytic with respect to the dilatation group. Some properties of resonance
poles are investigated.

Introduction

The recent developments of scattering theory for long range potentials
([1-3]) have made urgent to find new techniques for the spectral analysis
of Schrδdinger Hamiltonians. By new we mean independent of a short
range hypothesis implying e.g. existence of the usual wave operators or
(almost equivalently) solvability of the Lippman-Schwinger equation.
Many results have been found recently by using methods related to
Putnam's positive commutator theorems (to our knowledge the most
recent of them can be found in [4, 5] which also contains many references).
We present here a different method based upon rather weak analyticity
conditions on the potentials. These conditions allow analytic con-
tinuation on the unphysical sheet for sufficiently many expectation values
of the resolvent; from this all qualitative results on the spectrum can be
deduced. Our conditions allow velocity dependent perturbations such as
spin-orbit couplings or electromagnetic fields. As a consequence we
don't expect absence of positive discrete spectrum. A part of this work
will be concerned with a study of positive energy bound-states and cor-
responding eigenfunctions. Finally, we investigate properties of poles on
the unphysical sheet.

I. Dilatation Analytic Potentials

The dilatation group in L2(Rn) is defined as

(U(θ)Φ)(x) = ίnθ/2Φ(eθx) θeR, ΦεL2(Rn). (1)
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In momentum space U(θ) acts as follows:

(U(θ)Φ)(p) = e~nθ/2Φ(e~θp). (2)

The proof that £7(0), 0 e R, is a weakly continuous unitary group is
rather straightforward and will be omitted. The generator of this group is
A = x - P + P - x (called a "progress operator" in [4]) which also enters in
the study of the virial theorem [6]). From (2) we immediately deduce that

(7(0) R0(z) U(ΘΓl = e2ΘR0(e2θz) (3)

where R0(z) = (H0 — z)"1, ImzφO; and H0 = —A is the rc-dimensional
Laplacian. Relation (3) has a fundamental consequence which is the
in variance under (7(0), 0 e R, of the Hubert space @(HQ), (the domain of
H0 equipped with the scalar product (Φ, ¥%(Ho) = (H0Φ, H0Ψ) + (Φ, Ψ),
Φ, Ψ e@>(H0)). More precisely one has:

Let us now consider an #0-compact operator 7 (that is a compact
operator from £&(H0) to L2(Rn)) and define

7(0) - (7(0) VU(ΘΓ\ θeR. (5)

It is clear that 7(0) is #0-compact. We are then sufficiently prepared to
define dilatation analytic perturbations as those ί/0-compact operators
7 having the following property:

7(0), θεR, has an //0-compact analytic continuation in an open
connected domain Φ of the complex plane.

If 7(0), 0 e R, is symmetric the domain (9 can always be taken to be
symmetric with respect to .R since

7*(0)=7(0), θe&

defines an analytic continuation of 7(0) into the symmetric domain
generated by 0. Furthermore we see that

defines for a fixed 00 another family of #0-compact operators analytic in
(9 + 00. It is clear that we can in this way extend analytically 7(0) to the
whole strip generated by translating (9 along the real axis; in fact it is
sufficient to verify that 7(0) and Vθo(θ) coincide on the real intersection
of (9 and (9 + 00 for sufficiently small 00. Summing up we have:

Lemma I.I. Assume V is symmetric and dilatation analytic; the
analyticίty domain (9 for 7(0) can always be extended to a complex strip

Sa = {zeC, -a<lmz< +α}, α>0.
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In the following we shall always assume 0 < a < 77/4.
Some standard examples of dilatation analytic perturbations are

g/rβ(Q<β<3/2) or p-^p-eA where A = g/rβ (0 < β <3/4) There also
exists short range potentials satisfying this kind of analyticity such as
superpositions of Yukawa potentials studied by Lovelace [7]. In fact the
idea of using complex scale transformations in perturbation theory is
not new and as far as we know this been originated in papers [8] and [9]
in order to study analyticity properties of scattering amplitudes. Lovelace
has also shown the interest of such transformations for the study of
resonance and three-particle amplitudes.

II. Spectral Type of H = HQ + V

Let 2 be the dense set of analytic vectors for the dilatation group;
\\AnΦ\\

2 consists of those vectors Φ such that the series V :— θn has an
n nl

infinite radius of convergence [12]. We shall denote by Φ(θ\ θeC the
corresponding vector valued analytic function. More generally if G is
any open complex domain having a non empty intersection with R, then
Q}(G) will consist of those vectors Φ such that Φ(θ) = U(Θ)Φ, θeR can be
analytically continued in G.

Lemma II. 1. Let V be symmetric and dilatation analytic in a strip Sa.
Let R(z) = (H0 + K-z)~1, ImzφO; then for any Φe@, the function
(Φ,R(z)Φ) has a meromorphic continuation through the positive real axis
from above (resp. below) until the half lines argz = — 2a (resp. + 2a).

Proof. We first notice that H is self-adjoint and that ®(H) = ®(H0).
Let us define the following subsets of the complex plane <C:

C+ + = {ze<C, Rez>0, Imz>0},

<C+ " = {z e <C, Rez > 0, Imz < 0}.

We have according to the H0 -compactness of V:

(Φ,R(z)Φ) = (Φ,R0(z)ll + VR0(z)Γ1Φ)VΦeL2(Rn\ ze<C [ θ 5 θ θ ).

In fact VR0(z)isa compact operator valued analytic function in <C[0>00)

whose norm is smaller than one for Rez sufficiently large and negative.
Then, as is proved for example in ([11], VΠ.6.12) [1 + VR0(z)']~1 exists
and is meromorphic in the analyticity domain of VR0(z). On the other
hand since 2(H0) is invariant under U(θ\ θ eK, one has:

E7(0) VR0(z) U(ΘΓ1 = e2θV(θ) R0(e2θz).
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Accordingly for any θ e R :

(Φ, R(z)Φ) = e2θ(Φ(θ\ R0(e2θz) [1 + e2θV(θ) RQ(e2θz)γlΦ(θ}) . (6)

Let us suppose now that Φ £ ® and let 0 be the analyticity domain for
7(0). We define:

We shall always assume without restricting the generality that & is con-
tained in a strip [— iα, H-ία] with a<Π/4. Now fix zeC+ + and define
e= -^argz; then g2 0zeC [ 0 > 0 0) for any θe$ε. Accordingly e2θR0(e2θz)
and e2ΘV(θ) R0(e2θz) are analytic in 0ε. We want to derive meromorphy
of [l + e^F^^o^z)]"1 in $ε. According to the compactness of
e2θV(θ] R0(e2θz) this will hold if this inverse exists for some θ e (9ε [10]
but this is true for θ = 0 since otherwise H0 + V would have a complex
eigenvalue z. From this we can deduce that if Φ e 2 the function

Ψz(θ) = (φ(0), e2X(e2θz) [1 + e2θF(0) Λoί*2'*)]'1 Φ(θ)) (7)

is meromorphic in θ e 0ε. Furthermore according to (6) Ψz (θ) is constant
for θ e (9εr\R\ then it is constant for any θ e (9E and in particular we have:

Ψz(θ) = (Φ,R(z)Φ) V z e C + + , V θ e ί P 0 . (8)

We now fix θ e (9+ = {θ 6 0, Imθ > 0}. Then !PZ(Θ) is meromorphic as a
function of z in

+} (9)

for R0(e2θz) and F(θ)^0(β2βz) are analytic in this domain. Since
C+ + nC^+ is open and non empty, Ψz(θ) defines an analytic con-
tinuation of (Φ, R(z)Φ) in this domain. On the other hand C^ + contains
the positive real axis; we can conclude that (Φ, R(z)Φ) can be analytically
continued when z crosses the positive real axis from above. Taking
θ= +ίa provides an analytic continuation of (Φ, R(z)Φ) in <C^+. One
proves similarly the existence of an analytic continuation for (Φ, R(z}Φ)
when z crosses the real axis from below.

The discussion of Lemma II. 1 shows that for θ e & positive real poles
of the meromorphic family [ί + e2θV(θ)R0(e2θz)']~1

9 zeCθ

+ +, can
accumulate at most at point zero. Furthermore as shown in App. I, these
poles do not depend on θ e (9 + . Let us then define

Σ+ -{real poles of [i + e2θV(θ)RQ(e2θz)Y\ θe(9 + , ze^+] .

Obviously Σ+ coincides with the set of real poles of the family of resol-
vents (e2θH0+ V(θ) — z)"1. Such poles are simple. This can be proved
along the lines developped in the next lemma of this paper.
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Lemma II.2. Σ+ is the positive point spectrum of H.

Proof. Let us denote by P(E) the spectral family of H; then one has:

(Φ [P(E) - P(E - 0)] Ψ) = lim(z - E) (Φ, R(z) Ψ\ z e Cθ

+ + . (10)

For θ E Φ+ and E E Σ+ we define projection operator

P+(£, θ) = Res.(e~2θH0 + V(θ)- z)"1 . (11)
z = E

Properties of these operators are investigated in App. I. According to (7)
and (8) one gets since £ is a simple pole of (Φ, R(z)Ψ):

lim(z - E) (Φ, R(z)Ψ) - (Φ(0), P+ {E, 9} Ψ(θ)\ Φ,Ψe@. (12)
z-»E

The right member of (12) cannot vanish for all Φ, Ψ e Q) unless P+(£, θ) = 0
which would contradict EeΣ+. According to (10) for such vectors
(Φ, [P(E) - P(E - 0)] Ψ) is non zero, which means that E is in the point
spectrum of H. Conversely assume that E is not in Σ+ then since
(Φ,[P(E)-P(E-iO)]!P) vanishes for any Φ, Ψ in 0, one has P(E)
= P(E - iO) which implies that E is not in the point spectrum of H.

Lemma Π.3. The point spectrum of H is bounded.

Proof. Since 7(0) is H0-compact for any θ e Sa one has the following
classical estimates

β(θ) PΓ0/|| +&(ε,0) 11/11, f

where ε(0) can be choosen arbitrarily small [13]. Taking 9 = 0, such an
estimate is sufficient to prove boundedness of the negative discrete
spectrum of HI since this result is well-known we shall investigate only
the positive discrete spectrum. It is clear that majorizing
\\e2θV(θ)R0(e2ΘE)\\ by 1 for sufficiently large EeR and fixed θe&+ is
sufficient to conclude. Taking θ = ia (we assume 0 < a < 17/4) leads after
some simple calculations that we omit to

\\V(ia)R0(e2iaE)\\ = —— ε(ία) + -^ . (13)

Since ε(iα) can be chosen arbitrarily small the proof is complete.
We can now state the first theorem on the spectral type of the Hamil-

tonians constructed with dilatation analytic potentials. It is well-known
that L2(Rn) can be written as a direct sum ([14], X, § 1)

L2(R») = Jίa(H)®Jίcs(H)®Jtd(H} (14)

where Jta(H] (resp.Jίcs(H),Jΐd(H)) is the closed subspace of vectors Φ
such that the measures (Φ, P(E)Φ) are absolutely continuous with respect
to the Lebesgue measure (resp. continuous singular, discrete).



274 J. Aguilar and J. M. Combes:

Theorem II. 1. Let V be symmetric and dilatation analytic. Then

the point spectrum of H in 1R— {0} is bounded and consists of isolated
eigenvalues having zero as only possible accumulation point. The restriction
of H to Jίa(H) has spectrum [0, oo).

Proof. If Φ e Jta(H) then the Radon-Nikodym derivative of (Φ, P(Δ)Φ)
with respect to Lebesgue measure is given by

277 -j- (Φ, P(λ)Φ) = lim(Φ, [R(λ + iε) - R(λ - ΐε)] Ψ) . (15)

For a general Φ e L2(Rn\ the right member of (15) defines almost every-
where the Radon-Nikodym derivative of the absolutely continuous part
of the measure (Φ, P(zl)Φ). The set of points where this limit does not
exist is a support of the singular part of (Φ, P(zl)Φ). We now choose Φ in
the dense set 2\ then according to Lemma II.2, the positive support
of the singular part of (Φ, P(Λ)} consists of Σ+; as to negative
support it consists of the isolated eigenvalues of H since the
essential spectrum is invariant under a relatively compact perturbation.
As a consequence (Φ, P(Δ)Φ) has no continuous singular part and
accordingly 3>cJla(H)©Jίd(H). Since 9 is dense and Jίa(H)®Jίd(H]
is closed, we obtain the first assertion of the theorem. Accordingly the
essential spectrum of H which is [0, oo) is the union of the spectrum off/
restricted to its absolutely continuous part J?a(H) and of the limit points
(or points with infinite multiplicities *) of the spectrum of H restricted to
Jtd(H)\ but according to Lemma II.2, this last category contains only
zero. Accordingly the last part of the theorem is verified.

III. Properties of Bound-States

Theorem III. 1. Eigenspaces of H associated to nonzero eigenvalues
are finite dimensional. Bound-states wave-functions are in @(Θ).

Proof. Let E be in the point spectrum of H and let us consider the
corresponding analytic families of projection operators P* {£, θ},θeθ±

(App. I). If P{E} is the projection operator (hermitian) on the eigenspace
of H corresponding to eigenvalue E, we can rewrite (12) as:

(Φ,P±{E,θ}Ψ) = (Φ(:::θ)9P{E}Ψ(-θ)}) , Φ, <Fe^; θe&+ . (16)

If we define now

,Θ0} = U(Θ0)P{E} U(ΘQΓ\ θ0E&nR (17)
1 We shall see later that this last class is empty.



Schrόdinger Hamiltonians 275

then (16) implies owing to analyticity of Φ and Ψ:

lim (Φ, P± [E9 θ} Ψ) = (Φ, (18)

Accordingly (16) defines a function fφψ(θ) analytic in Φ. Our aim is to
show that similarly the families P± {£, θ} and P{E, θ} are analytic con-
tinuation of each other. First of all, let us show boundedness oΐfφψ in 0;
one has according to (16):

\fφψ(θ)\^\\Φ(-θ)\\\\Ψ(-θ)\\, θε(9.

If Sa denotes the symmetric strip generated by Θ then as is shown in
App. II the above inequality implies:

\fΦΨ(θ)\2^(\\Φ(-ia}\\2+\\Φ(ia)\\2^

We need now to assume that β is replaced by the complex strip Sa accord-
ing to Lemma I.I. Using boundedness of fφψ(θ) in Sα, we can write
integral representations for its derivatives on the real axis as follows:

-dθΦf v^υ/ o;rr J fβ fl
ZZijf jpε (C7 — C/Q

where Γε is the infinite contour obtained in the limit R = oo of the con-
tour shown in the figure and ε can be choosen arbitrarily close to a.

iα

is

Θ0 - la

We now use the boundedness of fφψ(θ) on the vertical parts of the
contour and the boundedness of HP1 (E, θ)|| on the horizontal parts of the
contour to derive the following uniform estimates from (16):

d \n

Ίθ J

d
where M is independent of Φ, Ψ and n. Accordingly —— (Φ, P{£, Θ0} Ψ)

\dvj
can be extended to a bounded sesquilinear functional on L2(Rn) defining a
bounded operator which we denote by P(M){£, Θ0}

\\P(n){E,θ0\\ ̂
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Let
oo ί(\ /} \n

Q{E,Θ}= Σ — F(π){£,00}, \θ-θ0\<a.

Then Q {E, θ} defines a bounded analytic family of operators in the
domain |0 - 00| < a. Furthermore let D^a = {θ e 0*, \θ - Θ0 < a}. Then
the equality

immediately implies equality of operators. A first consequence of this
equality is the norm convergence

lim \\P{E9Θ0}-P±{E9Θ}\\=0
θeD*

according to which P{E, #0}, 0 0 ejR, (and consequently P{E} (18)) is
compact as a uniform limit of compact operators. The second conse-
quence is the fact that P{E, Θ0}, Θ0 e R, has an analytic continuation in G
which equals P+{E,Θ} (resp. P~ {£, θ}) in &+ (resp. Θ~). By standard
arguments (see e.g. [14], II, 6) bound-state wave-functions share analyti-
city properties of P{£, 9} that is they are in

IV. Properties of Poles on the Unphysical Sheet

Let us make some observations about complex poles E = M — ίΓ
of the meromorphic family [1 + e2ΘV(θ)RQ(e2Θz}]-\ 2 Im0> |arg£|.
Following Lovelace we identify such poles as resonances; in fact for
short-range potentials they' give rise to singularities of the scattering
amplitude. Two important points must be noticed. First such poles
appear only in a bounded domain of the complex plane as can be seen by
a trivial extension of Lemma Π.3. Secondly their degeneracy is finite.

In order to demonstrate this last property we first remark that
arguments similar to those of App. I lead immediately to the result that

(e~ 2°H0 + 7(0) - z)-1 - e2ΘRQ(e2Θz) [1 + e2θV(θ) R0(e2θz)Y^

has θ independent poles in <C^+ as long as θ e (9+ε. For the purpose of
analysing a given pole E — M — iΓ we need ε — — ̂  argE. Let us write
the Laurent expansion around E:

(e-2eH0 + V(θ)-z)-l= g (z-ETBΛ(E,θ)
n=-v(E)

where

B"(E'θ) = ~ (z~£Γ"~1 (e~2θH°+ m~z)-1 dz
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and ΓE G Dfε

 + encloses only the pole E. We refer to Wong for the following
relations

where N(E, θ) is the nilpotent operator

)]v(£) = 0 .

Trivial algebraic manipulations show that P{E, θ} and N(E,Θ) are
compact operators. Noticing the analyticity of P{E, 9} in θ then leads to
the result that the constant dimension of the range of P{E, 9} is finite and
accordingly that the degeneracy of the resonance is finite. Now obviously
E is a simple pole if and only if N(E, θ) = 0 for some θ, Imθ > — \ ArgE.
This property would garantee a Breit-Wigner form for the resonant
parts of scattering amplitude. This important problem will be investigated
in a forthcoming paper.
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Appendix I

The family of resolvents

is analytic in θ e $ε and meromorphic in z e <C^ + where ε is arbitrarily
fixed, 0 < ε < 77/4. We investigate real poles in z and residues for such
poles. These poles are multivalent analytic functions of θ in (9 + ε (in fact
analytic functions of Θ1/p for some integer p [10]); furthermore they are
fixed when θ varies on lines parallel to R, for such variations preserve the
spectrum of e2θV(θ) R0(e2θz) (unitary equivalence). Accordingly the
location of poles in <C^ + do not depend on θ. For a real pole E, the
residue is given by

P+(E,Θ)= --i- j e2βR0(e2βz)[ί + eaβV(θ)R0(e2°z)Γ1dz (20)
2lΠ ΓE

where ΓE is a contour in <C^+ enclosing E (and no other pole) since
P+(E, θ) is the residue of a resolvent it is a projection operator. Using
J R0(e2θz)dz = 0 it can be rewritten as

ΓE

ΓE

which implies that P+(E, θ) is compact. Finally the integrand being
analytic in θ, the family P+ (E, θ) is analytic in &+ε. Summing up and since
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ε was arbitrary, the family P+(E,Θ) is an analytic family of compact
projection operators in (9 + . In the same way one can define a family
P~(E,Θ\ θε(9~, having similar properties.

Appendix II

V Φ e ® and θ E Sa we have

Proof. Let us consider the spectral decomposition of the unitary
operator

t/(0)= f e i λ θ d E ( λ ) .
— oo

V Φ 6 £ϋ and θeSa one has

+ 00

| |Φ(Θ)||2= J e~2λlmθd\\E(λ)Φ\\2.
— 00

Let us consider Imθ ^ 0 then

o o
J e-2λlmθd\\E(λ)Φ\\2^ J e-2λθd\\E(λ)Φ\\2^\\Φ(ίa)\\2

— oo — oo

and
00 00

J e-2λImβd||£μ)Φ||2 ^ J e2λθd\\E(λ)Φ\\2 ^ ||Φ(-iα)||2 .
o o

Then we have

The same result holds for Imθ ^ 0.
We conclude that V Φ e 9 and θ e Sa
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