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Abstract. A semi-infinite hard rods system in thermodynamic equilibrium is proved
to be a K-system.

§ 1. Introduction

The ergodic hypothesis asserts that the asymptotic time average of
any summable function is identical to its integral with respect to the
probability measure governing the statistics of the system. It is easy to
see that this last condition is equivalent to that all invariants under the
evolution operator are constant "almost everywhere".

For finite classical systems the number of particles and the total
energy are invariants under the evolution operator so that the canonical
and grand-canonical equilibriums cannot be ergodic states. However the
microcanonical equilibrium is expected to be ergodic for a large class of
interaction potentials. In fact the ergodicity of the "Boltzmann-Gibbs"
model (hard spheres model) has been recently proved by Sinaϊ [1].

Unfortunately the ergodicity of systems with a finite number of
degrees of freedom is not of great interest in classical statistical mechanics.
Indeed the thermodynamic limit gives rise to configurations with an
infinite number of particles. In compensation one may conjecture that the
thermodynamic equilibrium of infinite classical systems is ergodic (at
least for a large class of potentials) for the following reason: the particle
number and the total energy are not defined, so that one may think that
constants are the only invariants. Precisely we propose in this paper to
prove the ergodicity of a somewhat simple model in the thermodynamic
limit.

A simple manner to describe a state of a system in the thermodynamic
limit is to consider a probability measure on a space of so called "locally
finite" configurations [2]. In this context the equilibrium state is un-
ambiguously defined at low activity z for a large class of interaction
potentials [3]. Moreover in the case of hard core one-dimensional
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systems with reasonable interactions [4], the restriction on the activity
can be omitted.

On the other hand the dynamical theory of configurations with
infinite many particles has begun only recently. The first papers about
this subject [5, 6] dealt only with one-dimensional systems with smooth
and finite range potentials. In [5] the existence of the evolution operator
V was proved, on a subset [X] of the set of locally finite configurations
[X]. In [6] the kinetic theory was developed. In particular the equi-
librium state (at low activity) was shown to be concentrated on [X] and
invariant under V.

Hence we have all the ingredients for tackling the question of the
ergodicity of infinite one-dimensional systems. In fact the ergodicity of
the infinite perfect gas has been recently proved by Sinaϊ et al. [7]. But to
our knowledge the case of an infinite system with interactions has never
been approached. The aim of this paper is precisely to treat the case of a
very crude one-dimensional model which we describe now.

We consider a semi-infinite hard rods system on the positive semi-
axis, with a perfectly reflecting wall at q = — a/2, where a is the common
length of the rods. The collisions between the rods will be the only inter-
actions considered. In §2 we describe the model and show that our
dynamical system is isomorphic to the semi-infmite perfect gas with a
perfectly reflecting wall at the origin. In § 3 we recall the definition and the
properties of K-systems which are basic systems in ergodic theory. Indeed
K-systems are "mixing" and ergodic [8]. In § 4 we follow very closely the
arguments used in [7] and prove that the semi-infinite one-dimensional
perfect gas in equilibrium is a K-system. The isomorphism mentioned
above will ensure that our semi-infinite system of hard rods in equi-
librium is also a X-system.

§ 2. Description of the Model

Let Xa be the space of sequences xa = {q^Pt} with

qt :> 0, Pi E & and \qt - qj ^ a if i φj.

Such sequences are infinite configurations of labelled hard rods. We say
that two configurations are equivalent if they differ only by a permutation
of the indexing set. We denote by [XJ the set of equivalence classes so
that [XJ is the space of infinite configurations of unlabelled hard rods
of length a. There is on [XJ a natural topology which makes [XJ a
Polish space [6]. In the following no interactions other than collisions
between the rods will be considered.

Let K be the space obtained from [XJ by considering only the
positions of the hard rods. K is a compact space. C(K) being the space of
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continuous functions on K, we consider the following family of operators
defined on C(K) for every values of y ^ 0:

where N(X) is the particle number of X, τ}; is the translation operator of

modulus y and \dX = £ j ^ ' «*fe - ^ .

Let P(z, j8) be the thermodynamic pressure of the system at activity
z and temperature β. It is shown in [4] that the adjoint eigenvalue
problem:

= exp(yjBP(z,jB))ρ (2.1)

has a unique solution which we denote by ρa

zβ. In addition it is proved in
[4] that Qa

Ziβ is obtained from the configurational grand-canonical
ensemble by taking the thermodynamic limit.

According to the preceding results we shall call "thermodynamic
equilibrium" of our model, at activity z and temperature β, the state
ya

zβ on [XJ which has Maxwellian velocity distribution function at
temperature β and whose projection on C(K)* is given by ρZtβ.

The aim of this section is to prove that there exists an isomorphism
between our hard rods model and the semi-infinite perfect gas which we
describe now.

Let [X] be the space of locally finite configurations in ^ + without
hard core (as described in [6]). We call yzβ the state on [X] which has
Maxwellian velocity distribution function at temperature β and such
that the probability density of having the configuration qί9 q2, >qn

inside [0, y) is given by: exp( — zy) zn — — - — - for any y ^ 0. It

is clear that yzβ is the thermodynamic equilibrium state at activity z and
temperature β of the semi-infinite perfect gas.

We now show that there exists an isomorphism Π between the two
measured spaces: ([XJ, yz β) and ([X], yz, β) where z' is a given function
of z.

First we construct a mapping from [XJ into [X]. Let xa = {qi9 p j be
an element of [XJ after ordering the particles according to the increasing
abscisses. We set:

= {cti9p'i} with

This is a generalisation to the case of infinite configurations of a trans-
formation already used in [9]. Of course Π(xa) does not belong to [X]
for every xa e [XJ for instance consider xa = {qi9 pt) with qt = i- a, then
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Π(χ

a)
 = Wi'P'i} with <(i = a f° r every i and consequently Π(xa) is not a

locally finite configuration. Moreover it is easy to see that 77 is not
injective. Precisely we want to prove the three following points:

a) There exists Borel subsets [XJ of [XJ and [X] of [X] such that
77 is a Borel isomorphism from [XJ into [X].

b) [XJ is a s e t °f measure one with respect to γ£tβ for every values
of z and β.

c) γa

zβ° Π'1 = yz%i3 where z' is a given function of z.
To this purpose we introduce the following notations:

with:

I either 3 y : l ^ - ^ l = α

*« = ta> Pt} and (^ - qj) (pt - p) < 0 j
or 3 i: ^f = 0 and pt < 0

[X.1] ={x α ; sup W - V s u p - ^ - < +oo
[ i Log+(qi) α Γα(x)

where Log + ( 9 ) - Log(|91 V e\ Γa{x) = a V (α - iV[0,α)(x) a), N[OtΛ)(x) = the
number of hard rods lying in [0, α) and V means the supremum.

Let us comment on the above notations. We remark that [X£] is the
set of configurations for which either two particles enter a collision with
each other, or one particle enters a collision with the reflecting wall. We
subtract [Λ£] from [XJ to make 77 injective. On the other hand [Xα*] is
the natural domain of definition of 77 and of the evolution operator V as

we will see later. The condition sup ' , < + oo has been already

' Log+fe)
used in [5] and requires no further comments. On the other hand the

condition sup — — < + oo means that the residual volume between the
α Γa(x)

rods in [0, α) is of the same order as α for large α, or equivalently that the
configuration x does not have the "close-packing" density. This condition
prevents catastrophic accumulations of rods during the evolution.

For analogous reasons we set [5]:

with [Xc] = {xe[X]; 3 i: ^ = 0 and-p f<0}

We now prove the main result of this section.
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Proposition 2.1. We have the following isomorphism (mod.O):

with z' = Z' exp(-aβP(z, β)).

Proof, a) By standard techniques one easily checks that [XJ and
[X] are Borel subsets of [XJ and [X] respectively and that Π is a Borel
isomorphism from [XJ onto [X].

b) We show that [XJ\[XJ is a set of measure zero with respect to
fzβ. The assertion that [)ζ] is a null set with respect to ya

zφ follows directly
from the fact that ya

zβ has "local probability measures" absolutely con-
tinuous with respect to the Lebesgue measure. It is already proved in [6]

that the set of configurations such that sup ι—— = + GO is a null set.

' Logte)Hence we have only to prove that the set of configurations such that

sup = +oo is a null set with respect to γ°tβ. In order to do this,
n Γna(x)

we set:

It suffices to prove that lim γa

z β(Y) = 0. Let us introduce:
p->oo y

An elementary calculation leads to the following estimations:

oo oo N

Σ K.βΦp,N)ύ Σ Σ θN.n

where ρN n is the probability of having n particles in the interval [0, Na).
We shall have an estimation of ρNn in the following way. Let ρN>n(x) be
the characteristic function of the set of configurations having n particles
in [0,Na). We have:

QN,n = ί QN.ΛX) ' dya

z,β = exp(-NaβP(z, β)) J J?Na(ρNJ (x) dfZtβ .

But we have the following inequalities:

where Q(N9 n, β) is the canonical partition function of n hard rods in the
interval [0, Na). In the absence of additional potential we have for
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Q(N, n, β) the equation:

If we set uNn = zn Q(N, n, β\ it results from (2.2) that there exists po(z)

such that if p ^ po(
z)> % «+i = % n

 a s s o o n a s n = N. Hence for p

sufficiently large we get:

, β)).

nN
~ P

Then using the definition of the free energy:

ftW. l i r a _
iv + Naβ

we are led to the following estimation:

. const.

p-ί

if P^Po( z ) If w e u s e the following definition of the thermodynamic
pressure [10]:

P ( z , β ) = s u p ( β 1

and the convexity of f(μ, β) we finally have:

for p sufficiently large. Hence the assertion is proved1.
c) We now show that ya

Ztβ ° Π'1 = yz.tβ with z' = z exp( — aβP(z, β)).
First we remark that 77 does not change the velocities so that ya

zβ ° 77 has
a Maxwellian velocity distribution function at temperature β. It suffices
then to prove that the probability density ρaίn{qv q2, ••• ^π) of having the
configuration {quq2> ••• qn) inside [0, α) with respect to y^j3°77~1 is

1 A simpler argument based on a direct use of (2.2) can be given. Nevertheless we
prefer the above argument because its generalisation to the case of an additional potential
of the same type as in [4] is straightforward.
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given by:

z'ndq1dq2 ...dqn
β«,«(βi» 02> - «J = exp(-z'α) ^ - ^ ^

with z' = z exp(— aβP(z, β)). By the very definition of 77 the probability
density of having the configuration (g1? g2? 4«) inside [0, α) with respect
to ya

Ztβ ° 77"1 is exactly the probability density of having the configuration
(#i>#2 + αJ ••• #n + ( w ~l) f l ) inside [0, α + rcα) with respect to yZtβ. Then
using equation (2.1) with y = α + nα, we get:

This completes the proof of the proposition. However we notice that we
obtained an additional result. In fact the normalisation condition

i ^ - ^ n " 1 implies the following implicit
n

equation defining the thermodynamic pressure:

β) = z exp(-aβP(z,β)).

To conclude this section we have still to define the evolution operator
Va on [XJ. In order to do this we remark that a collision between two
hard rods merely interchanges their velocities, so that if we know the
evolution operator V of the semi-infinite perfect gas with a reflecting
wall at the origin, we shall have Va by the equation:

But the problem of the existence of V on [X] is a very simple one.
Although the results of [5] cannot be directly applied because a slightly

more restrictive condition than sup — ^ ^ — < + oo is used in [5] for

proving the existence of T\ it is easy to prove the following lemma:

Lemma 2.2. T* is a one-parameter group of Borel isomorphisms from
[X] onto [X], yZiβ is concentrated on [X] and is invariant under V.

Hence we can resume all the results of this section in the following
proposition:

Proposition 2.3. 77 is an isomorphism of dynamical systems:

with z' = z exp(-aβP(z,/?)).
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§ 3. The ^-systems

For the terminology and the fundamental concepts used in the
following, the reader is referred to the book of Arnold and Avez [8] and
the basic paper of Rohlin [11]. In this section, we give only the funda-
mental definitions which are essential to understand the rest of this paper.
A dynamical system will be represented by a triplet (X, y, V) where X is a
space, γ a probability measure on X and V is a one-parameter group of
isomorphisms (mod 0) of X onto itself, leaving y invariant. We start with
the definition of an ergodic dynamical system:

Definition 3.1. The dynamical system (X, γ, V) is said to be ergodic if
for every f(x) e I}(X, y) we have:

lim \\f{rx)-dτ = \f.dy

for almost every x with respect to y.
As the aim of § 4 is to prove that our dynamical system ([XJ, ya

z>β, 7J)
is a X-system, which is a much stronger property, we must give the
definition of X-systems.

Definition 3.2. A dynamical system (X, y, V) is called a K-system if:
— (X, y) is a continuous Lebesgue space, that is (X, y) is isomorphic

(mod 0) to the unit interval [0,1] equipped with the Lebesgue
measure.

— there exists a "measurable decomposition" f0 of X such that:
a) r / 0 = / , ̂ Λ (mod 0) if ί ^ 0,
b) \//t = ε (mod O),

c) Λ/t = v (mod O)
t

where ε is the decomposition of X whose elements are the points of X
X, and v is the trivial decomposition of X whose unique element is X
itself. We recall that (mod 0) means "up to a null set with respect
toy".
The above definition requires some comments. In fact the condition

a) implies that the decomposition/, is finer than/o if ί ^ 0, whereas the
condition b) means that if two configurations are in the same component
of f0 at time t = 0, then their "mutual distance" vanishes as ί-> -foo.
Condition c) means that any measurable set invariant under V is either
a null set or a set of measure one; in other words, condition c) is the
ergodic property.

Finally we recall the following sequence of implications:

[system with countably 1 . .
A.-system=>< Λ . Λ 1 }=> mixing => ergodic.

[multiple Lebesgue spectraj
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§ 4. Ergodic Properties of ([XJ, fZtβ, Ί%

In order to prove that ([XJ, ya

z>β, Ίl) is a K-system, we begin by
proving that ([X], yZtβ, V) is a X-system, then the use of the isomorphism
Π will lead to the desired result. Let us state the main result of this section,
whose proof is very close to that used in [7] for proving that the infinite
perfect gas in equilibrium is a K-system:

Proposition 4.1. The dynamical system ([X], γZtβ, T*) is a K-system.

Proof. First we have to verify that ([X], yZfβ) is a continuous Lebesgue
space. This results from the fact that [X] is a Polish space and yZtβ a
continuous Borel probability measure on [X] and from the following
lemma (proved in [11], p. 24): Lemma: Every measured space (X, y)
where X is a Polish space and y a continuous Borel probability measure
on X is a continuous Lebesgue space.

We describe now the decomposition f0. Let x be an element of [X].
We denote by x the configuration obtained from x by keeping only the
particles with negative velocities. We say that xx and x2 are in the same
component of f0 if and only if xί=x2.

First we have to show that β^ is a "measurable decomposition". We
denote by {CJ, iel, the components of f0. We must prove that there
exists a countable family {Bn} of measurable sets such that every Bn is a
union of components Cf and that for every pair Ci9 Cj with i 4=7, there
exists a Bn for which:

either Cf c Bn and C, \f. Bn

or Cjt=Bn and CiφBn.

Let us call J the set of all pairs {[α, β], [y, <5]} where a,β^0y,δ^0 and
α, /?, γ, δ are rational numbers. J is a countable set. Let j = {[α, /?], [7, (5]}
an element of J, we call B} the set of configurations such that there is at
least one particle lying in [α, β] and having a velocity lying in [y, δ]. It is
easy to see that the family {Bn} satisfies all the above conditions. This
proves the assertion. We must now prove that / 0 fulfils the conditions
a), b) and c) of a K-system.

Condition a) is obvious. Condition b) will be verified if the set of
configurations such that there is at least one particle with a nul velocity
is a null set. This last property follows from the fact that yZtβ has a Max-
wellian velocity distribution function. Then it remains to prove con-
dition c). At this stage we follow very closely the arguments used in [7].
Consequently we will recall only the fundamental steps of the proof.

Let us choose a particular sequence tn-> +00. We set:
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It suffices to prove that:

/ = v (mod O). (4.1)

In order to do this we remark that (4.1) is equivalent to:

ί"for any measurable set A; γZιβ{A\ C,(x)) = yz,β{A))

\ for almost every x" j

where Cf(x) denotes the component of β containing x and yZtβ(A \ Cβ(x))
is the "conditional measure" of A with respect to the component Cf(x)
[11].

We shall now use the "quasi-local" property of the σ-algebra of
measurable sets. More precisely, let α be any positive number, we call
s$a the σ-algebra of the sets which are measurable inside [0, α), (i.e. whose
characteristic function is measurable inside [0, α)). We have the identity:

where si is the σ-algebra of all the measurable sets. The statement (4.2)
is then equivalent to:

"for any locally measurable set A; yZiβ(A \ Cβ(x)) = γZtβ(A)\

for almost every x" J

At this step we recall the Doob's theorem which asserts that if fn\
and f = /\fn then for any Aesi:

n

lim yZtβ{A \ CAx)) = yz>β{A \ CJx)) for almost every x .
n—* + oo n

As a consequence, in order to prove (4.3) it suffices to show that:

"for any locally measurable set A

lim y (A\ C (x)) = y (A)
n—> + oo n

In the remaining A will be an element of sia for a given α ̂  0.
Let us introduce the following set:

E P < Ί ; I P , I > — if ate

Using the fact that the conditional measures γZtβ( \ Cf) have Maxwellian
velocity distribution functions it is easy to see that:

lim yZfβ(An Jfjμ) \ Cβn{x)) = 0 for almost every x e Λ^(α).
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Here A denotes the complement of A. Hence (4.4) reduces to:

limyz^{Ac\Jfn{v) \ Cβn(x)) = yz>β(A) for almost every x . (4.5)
n~* oo n

We remark that if x e Λ^(α) then Cβn(x) implies some conditions outside
[0, α) only. The absence of correlations between two disjoint intervals
leads to:

yZfβ(Ar\Jfn(a)Cβn(x)) = yZίβ{Ar\jVn((χ)) for almost every x e Λ^(α).

The proof of the proposition is completed if we remark that:

lim yZιβ{AnJ\fn{ai)) = γZtP(A).

Corollary. The dynamical system ([XJ, yZtβ, Tj) is a K-system.

Proof. Use the Proposition 2.3 and the fact that every dynamical
system which is isomorphic to a K-system is also a K-system.

§ 5. Remarks

We give here some comments on the preceding results. First we men-
tion that the above corollary implies that the diffusion coefficient for the
system at hand is zero. In fact, if we label the particle nearest to the wall by
1, it is easy to show that qx (x) and pγ{x) are square integrable functions with
respect to ya

zβ. Hence we can apply the mixing property, that is:

lim J < Λ ( ί ) Pi(O)>df= lim m(qx{T) P l(0)> = 0
Γ + Γ +

and this shows that the diffusion coefficient is zero. This is not a sur-
prising result because if the particle 1 could diffuse far from the wall,
the vacuum could occupy all the volume, which is impossible if z>02.

We have succeded in proving that our hard rods system is ergodic by
the use of an artifice, more precisely by showing that the system was
isomorphic to the semi-infinite perfect gas. The existence of this iso-
morphism is directly related to the fact that our model is not "dissipative",
that is the homogeneous Boltzmann collision operator reduces to zero.
As a consequence, strictly speaking, there is no hydrodynamical descrip-
tion of the model and it is clear that this limits somewhat the interest of
the model.

Nevertheless it would be interesting to prove that the infinite hard
rods system is ergodic too. Unfortunately the existence of an isomorphism

2 It is gratefully acknowledged that this remark on the diffusion coefficient follows
from a discussion with Prof. J. Lebowitz.
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like Π seems more difficult to prove, so that a direct proof of the ergodicity
of the model must be investigated. The main difficulty which arises then
is the existence of correlations, so that the conditional measures asso-
ciated with a measurable decomposition / are not simple to describe.
However it is established in the case of one-dimensional hard-core
systems that the equilibrium state has the "cluster" property [4]. Using
this remark it has been possible to prove that the infinite hard rods
system with discrete velocities p = ± p0 is a i£-system.

Note added in proof: Recently Professor Sinai informed the present author that he
has solved the problem of the infinite system with maxwellian velocity distribution.
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