On the Homotopical Significance of the Type of von Neumann Algebra Factors

Huzihiro Araki
Research Institute for Mathematical Sciences Kyoto University, Kyoto, Japan
Mi-Soo Bae Smith and Larry Smith
Department of Mathematics, University of Virginia, Charlottesville, Virginia, U.S.A

Received January 1, 1971

Abstract

The set of all projections and the set of all unitaries in a von Neumann algebra factor \mathscr{A} are studied from the homotopical point of view relative to the operator norm topology.

Two projections E and F can be deformed continuously to each other if and only if $E \sim F$ and $1-E \sim 1-F$ where \sim denotes the equivalence of projections in \mathscr{A} in the sense of von Neumann. In other words, the relative dimension and co-dimension are a complete homotopical invariants of projections in \mathscr{A} and label pathwise connected components of the set of projections.

The first homotopy group $\pi_{1}(\mathscr{U}(\mathscr{A}))$ of unitaries in \mathscr{A} is shown to be 0 for \mathscr{A} of infinite type. For type $I I_{1}$ and type I_{n} factors, $\pi_{1}(\mathscr{U}(\mathscr{A}))$ are isomorphic to additive groups of reals R and integers Z, respectively, in which the first homotopy group $\pi_{1}(\mathscr{Z} \mathscr{U}(\mathscr{A}))$ of the center of $\mathscr{U}(\mathscr{A})$ is imbedded as \boldsymbol{Z} and $n \boldsymbol{Z}$, respectively.

§ 0. Introduction

In [5, 6] Glimm's classification of U.H.F. algebras is reobtained by means of the first homotopy group $\pi_{1}(\mathscr{U}(\mathscr{A}))$ of the unitary group $\mathscr{U}(\mathscr{A})$ of a U.H.F. C^{*}-algebra \mathscr{A} and the canonical homomorphism $\varphi: \pi_{1}(\mathscr{Z} \mathscr{U}(\mathscr{A})) \rightarrow \pi_{1}(\mathscr{U}(\mathscr{A}))$ where $\mathscr{Z} \mathscr{U}(\mathscr{A})$ denotes the center of $\mathscr{U}(\mathscr{A})$. The present note is motivated by a desire to investigate the analogous situation for a von Neumann algebra factor acting on a seperable Hilbert space.

As a preliminary step we study the projections $\boldsymbol{P}(\mathscr{A})$ of a von Neumann algebra \mathscr{A}. Two projections E and F are said to be equivalent [4] (denoted by $E \sim F$) if and only if there exists an operator V in \mathscr{A} such that $V^{*} V=E$ and $V V^{*}=F$. (Such an operator V is called a partial isometry, it maps the range of E isometrically onto the range of F.) It is shown that for a factor \mathscr{A} there exists a norm continuous one parameter family $\mathrm{E}(\lambda)$, $0 \leqq \lambda \leqq 1$, of projections with initial point $E=\mathrm{E}(0)$ and terminal point $F=\mathrm{E}(1)$ if and only if $E \sim F$ and $I-E \sim I-F$, where I is the identity
operator in \mathscr{A}. This enables us to relate the path components of $\boldsymbol{P}(\mathscr{A})$ to analytic properties of projections.

We next begin our study of the first homotopy group, $\pi_{1}(\mathscr{U}(\mathscr{A}))$, of the unitary group, $\mathscr{U}(\mathscr{A})$, of the von Neumann algebra \mathscr{A}. The elements of $\pi_{1}(\mathscr{U}(\mathscr{A}))$ are certain equivalence classes of one parameter families $\mathrm{U}(\lambda), 0 \leqq \lambda \leqq 1$, of unitary operators in \mathscr{A}, depending continously on λ relative to the operator norm topology of \mathscr{A} and such that $\mathrm{U}(0)=I=\mathrm{U}(1)$. We call such a family a loop in $\mathscr{U}(\mathscr{A})$. A loop in $\mathscr{U}(\mathscr{A})$ is said to be simple if and only if $U(\lambda)=\exp 2 \pi i \lambda S$ for a fixed self adjoint operator S in \mathscr{A}. We next show that in a factor of infinite type $\left(I_{\infty}, I I_{\infty}, I I I\right)$ a simple loop is homotopic to zero. Thus, since we show that the simple loops generate $\pi_{1}(\mathscr{U}(\mathscr{A}))$ for all \mathscr{A}, we conclude that $\pi_{1}(\mathscr{U}(\mathscr{A}))=0$ for \mathscr{A} a factor of infinite type. For a factor of finite type a sum of simple loops can be deformed (that is, is homotopic) to a single simple loop $\exp 2 \pi i \lambda S, 0 \leqq \lambda \leqq 1$. A complete homotopy invariant of such a loop is given by $\varphi(S)$ where φ is the trace on \mathscr{A}. In particular, $\pi_{1}(\mathscr{U}(\mathscr{A})) \cong \boldsymbol{R}$, $\varphi\left(\pi_{1}(\mathscr{Z} \mathscr{U}(\mathscr{A})) \cong \boldsymbol{Z} \subset \boldsymbol{R}\right.$ for type II_{1} factors and $\pi_{1}(\mathscr{U}(\mathscr{A})) \cong \boldsymbol{Z}$, $\varphi\left(\pi_{1}(\mathscr{Z} \mathscr{U}(\mathscr{A})) \cong n \boldsymbol{Z} \subset \boldsymbol{L}\right.$ for type I_{n} factors, this latter result being well known.

This research was begun and essentially completed during the authors' stay at the Institut des Hautes Études Scientifiques, Bures-surYvette, France. We would like to thank the director of the institute, M. Leon Motchane for his kind hospitality. L. Smith would also like to acknowledge the financial assistance of the United States Air Force Office of Scientific Research whose fellowship program made the stay of the Smiths at I.H.E.S. possible.

[^0]The authors are indebted to Prof. L. Pitt for supplying proofs for a key technical lemma that appear as an appendix and replace an argument of the authors' based on the angle operator of two projections.

§ 1. Continuous Deformations of Projections

Let \mathscr{H} be a separable Hilbert space $\mathscr{L}(\mathscr{H})$ the set of all bounded linear operators on $\mathscr{H}, \mathscr{A} \subset \mathscr{L}(\mathscr{H})$ a von Neumann algebra, $P(\mathscr{A}) \subset \mathscr{A}$ the set of all (orthogonal) projections in \mathscr{A} and $\mathscr{U}(\mathscr{A})$ the set of all unitary elements in \mathscr{A}.

For any $T \in \mathscr{L}(\mathscr{H})$ we define $\operatorname{ker} T=\{x \in \mathscr{H} ; T x=0\}$ and coker T $=\operatorname{ker} T^{*}$. For a closed subspace $\mathscr{K} \subset \mathscr{H}, E_{\mathscr{K}}$ denotes the orthogonal projection onto \mathscr{K}. The orthogonal complement of \mathscr{K} in H will be denoted by \mathscr{K}^{\perp}.

We recall the polar decomposition theorem in the following:
Polar Decomposition Theorem. Let $T \in \mathscr{L}(\mathscr{H})$. The polar decomposition of T is $W|T|=T$, where W is a partial isometry such that $W^{*} W$ $=E_{(\mathrm{ker} T)^{\perp}}, W W^{*}=E_{(\mathrm{coker} T)^{\perp}}$ and $|T|=\left(T^{*} T\right)^{1 / 2}$. If $T \in \mathscr{A}$ then $W,|T| \in \mathscr{A}$ also.

Lemma 1.1. If E, F are orthogonal projections and $\|E-F\|<1$ then ker $E F=(I-F) \mathscr{H}$ and coker $E F=(I-E) \mathscr{H}$.

Proof. It is clear that

$$
\begin{array}{r}
\text { ker } E F \supset(I-F) \mathscr{H}, \\
\text { coker } E F \supset(I-E) \mathscr{H} .
\end{array}
$$

Suppose that $E F x=0$ but $y=F x \neq 0$. Then $\|(E-F) y\|=\|-y\|=\|y\|$. Hence $\|E-F\|=1$, contrary to hypothesis. Therefore $E F x=0 \Rightarrow F x=0$ so that $x \in(I-F) \mathscr{H}$. Similarly $F E x=0$ implies $E x=0$, thus coker $E F \subset(I-E) \mathscr{H}$. Q.E.D.

Lemma 1.2. Let E and F be projections in $\mathscr{A},\|E-F\|<1$. Then $E \sim F$ and $I-E \sim I-F$.

Proof. Applying the polar decemposition theorem to $E F$ we obtain a partial isometry $W \in \mathscr{A}$ and the operator $|E F| \in \mathscr{A}$ such that $E F=W|E F|$ where in view of (1.1) $W^{*} W=F, W W^{*}=E$. Therefore $E \sim F$. Since

$$
\|(I-E)-(I-F)\|=\|E-F\|<1
$$

the same argument shows that $I-E \sim I-F$. Q.E.D.
Proposition 1.3. Let $E, F \in \boldsymbol{P}(\mathscr{A})$. Suppose that E and F can be connected by a norm continuous path in $\boldsymbol{P}(\mathscr{A})$. Then $E \sim F$ and $I-E \sim I-F$.

Proof. Let $\mathrm{P}(t): 0 \leqq t \leqq 1$, be a norm continuous path in $\boldsymbol{P}(\mathscr{A})$ connecting $E=\mathrm{P}(0)$ to $F=\mathrm{P}(1)$. Using the compactness of the unit interval $J=\{0 \leqq t \leqq 1\}$ we may find numbers

$$
0=t_{0}<t_{1}<\cdots<t_{n}=1
$$

such that

$$
\left\|\mathrm{P}\left(t_{i+1}\right)-\mathrm{P}\left(t_{i}\right)\right\|<1: \quad i=0, \cdots, n-1
$$

Applying (1.2) we find

$$
E=\mathrm{P}(0) \sim \mathrm{P}\left(t_{1}\right) \sim \cdots \sim \mathrm{P}\left(t_{n}\right)=F
$$

and

$$
I-E=I-\mathrm{P}(0) \sim \cdots \sim I-\mathrm{P}\left(t_{n}\right)=\mathrm{I}-\mathrm{F}
$$

from which the result follows by transitivity of the relation \sim. Q.E.D.

Proposition 1.4. Let E and F be two projections in \mathscr{A} with $E \sim F$ and $I-E \sim I-F$. Then E and F may be connected by a norm continuous path lying in $\boldsymbol{P}(\mathscr{A})$.

Proof. Let U be a partial isometry from E to F and V a partial isometry from $I-E$ to $I-F, U, V \in \mathscr{A}$.

Thus

$$
\begin{aligned}
E & =U^{*} U, & F & =U U^{*} \\
I-E & =V^{*} V, & I-F & =V V^{*}
\end{aligned}
$$

Let $W=U+V$. Then $W \in \mathscr{A}$, and W is actually a unitary operator in \mathscr{A}, since W is an isometry from $E \mathscr{H}$ to $F \mathscr{H}$ and $(E \mathscr{H})^{\perp}$ to $(F \mathscr{H})^{\perp}$.
Note that by construction

$$
\left.W\right|_{E \mathscr{H}}=\left.U\right|_{E \mathscr{H}},\left.\quad W\right|_{(E \mathscr{H})^{4}}=\left.V\right|_{(F \mathscr{H})^{4}}
$$

Hence $U=W E$. Now note

$$
W E W^{*}=U W^{*}=U\left(U^{*}+V^{*}\right)=U U^{*}+U V^{*}=F+U V^{*}
$$

Next note that $V^{*} x \in(E \mathscr{H})^{+}=(I-E) \mathscr{H}$ for any $x \in \mathscr{H}$. Since $I-E=\operatorname{ker} U$, we have that $U V^{*}=0$. Thus

$$
W E W^{*}=F
$$

By the spectral theorem there exists a self adjoint operator $T \in \mathscr{A}$ such that $W=e^{i T}$ with $-\pi I<T \leqq \pi I$. Let

$$
\mathrm{P}(t)=e^{i t T} E e^{-i t T}: 0 \leqq t \leqq 1
$$

Since $T \in \mathscr{A}, e^{i t T} \in \mathscr{A}$ and $e^{-i t T} \in \mathscr{A}$ for all $0 \leqq t \leqq 1$. Therefore $\mathrm{P}(t) \in \mathscr{A}$. In fact $\mathrm{P}(t)$ is a projection for each t and hence $\mathrm{P}(t) \in \mathscr{P}(\mathscr{A})$. Clearly $\mathrm{P}(t)$ is a norm continuous function of t, and since $\mathrm{P}(0)=E, \mathrm{P}(1)=F$, constitutes a norm continuous path in $\mathscr{P}(\mathscr{A})$ from E to F. Q.E.D.

We may summarize the results of this section in the following:
Theorem 1.5. Let E and F be two projections in \mathscr{A}. Then E may be connected to F by a norm continuous path of projections in \mathscr{A} if and only if $E \sim F$ and $I-E \sim I-F$.

§ 2. Reduction of General Loops to Simple Loops

The aim of this section is to provide a proof of the following theorem:
In the unitary group of a von Neumann algebra, any loop is homotopic to a sum of simple loops.

The proof will be accomplished with the aid of a technical lemma whose statement and proof are deferred to the appendix. Reference to this lemma is made at a key point in the argument.

We shall require several preliminary steps. The first Lemma is well-known.

Lemma 2.1. Let $\mathrm{f}_{t}(z)$ be a continuous function of $(t, z), t \in[0,1], z \in \boldsymbol{C}$ and \mathcal{N} be the set of all bounded normal linear operators with the norm topology. Then the mapping from $(t, Q) \in[0,1] \times \mathscr{N}$ to $\mathrm{f}_{t}(Q) \in \mathscr{N}$ is continuous.

Proof. Let K be a compact set in C and $\mathcal{N}(K)$ be the set of $Q \in \mathscr{N}$ with its spectrum in K. Let $\varepsilon>0$ be given. Let $\delta>0$ be such that

$$
\left|\mathrm{f}_{\mathrm{t}^{\prime}}(z)-\mathrm{f}_{t^{\prime \prime}}(z)\right|<\varepsilon / 4
$$

for all $z \in K$ and $t^{\prime}, t^{\prime \prime} \in[0,1]$ satisfying $\left|t^{\prime}-t^{\prime \prime}\right|<\delta$. Let $\mathrm{P}_{\varepsilon}(z, t)$ be a polynomial of t, z and \bar{z} such that

$$
\left|\mathrm{P}_{\varepsilon}(z, t)-\mathrm{f}_{t}(z)\right|<\varepsilon / 4
$$

for all $t \in[0,1]$ and $z \in K$. Such a P_{ε} exists by the Weierstrass approximation theorem.

Let $\bar{\delta}>0$ be such that

$$
\left\|Q^{\prime}-Q^{\prime \prime}\right\|<\bar{\delta}, \quad Q^{\prime}, Q^{\prime \prime} \in N(K), t \in[0,1]
$$

implies

$$
\left\|\mathrm{P}_{\varepsilon}\left(Q^{\prime}, t\right)-\mathrm{P}_{\varepsilon}\left(Q^{\prime \prime}, t\right)\right\| \leqq \varepsilon / 4
$$

Such a $\bar{\delta}$ is seen to exist from the following type of estimates:

$$
\begin{aligned}
\left\|Q^{\prime n}-Q^{\prime \prime}\right\| & =\left\|\sum_{k=1}^{n} Q^{\prime n-k}\left(Q^{\prime}-Q^{\prime \prime}\right) Q^{\prime k-1}\right\| \\
& \leqq \sum_{k=1}^{n}\left\|Q^{\prime}\right\|^{n-k}\left\|Q^{\prime}-Q^{\prime \prime}\right\|\left\|Q^{\prime \prime}\right\|^{k-1} \\
& \leqq n L^{n-1}\left\|Q^{\prime}-Q^{\prime \prime}\right\|
\end{aligned}
$$

where L is a bound for $|z|, z \in K$.
We now have

$$
\begin{aligned}
& \left\|\mathrm{f}_{t^{\prime}}\left(Q^{\prime}\right)-\mathrm{f}_{t^{\prime \prime}}\left(Q^{\prime \prime}\right)\right\| \\
& \quad \leqq \mathrm{f}_{t^{\prime}}\left(Q^{\prime}\right)-\mathrm{P}_{\varepsilon}\left(Q^{\prime}, t^{\prime}\right)\|+\| \mathrm{P}_{\varepsilon}\left(Q^{\prime}, t^{\prime}\right)-\mathrm{P}_{\varepsilon}\left(Q^{\prime \prime}, t^{\prime}\right) \| \\
& \quad \quad<\left\|\mathrm{P}_{\varepsilon}\left(Q^{\prime \prime}, t^{\prime}\right)-\mathrm{f}_{t^{\prime}}\left(Q^{\prime \prime}\right)\right\|+\left\|\mathrm{f}_{t^{\prime}}\left(Q^{\prime \prime}\right)-\mathrm{f}_{t^{\prime \prime}}\left(Q^{\prime \prime}\right)\right\| \\
& \quad<\varepsilon
\end{aligned}
$$

whenever $t^{\prime}, t^{\prime \prime} \in[0,1],\left|t^{\prime}-t^{\prime \prime}\right|<\delta, Q^{\prime} Q^{\prime \prime} \in \mathscr{N}(K)$ and $\left\|Q^{\prime}-Q^{\prime \prime}\right\|<\bar{\delta}$. Q.E.D.

Lemma 2.2. A loop $\mathrm{U}(\lambda): 0 \leqq \lambda \leqq 1$ in the unitary group $\mathscr{U}(\mathscr{A})$ of a von Neumann algebra \mathscr{A} is null homotopic in $\mathscr{U}(\mathscr{A})$ if $\|\mathrm{U}(\lambda)-I\|<2$ for all λ.

Proof. Since $U(\lambda)$ is norm continuous,

$$
\sup _{\lambda \in[0,1]}\|U(\lambda)-1\|<2 .
$$

Hence there exists $a, 0<a<\pi$, such that the spectrum of $U(\lambda)$ lies in the set $\{\exp i \theta:-a \leqq \theta \leqq a\}$ for $0 \leqq \lambda \leqq 1$.

Let $f_{t}(z)$ be a continuous function of $(t, z), 0 \leqq t \leqq 1, z \in \boldsymbol{C}$ such that $f_{t}(\exp i \theta)=\exp i t \theta$ for $-a \leqq \theta \leqq a, 0 \leqq t \leqq 1$. Then $f_{t}(\mathrm{U}(\lambda))$ is unitary in \mathscr{A}, norm continuous in (t, λ) with $f_{1}(\mathrm{U}(\lambda))=\mathrm{U}(\lambda)$ and $f_{0}(\mathrm{U}(\lambda))=I$, where the continuity is due to Lemma 2.1. Q.E.D.

Given unitary operators U_{1}, U_{2}, satisfying $\left\|U_{1}-U_{2}\right\|<2$ we reserve the notation $\mathrm{L}\left(U_{1}, U_{2}\right)$ for the path connecting U_{1} and U_{2} in the explicit manner now to be explained. Since $\left\|U_{1}-U_{2}\right\|<2$ we have a unique self adjoint operator Q in $\left\{U_{1}^{*} U_{2}\right\}^{\prime \prime}$ satisfying the following conditions:

$$
\begin{gathered}
\|Q\|<\pi \\
U_{1}^{*} U_{2}=\exp i Q .
\end{gathered}
$$

The path $\mathrm{L}\left(U_{1}, U_{2}\right)$ is defined by

$$
\mathrm{L}\left(U_{1}, U_{2}\right)(\lambda)=U_{1} \exp i \lambda Q: 0 \leqq \lambda \leqq 1 .
$$

Note that the distance between any two points on $\mathrm{L}\left(U_{1}, U_{2}\right)$ is bounded by $\left\|U_{1}-U_{2}\right\|$. For

$$
\begin{aligned}
& \left\|\mathrm{L}\left(U_{1}, U_{2}\right)\left(\lambda^{\prime}\right)-\mathrm{L}\left(U_{1}, U_{2}\right)\left(\lambda^{\prime \prime}\right)\right\| \\
& \quad=\left\|I-\exp i\left(\lambda^{\prime}-\lambda^{\prime \prime}\right) Q\right\| \leqq|1-\exp i\|Q\||=\left\|U_{1}-U_{2}\right\| .
\end{aligned}
$$

Notations and Conventions. We fix throughout the remainder of this section a von Neumann algebra \mathscr{A} acting on a Hilbert space \mathscr{H}. All loops and paths that we consider lie in the unitary group $\mathscr{U}(\mathscr{A})$ of \mathscr{A}. All operators lie in \mathscr{A}. If a lemma asserts the existence of a loop path or operator it is understood that the operator lies in \mathscr{A} and the loop or path in $\mathscr{U}(\mathscr{A})$. If this is not explicitly proved then it is an easy verification left to the reader.

Lemma 2.3. Any loop is homotopic to a sum of triangular loops Δ_{j} with three sides consisting of:

$$
\begin{aligned}
L_{j} & =\left\{\exp i \lambda Q_{j} ; 0 \leqq \lambda \leqq 1\right\}, \\
L_{j, j+1} & =L\left(\exp i Q_{j}, \exp i Q_{j+1}\right), \\
\widetilde{L}_{j+1} & =\left\{\exp i(1-\lambda) Q_{j+1} ; 0 \leqq \lambda \leqq 1\right\}
\end{aligned}
$$

where Q_{0}, \ldots, Q_{n} are self-adjoint operators satisfying

$$
\begin{gathered}
\left\|Q_{j}\right\| \leqq \pi, \quad i=0, \ldots, n, \\
\left\|\exp i Q_{j}-\exp i Q_{j+1}\right\|<\delta, \quad i=0, \ldots, n-1
\end{gathered}
$$

and δ is a fixed number $0<\delta<2$.

Proof. Any loop can be divided into several arcs $\left\{\mathrm{U}\left(\lambda_{j}\right), \mathrm{U}\left(\lambda_{j+1}\right)\right\}$ $0=\lambda_{0}<\lambda_{1} \cdots<\lambda_{n}=1$ such that

$$
\left\|\mathrm{U}\left(\lambda_{j}\right)-\mathrm{U}(\lambda)\right\|<\delta: \lambda_{j} \leqq \lambda \leqq \lambda_{j+1}
$$

$j=0, \ldots, n-1$. Let Q_{j} be defined by

$$
\mathrm{U}\left(\lambda_{j}\right)=\exp i Q_{j}
$$

with the spectrum of Q_{j} contained in $[-\pi, \pi]$. Note $Q_{j} \in\left\{\mathrm{U}\left(\lambda_{j}\right)\right\}^{\prime \prime}$ and $\left\|Q_{j}\right\| \leqq \pi$.

Using (2.1) we see that the loop consisting of the two sides $\left\{\mathrm{U}\left(\lambda_{j}\right)^{*} \mathrm{U}(\lambda)\right.$; $\left.\lambda_{j} \leqq \lambda \leqq \lambda_{j+1}\right\}$ and $\mathrm{U}\left(\lambda_{j}\right)^{*} L_{j, j+1}$ is homotopic to 0 . Therefore the path consisting of $\left\{\mathrm{U}(\lambda) ; \lambda_{j} \leqq \lambda \leqq \lambda_{j+1}\right\}$ is homotopic, with end points fixed, to the path $L_{j, j+1}$ (Fig. 1).

Fig. 1

Next note that the closed path consisting of the two $\operatorname{arcs} L_{k}, \tilde{L}_{k}$ is null homotopic. Thus we see that the loop $\{\mathrm{U}(\lambda): 0 \leqq \lambda \leqq N\}$ is homotopic to the sum of triangular loops $\Delta_{j}, j=0, \ldots, n-1$. Q.E.D.

Lemma 2.4. Suppose that Q_{1} and Q_{2} are self adjoint operators in \mathscr{A} such that $\left\|Q_{1}\right\|,\left\|Q_{2}\right\| \leqq \pi$ and $\left\|Q_{1}-Q_{2}\right\|<2 e^{-\pi}$. Then the triangular loop with three sides

$$
\begin{aligned}
L_{1} & =\left\{\exp i \lambda Q_{1} ; 0 \leqq \lambda \leqq 1\right\} \\
L_{1,2} & =\mathrm{L}\left(\exp i Q_{1}, \exp i Q_{2}\right) \\
L_{2} & =\left\{\exp i(1-\lambda) Q_{2} ; 0 \leqq \lambda \leqq 1\right\}
\end{aligned}
$$

is homotopic to 0 .
Proof. Let $\mathrm{Q}(\mu)=\mu Q_{1}+(1-\mu) Q_{2}: 0 \leqq \mu \leqq 1$. We have $\left\|\mathrm{Q}\left(\mu^{\prime}\right)-\mathrm{Q}\left(\mu^{\prime \prime}\right)\right\|=\left|\mu^{\prime}-\mu^{\prime \prime}\right|\left\|Q_{1}-Q_{2}\right\|<2 e^{-\pi}$ for $\mu^{\prime}, \mu^{\prime \prime} \in[0,1]$. Hence

$$
\left\|\exp i \mathrm{Q}\left(\mu^{\prime}\right)-\exp i \mathrm{Q}\left(\mu^{\prime \prime}\right)\right\|
$$

$$
\leqq\left\|\mathrm{Q}\left(\mu^{\prime}\right)-\mathrm{Q}\left(\mu^{\prime \prime}\right)\right\| \exp \max \left\{\left\|\mathrm{Q}\left(\mu^{\prime}\right)\right\|,\left\|\mathrm{Q}\left(\mu^{\prime \prime}\right)\right\|\right\}
$$

<2.

Thus by (2.2) the loop consisting of the two sides $\left(\exp i Q_{1}\right)^{*} L_{1,2}$ and $\left\{\left(\exp i Q_{1}\right)^{*} \exp i \mathrm{Q}(\mu) \mid 0 \leqq \mu \leqq 1\right\}$ is null homotopic. Let $\Delta(\mu)$ be the triangular loop with sides

$$
\begin{aligned}
& \{\exp i \lambda \mathrm{Q}(\mu) ; 0 \leqq \lambda \leqq 1\} \\
& \left\{\exp i \mathrm{Q}\left(\mu^{\prime}\right) ; \mu \leqq \mu^{\prime} \leqq 1\right\} \\
& \left\{\exp i(1-\lambda) Q_{1} ; 0 \leqq \lambda \leqq 1\right\}
\end{aligned}
$$

Then the preceeding discussion shows that the triangular loop $\left\{L_{1}, L_{1,2}, \widetilde{L}_{2}\right\}$ is homotopic to $\Delta(1)$ (Fig. 2).

Fig. 2

Fig. 3

The triangular loops $\Delta(\mu), 0 \leqq \mu \leqq 1$, provide a continuous deformation of $\Delta(1)$ to $\Delta(0)$ (Fig. 3). Since $\Delta(0)$ is clearly null homotopic it follows that the triangular loop $\left\{L_{1}, L_{1,2}, \tilde{L}_{2}\right\}$ is also null homotopic. Q.E.D.

Lemma 2.5. Let U_{1}, U_{2} be unitary operators in \mathscr{A}. Let Δ_{1}, Δ_{2} be compact connected arcs on the unit circle with mutual distance $r>0$. Let the length of the arc Δ_{1} be $a>0$, and let ε be a given positive number. Then there exists $\delta(\varepsilon, r, a)$, depending only on $\varepsilon>0, r>0, a>0$, such that whenever E_{1} and E_{2} are spectral projections of U_{1} and U_{2} for Δ_{1} and Δ_{2} respectively, $\left\|E_{1} \cdot E_{2}\right\|<\varepsilon$ whenever $\left\|U_{1}-U_{2}\right\|<\delta(\varepsilon, r, a)$.

Proof. Let $\mathrm{f}(z), z \in \boldsymbol{C}$, be a continuous function which is equal to 1 on a fixed Δ_{1}^{0} of length a and 0 at any point on the unit circle S^{1} with distance from Δ_{1}^{0} larger than r. Since $f(U)$ is norm continuous in $U \in \mathscr{U}(\mathscr{A})$ by $(2.1)\left(\right.$ set $\mathrm{f}_{t}(z)=\mathrm{f}(z)$ in $\left.(2.1)\right)$, there exists $\delta\left(\varepsilon, r, \Delta_{1}^{0}\right)>0$ such that

$$
\left\|\mathrm{f}\left(U^{\prime}\right)-\mathrm{f}\left(U^{\prime \prime}\right)\right\|<\varepsilon
$$

whenever

$$
\left\|U^{\prime}-U^{\prime \prime}\right\|<\delta\left(\varepsilon, r, \Delta_{1}^{0}\right), U^{\prime}, U^{\prime \prime} \in \mathscr{U}(\mathscr{A})
$$

Since

$$
\mathrm{f}\left(U_{1}\right) E_{1}=E_{1}, \quad \mathrm{f}\left(U_{2}\right) E_{2}=0
$$

we have

$$
\left\|E_{1} E_{2}\right\|=\left\|E_{1}\left(\mathrm{f}\left(U_{1}\right)-\mathrm{f}\left(U_{2}\right)\right) E_{2}\right\|<\varepsilon
$$

for $\left\|U_{1}-U_{2}\right\|<\delta\left(\varepsilon, r, \Delta_{1}^{0}\right)$. For any other arc Δ_{1} of length a there exists a real number θ such that $\Delta_{1}=e^{i \theta} \Delta_{1}^{0}$ and if we use the function $\mathrm{f}_{\theta}(z)=\mathrm{f}\left(e^{-i \theta} z\right)$ instead of $\mathrm{f}(z)$ the preceeding computations are still valid.
Q.E.D.

Lemma 2.6. Let Q_{1} and Q_{2} be self adjoint operators in \mathscr{A}. Suppose that

$$
\begin{aligned}
& Q_{1}=\sum_{n=-N}^{n=N} n(\pi / N) E_{n}, \\
& Q_{2}=\sum_{n=-N}^{n=N}\left(n+\frac{1}{2}\right)(\pi / N) F_{n}
\end{aligned}
$$

where E_{n} and F_{n} are spectral projections of Q_{1} and Q_{2} respectively, and N is a natural number. If

$$
\left\|F_{n}\left(I-E_{n}-E_{n+1}\right)\right\|<\varepsilon=(2 N)^{-2}
$$

and

$$
F_{N}=0
$$

then

$$
\left\|Q_{1}-Q_{2}\right\|<2 \pi / N
$$

Proof. We have

$$
\begin{aligned}
Q_{1}-Q_{2} & =\sum_{n, m} F_{n}\left(Q_{1}-Q_{2}\right) E_{m} \\
& =\sum_{n, m}\left(F_{n} E_{m} Q_{1}-Q_{2} F_{n} E_{m}\right)
\end{aligned}
$$

For $m=n$ or $n+1$ we see that

$$
\begin{aligned}
F_{n}\left(Q_{1}-Q_{2}\right) E_{m} & =F_{n} E_{m}(\pi / N)(m-n-1 / 2) \\
& = \pm(2 N)^{-1} \pi F_{n} E_{m}
\end{aligned}
$$

For the rest, from the hypotheses we have

$$
\left\|F_{n} \sum_{\substack{m \neq n \\ m \neq n+1}} E_{m}\right\|<\varepsilon
$$

Hence

$$
\left\|Q_{1}-Q_{2}\right\|<\varepsilon\left(\left\|Q_{1}\right\|+\left\|Q_{2}\right\|\right) \sum_{n} 1+(2 N)^{-1} \pi\left(\left\|\sum_{n} F_{n} E_{n}\right\|+\left\|\sum_{n} F_{n} E_{n+1}\right\|\right)
$$

Since

$$
\left\|\sum_{n} F_{n} E_{n} \psi\right\|^{2}=\sum_{n}\left\|F_{n} E_{n} \psi\right\|^{2} \leqq \sum_{n}\left\|E_{n} \psi\right\|^{2}=\|\psi\|^{2}
$$

for $\psi \in \mathscr{H}$, we see that

$$
\left\|\sum_{n} F_{n} E_{n}\right\| \leqq 1
$$

Similarly

$$
\left\|\Sigma F_{n} E_{n+1}\right\| \leqq 1
$$

Hence

$$
\left\|Q_{1}-Q_{2}\right\|<4 N \pi \varepsilon+(\pi / N)=(2 \pi / N)
$$

where we have used the estimates $\left\|Q_{1}\right\| \leqq \pi,\left\|Q_{2}\right\| \leqq \pi$. Q.E.D.
Lemma 2.7. There exists $\delta>0$ with the following property: Whenever Q_{1} and Q_{2} are self-adjoint elements in \mathscr{A} satisfying

$$
\begin{gathered}
-\pi I<Q_{j} \leqq \pi I, \quad j \leqq 1,2 \\
\left\|\exp i Q_{1}-\exp i Q_{2}\right\|<\delta
\end{gathered}
$$

then the triangular loop with sides

$$
\begin{aligned}
L_{1} & =\left\{\exp i \lambda Q_{1}: 0 \leqq \lambda \leqq 1\right\} \\
L_{1,2} & =\mathrm{L}\left(\exp i Q_{1}, \exp i Q_{2}\right), \\
\tilde{L}_{2} & =\left\{\exp i(1-\lambda) Q_{2}: 0 \leqq \lambda \leqq 1\right\}
\end{aligned}
$$

is homotopic to a sum of simple loops.
Proof. Let $U_{j}=\exp i Q_{j}, j=1,2$. Let E_{n} be the spectral projection for Q_{1} on the half open interval $((n-(1 / 2)) \pi / N,(n+(1 / 2)) \pi / N], n=-N$, $-N+1, \ldots, N$. Similarly, let F_{n} be the spectral projection of Q_{2} for the half open interval $(n \pi / N,(n+1) \pi / N], n=-N,-N+1, \ldots, N-1$, where N is an integer chosen so that $N>\pi e^{\pi}$.

By (2.5) there exists $\delta(\varepsilon, \pi /(2 N), \pi / N)$ such that if $\left\|Q_{1}-Q_{2}\right\|$ $<\delta(\varepsilon, \pi /(2 N), \pi / N)$ then

$$
\begin{aligned}
& \left\|F_{n}\left(I-E_{n}-E_{n+1}\right)\right\|<\varepsilon \text { for } n=-N+1, \ldots, N-2, \\
& \left\|F_{-N}\left(I-E_{-N}-E_{-N+1}-E_{N}\right)\right\|<\varepsilon, \\
& \left\|F_{N-1}\left(I-E_{N-1}-E_{N}-E_{-N}\right)\right\|<\varepsilon,
\end{aligned}
$$

and

$$
\left\|\left(E_{N}+E_{-N}\right)\left(I-F_{-N}-F_{N-1}\right)\right\|<\varepsilon .
$$

Since $\left\|F_{\alpha} E_{\beta}\right\|<\varepsilon$ implies $\left\|F_{\alpha} E^{\prime}\right\|=\left\|F_{\alpha} E_{\beta} E^{\prime}\right\|<\varepsilon$ for any subprojection E^{\prime} of E_{β}, the assumptions of the appendix are satisfied with $E_{A}=F_{-N}$, $E_{B}=F_{N-1}, E_{C}=I-F_{-N}-F_{N-1}, E_{0}=E_{N}+E_{-N}, E_{\alpha}=E_{-N+1}, E_{\beta}=E_{N-1}$, $E_{\gamma}=I-E_{0}-E_{\alpha}-E_{\beta}$. Therefore there exists projections E_{01}, E_{02} with
$E_{01} \perp E_{02}$ and

$$
\begin{aligned}
E_{01}+E_{02} & =E_{0}=E_{N}+E_{-N}, \\
\left\|E_{A} E_{02}\right\| & =\left\|F_{-N} E_{02}\right\|<\varepsilon^{\prime}(\varepsilon, \\
\left\|E_{B} E_{01}\right\| & =\left\|F_{N-1} E_{01}\right\|<\varepsilon^{\prime \prime}(\varepsilon),
\end{aligned}
$$

where

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{\prime}(\varepsilon)=0=\lim _{\varepsilon \rightarrow 0} \varepsilon^{\prime \prime}(\varepsilon) .
$$

We define

$$
\begin{aligned}
& Q_{1}^{\prime}=\sum_{n=-N}^{N}(n \pi / N) E_{n}, \\
& Q_{2}^{\prime}=\sum_{n=-N}^{N-1}(n+(1 / 2))(\pi / N) F_{n},
\end{aligned}
$$

and

$$
\begin{aligned}
Q_{1}^{\prime \prime} & =Q_{1}^{\prime}-2 \pi E_{N}+2 \pi E_{02} \\
& =\sum_{n=-N+1}^{N-1}(n \pi / N) E_{n}-\pi E_{01}+\pi E_{02} .
\end{aligned}
$$

Obviously

$$
\left\|Q_{1}^{\prime}-Q_{1}\right\| \leqq \pi /(2 N)
$$

and

$$
\left\|Q_{2}^{\prime}-Q_{2}\right\| \leqq \pi /(2 N) .
$$

Also

$$
\begin{aligned}
\| F_{-N}(I- & \left.E_{01}-E_{-N+1}\right) \| \\
& \leqq\left\|F_{-N}\left(I-E_{0}-E_{-N+1}\right)\right\|+\left\|F_{-N} E_{02}\right\|<\varepsilon+\varepsilon^{\prime}(\varepsilon)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|F_{N-1}\left(I-E_{N-1}-E_{02}\right)\right\| \\
& \quad \leqq\left\|F_{N-1}\left(I-E_{N-1}-E_{0}\right)\right\|+\left\|F_{N-1} E_{01}\right\|<\varepsilon+\varepsilon^{\prime \prime}(\varepsilon) .
\end{aligned}
$$

Replacing E_{N} by E_{02}, E_{-N} by E_{01} we see that $Q_{1}^{\prime \prime}$ replaces the role of Q_{1}. Letting

$$
E_{n}^{\prime \prime}= \begin{cases}E_{n} & \text { if } n \neq N,-N, \\ E_{01} & \text { if } n=-N, \\ E_{02} & \text { if } n=N,\end{cases}
$$

we may write

$$
Q_{1}^{\prime \prime}=\sum_{n=-N}^{N} n(\pi / N) E_{n}^{\prime \prime}
$$

We then see that the hypotheses of (2.6) are satisfied for $Q_{1}^{\prime \prime}$ and Q_{2}^{\prime} with $\varepsilon+\varepsilon^{\prime}(\varepsilon)<(2 N)^{-2}$. Hence for such $\varepsilon,\left\|Q_{1}^{\prime \prime}-Q_{2}^{\prime}\right\|<2 \pi / N$. By our choice of N

$$
\left.\begin{array}{l}
\left\|Q_{1}^{\prime}-Q_{1}\right\| \\
\left\|Q_{2}^{\prime}-Q_{2}\right\| \\
\left\|Q_{1}^{\prime \prime}-Q_{2}^{\prime}\right\|
\end{array}\right\}<2 e^{-\pi} .
$$

By applying (2.4) we may therefore conclude that the following three triangular loops are homotopic to 0 :

The triangular loop with sides $\left\{\begin{aligned} L_{1} & =\left\{\exp i \lambda Q_{1}: 0 \leqq \lambda \leqq 1\right\} \\ L_{1,1^{\prime}} & =\mathrm{L}\left(\exp i Q_{1}, \exp i Q_{1}^{\prime}\right) \\ \tilde{L}_{1^{\prime}} & =\left\{\exp i(1-\lambda) Q_{1}^{\prime}: 0 \leqq \lambda \leqq 1\right\} .\end{aligned}\right.$
The triangular loop with sides $\left\{\begin{aligned} L_{2} & =\left\{\exp i \lambda Q_{2}: 0 \leqq \lambda \leqq 1\right\} \\ L_{2,2^{\prime}} & =\mathrm{L}\left(\exp i Q_{2}, \exp i Q_{2}^{\prime}\right) \\ \widetilde{L}_{2^{\prime}} & =\left\{\exp i(1-\lambda) Q_{2}^{\prime}: 0 \leqq \lambda \leqq 1\right\} .\end{aligned}\right.$
The triangular loop with sides $\left\{\begin{aligned} L_{2^{\prime}} & =\left\{\exp i \lambda Q_{2}^{\prime}: 0 \leqq \lambda \leqq 1\right\} \\ L_{2^{\prime}, 1^{\prime \prime}} & =\mathrm{L}\left(\exp i Q_{2}^{\prime}, \exp i Q_{1}^{\prime \prime}\right) \\ \tilde{L}_{1^{\prime \prime}} & =\left\{\exp i(1-\lambda) Q_{1}^{\prime \prime}: 0 \leqq \lambda \leqq 1\right\} .\end{aligned}\right.$
Note that $\exp i Q_{1}^{\prime}=\exp i Q_{1}^{\prime \prime}$ because $\left[Q_{1}^{\prime}, E_{N}\right]=\left[E_{02}, Q_{1}^{\prime \prime}\right]=0$ and thus $\exp i\left(Q_{1}^{\prime}-2 \pi E_{N}+2 \pi E_{02}\right)=\exp i Q_{1}^{\prime}$. Note also that the distance from any point on $L_{1,1^{\prime}}, L_{2,2^{\prime}}$ or $L_{2^{\prime}, 1^{\prime \prime}}$ to $U_{1}=\exp i Q_{1}$ is smaller than

$$
\begin{aligned}
\left\|Q_{1}-Q_{1}^{\prime}\right\|+\| Q_{1}^{\prime \prime}- & Q_{2}^{\prime}\|+\| Q_{2}^{\prime}-Q_{2} \| \\
& <\frac{\pi}{2 N}+\frac{\pi}{2 N}+\frac{2 \pi}{N}=3 e^{-\pi}<2
\end{aligned}
$$

Therefore the four paths $U_{1}^{*} L_{1,1^{\prime}}, U_{1}^{*} L_{1^{\prime \prime}, 2^{\prime}}, U_{1}^{*} L_{2^{\prime}, 2}$ and $U_{1}^{*} L_{2,1}$ form a loop which by (2.2) is null homotopic.

Combining all the preceeding observations, we see that the original loop is homotopic to the loop consisting of L_{1}, and $\tilde{L}_{1^{\prime \prime}}$. But since

$$
\exp i \lambda Q_{1}^{\prime}=\exp \left[2 \pi i \lambda E_{N}\right] \exp \left[-2 \pi i \lambda E_{02}\right] \exp \left[i \lambda Q_{1}^{\prime \prime}\right]
$$

due to $\left[Q_{1}^{\prime}, E_{N}\right]=\left[E_{02}, Q_{1}^{\prime \prime}\right]=0$, the loop consisting of L_{1}^{\prime}, and $L_{1^{\prime \prime}}$ is homotopic to the sum of the two simple loops $\left\{\exp 2 \pi i \lambda E_{N}: 0 \leqq \lambda \leqq 1\right\}$ and $\left\{\exp \left(-2 \pi i \lambda E_{02}\right): 0 \leqq \lambda \leqq 1\right\}$ completing the proof. Q.E.D.

Summing up (2.3) and (2.7) we have the following:
Theorem 2.8. Let \mathscr{A} be a von Neumann algebra with unitary group $\mathscr{U}(\mathscr{A})$. Then $\pi_{1}(\mathscr{U}(\mathscr{A}))$ is generated by the homotopy classes of the simple loops.

Proof. Note that taken together (2.3) and (2.7) say that every loop in $\mathscr{U}(\mathscr{A})$ is homotopic to a sum of simple loops. Q.E.D.

§ 3. The First Homotopy Group of the Unitary Group of a Factor

In this section we will apply the theory developed so far to the special case of a von Neumann algebra factor.

Theorem 3.1. If \mathscr{A} is a factor of infinite type (that is \mathscr{A} is of type $I_{\infty}, I I I_{\infty}$ or III), then $\pi_{1}(\mathscr{U}(\mathscr{A}))=0$.
Proof. By (2.8) we have only to show that a simple loop $\{\exp 2 \pi i \lambda Q$: $0 \leqq \lambda \leqq 1\}$ is homotopic to 0 . Since $\exp 2 \pi i Q=1$ we see that $Q=\sum_{n} n E_{n}^{Q}$ for $n=0, \pm 1, \pm 2, \ldots$ and E_{n}^{Q} are mutually orthogonal projections. Hence we need only consider the case of a simple loop $\{\exp 2 \pi i \lambda E \mid$ $0 \leqq \lambda \leqq 1\}$ where E is a projection.

First we consider the case where E is a projection of infinite relative dimension in \mathscr{A}. There exist in \mathscr{A} mutually orthogonal projections E_{1}, E_{2} with infinite relative dimension such that $E=E_{1}+E_{2}$. Also there exist mutually orthogonal projections $F_{1}, F_{2}, F_{3}, F_{4}$ of infinite relative dimension with $F_{1}+F_{2}+F_{3}+F_{4}=I$. By (1.1) there exist norm continuous paths of projections

$$
\mathrm{F}_{i}(\mu): 0 \leqq \mu \leqq 1, \quad i=1,2,3
$$

such that

$$
\begin{aligned}
& \mathrm{F}_{i}(0)=F_{i}, \quad i=1,2,3, \\
& \mathrm{~F}_{1}(1)=E_{1}, \quad \mathrm{~F}_{2}(1)=E_{2}, \mathrm{~F}_{3}(1)=I-F_{4}
\end{aligned}
$$

Let

$$
\begin{aligned}
\mathrm{U}(\lambda, \mu)=[& \left.\exp 2 \pi i \lambda \mathrm{~F}_{1}(\mu)\right]\left[\exp 2 \pi i \lambda \mathrm{~F}_{2}(\mu)\right] \\
\cdot & {\left[\exp 2 \pi i \lambda \mathrm{~F}_{3}(\mu)\right]\left[\exp -2 \pi i \lambda\left(I-F_{4}\right)\right] }
\end{aligned}
$$

Clearly

$$
\begin{aligned}
& \mathrm{U}(\lambda, 0)=I \\
& \mathrm{U}(\lambda, 1)=\exp 2 \pi i \lambda\left(E_{1}+E_{2}\right)=\exp 2 \pi i E
\end{aligned}
$$

Thus the loop $\{\exp 2 \pi i \lambda E: 0 \leqq \lambda \leqq 1\}$ is null homotopic in $\mathscr{U}(\mathscr{A})$.
Next we consider the case where E is a projection of finite relative dimension. Then $I-E$ has infinite relative dimension and $E=I-(I-E)$. Since I and $I-E$ commute with each other $\{\exp 2 \pi i \lambda E: 0 \leqq \lambda \leqq 1\}$ is homotopic to the difference of the two simple loops $\{\exp 2 \pi i \lambda(I-E)$: $0 \leqq \lambda \leqq 1\}$ and $\{\exp 2 \pi i \lambda I: 0 \leqq \lambda \leqq 1\}$. Since \mathscr{A} is of infinite type both I and $I-E$ have infinite relative dimension and thus the loops $\{\exp 2 \pi i \lambda(I-E): 0 \leqq \lambda \leqq 1\},\{\exp 2 \pi i \lambda I: 0 \leqq \lambda \leqq 1\}$ are null homotopic in $\mathscr{U}(\mathscr{A})$ by the earlier part of the argument and the result follows. Q.E.D.

Remark. Kuiper [3] has shown that $\mathscr{U}(\mathscr{A})$ is actually contractable for a von Neumann algebra factor of type I_{∞}. Breuer [1] has obtained a similar result for certain von Neumann algebra factors of type $I I_{\otimes}$. We conjecture that $\mathscr{U}(\mathscr{A})$ is always contractable for a factor of infinite type.

We wish now to deal with the case where \mathscr{A} is a factor of finite type. First we introduce a homotopy invariant for simple loops in such a factor.

Notations and Conventions. Henceforth \mathscr{A} will denote a von Neumann algebra factor of finite type. We denote by φ the normalized trace function on \mathscr{A}.

Definition. Let a loop $L=\{\mathrm{U}(\lambda): 0 \leqq \lambda \leqq 1\}$ in $\mathscr{U}(\mathscr{A})$ be divided into several arcs at

$$
0=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{n}=1,
$$

such that for a fixed positive number $\delta, 0<\delta<1$

$$
\left\|\mathrm{U}\left(\lambda^{\prime}\right)-\mathrm{U}\left(\lambda^{\prime \prime}\right)\right\|<\delta
$$

whenever

$$
\lambda_{i} \leqq \lambda^{\prime}<\lambda^{\prime \prime} \leqq \lambda_{i+1}: i=0, \ldots, n-1 .
$$

That is the distance between any two points on the same arc is bounded by δ. Then using

$$
\log Q=\sum_{m=1}^{\infty}(-1)^{m-1} \frac{1}{m}(Q-I)^{m}
$$

we define

$$
\mathrm{I}_{\varphi}(L)=\sum_{j=1}^{n} \varphi\left(\log U_{j-1}^{*} U_{j}\right)
$$

where $U_{i}=\mathrm{U}\left(\lambda_{i}\right), i=0, \ldots, n$.
Theorem 3.2. With the notations preceeding, if δ is chosen sufficiently small, $\mathrm{I}_{\varphi}(L)$ is well defined, independent of the points of division, and an invariant of the homotopy class of the loop L in $\mathscr{U}(\mathscr{A})$.

Proof. There exists $\delta_{0}>0$ such that for any Q_{1}, Q_{2} with $\left\|Q_{1}\right\|<\delta_{0}$, $\left\|Q_{2}\right\|<\delta_{0}, \log e^{Q_{1}} e^{Q_{2}}-Q_{1}-Q_{2}$ can be written as a norm convergent infinite sum of multiple commutators of Q_{1} and Q_{2} by the Baker-Hausdorff formula. Since φ vanishes on commutators we have

$$
\begin{aligned}
\varphi\left(\log e^{Q_{1}} e^{Q_{2}}\right) & =\varphi\left(Q_{1}\right)+\varphi\left(Q_{2}\right) \\
& =\varphi\left(\log e^{Q_{1}}\right)+\varphi\left(\log e^{Q_{2}}\right)
\end{aligned}
$$

whenever $\left\|e^{Q_{1}}-I\right\|<\delta$ and $\left\|e^{Q_{2}}-I\right\|<\delta$ for some small δ.
Therefore whenever the mutual distance of the U_{j} 's is small we have, from $\prod_{j=m+1}^{m^{\prime}}\left(U_{j-1}^{*} U_{j}\right)=U_{m}^{*} U_{m^{\prime}}$,

$$
\sum_{j=m+1}^{m^{\prime}} \varphi\left(\log U_{j-1}^{*} U_{j}\right)=\varphi\left(\log U_{m}^{*} U_{m^{\prime}}\right) .
$$

Let $0=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{n}=1$ and $0=\mu_{0}<\mu_{1}<\cdots<\mu_{m}=1$ be two given divisions of $[0,1]$. Consider the union of the two divisions, that is
the subdivision using all the λ 's and all the μ 's. Provided that δ is chosen in the foregoing manner, $\mathrm{I}_{\varphi}(L)$ for the λ division and $\mathrm{I}_{\varphi}(L)$ for the μ division are equal to $I_{\varphi}(L)$ for the joint division because of the additivity computed in the previous paragraph. Hence $I_{\varphi}(L)$ is well defined.
 small triangular deformations. Using again the above additivity, $\mathrm{I}_{\varphi}(L)$ is invariant under each triangular deformation and hence $\mathrm{I}_{\varphi}(L)$ is a homotopy invariant. Q.E.D.

Theorem 3.3. If \mathscr{A} is a factor of type $I I_{1}$ then $\pi_{1}(\mathscr{U}(\mathscr{A}))$ is isomorphic to the additive group of reals, in which $\pi_{1}(\mathscr{Z} \mathscr{U}(\mathscr{A}))$ is the integers.

Proof. By (2.8) a general loop in $\mathscr{U}(\mathscr{A})$ is homotopic to a sum of simple loops of the form $\left\{\exp 2 \pi i n_{j} \lambda E_{j}: 0 \leqq \lambda \leqq j\right\}, j=1, \ldots, N$, where the n_{j} are integers and the E_{j} are projections.

Since \mathscr{A} is of type $I I_{1}$, each E_{j} can be divided into m_{j} mutually orthogonal subprojections with equal relative dimension in $\mathscr{A}: E_{j}=\sum_{k=1}^{m_{j}} E_{j k}$. Thus each $\left\{\exp 2 \pi i n_{j} \lambda E_{j}: 0 \leqq \lambda \leqq 1\right\}$ is homotopic to a sum of m_{j} loops $\left\{\exp 2 \pi i n_{j} \lambda E_{j k}: 0 \leqq \lambda \leqq 1\right\}, k=1, \ldots, m_{j}$. Since \mathscr{A} is a finite factor $\operatorname{dim}(I-E)=1-\operatorname{dim} E$ for any projection E in \mathscr{A}. Thus in particular

$$
\operatorname{dim}\left(1-E_{j k}\right)=1-\operatorname{dim} E_{j k}: k=1,2, \ldots, m_{j}
$$

and since

$$
\operatorname{dim} E_{j k}=\operatorname{dim} E_{j 1}: k=1, \ldots, m_{j}
$$

we see that each projection $E_{j k}$ can be deformed through projections in \mathscr{A} to $E_{j 1}$ by (1.5). This gives a deformation of the corresponding loops to $\left\{\exp 2 \pi i n_{j} \lambda E_{j 1}: 0 \leqq \lambda \leqq 1\right\}$. Thus each $\left\{\exp 2 \pi i n_{j} \lambda E_{j}: 0 \leqq \lambda \leqq 1\right\}$ is homotopic to $\left\{\exp 2 \pi i n_{j} m_{j} E_{j 1}: 0 \leqq \lambda \leqq 1\right\}$.

In this manner we can make all $n_{j} m_{j}$ equal to some fixed integer n and $\operatorname{dim} E_{j 1}, j=1, \ldots, N$ smaller than $1 / N$. Note that n will be a common multiple of n_{1}, \ldots, n_{N} big enough so that $\operatorname{dim} E_{j}<1 / N, j=1, \ldots, N$.

There exist mutually orthogonal projections $E_{j}^{\prime}, j=1,2, \ldots, N$, with $\operatorname{dim} E_{j}^{\prime}=\operatorname{dim} E_{j 1}, j=1, \ldots, N$. Hence, since \mathscr{A} is a finite factor $\operatorname{dim}\left(I-E_{j}^{\prime}\right)=\operatorname{dim}\left(I-E_{j 1}\right)$, for $j=1, \ldots, N$. We may thus apply (1.5) to continuously deform E_{j}^{\prime} to $E_{j 1}, j=1, \ldots, N$, through projections in \mathscr{A}. Thus we see that the original loop L is homotopic to $\{\exp 2 \pi i n \lambda E$: $0 \leqq \lambda \leqq 1\}$ where $E=\sum_{j=1}^{N} E_{j}^{\prime}$ is a projection.

Suppose next that we are given two loops of the final form, namely

$$
\begin{aligned}
& L_{a}=\left\{\exp 2 \pi i n_{a} \lambda E_{a}: 0 \leqq \lambda \leqq 1\right\}, \\
& L_{b}=\left\{\exp 2 \pi i n_{b} \lambda E_{b}: 0 \leqq \lambda \leqq 1\right\},
\end{aligned}
$$

where E_{a}, E_{b} are projections and n_{a}, n_{b} are integers. By the same argument as before we can deform each of the above through loops in $\mathscr{U}(\mathscr{A})$ to

$$
\begin{aligned}
& L_{a}^{\prime}=\left\{\exp 2 \pi i n \lambda E_{a}^{\prime}: 0 \leqq \lambda \leqq 1\right\}, \\
& L_{b}^{\prime}=\left\{\exp 2 \pi i n \lambda E_{b}^{\prime}: 0 \leqq \lambda \leqq 1\right\}
\end{aligned}
$$

respectively where $n=n_{a} n_{b}$, and $E_{a}^{\prime}, E_{b}^{\prime}$ are projections. The invariant of (3.2) can be calculated immediately for the loop $L=\{\exp 2 \pi i m \lambda E$: $0 \leqq \lambda \leqq 1\}$ and is given by

$$
\mathrm{I}_{\varphi}(L)=2 \pi i m \operatorname{dim} E,
$$

and is an invariant of the homotopy class of the loop. Thus if L_{a} and L_{b} are homotopic $\operatorname{dim} E_{a}^{\prime}=\operatorname{dim} E_{b}^{\prime}$. On the other hand if $\operatorname{dim} E_{a}^{\prime}=\operatorname{dim} E_{b}^{\prime}$ we may, since \mathscr{A} is a finite factor, apply (1.5) to conclude E_{a}^{\prime} may be deformed through projections in \mathscr{A} to E_{b}^{\prime}. Thus L_{a}^{\prime} is homotopic to L_{b}^{\prime} through loops lying in $\mathscr{U}(\mathscr{A})$ and hence the same is true for L_{a} and L_{b}.

Therefore $\mathrm{I}_{\varphi}($) completely determines the homotopy class of a loop in $\mathscr{U}(\mathscr{A})$. The range of $\mathrm{I}_{\varphi}(\quad)$ is the set of complex numbers $2 \pi i n \operatorname{dim} E$ where n is an integer and E a projection. Define

$$
\mathrm{I}_{\varphi}^{\prime}: \pi_{1}(\mathscr{U}(\mathscr{A})) \rightarrow \boldsymbol{R}
$$

by

$$
\mathrm{I}_{\varphi}^{\prime}(L)=(2 \pi i)^{-1} \mathrm{I}_{\varphi}(L)
$$

Since $\mathrm{I}_{\varphi}()$ is additive, so is $\mathrm{I}_{\varphi}^{\prime}()$. Since \mathscr{A} is of type I_{1} the range of $\operatorname{dim} E$ is all of $[0,1]$ and hence $\mathrm{I}_{\varphi}^{\prime}$ is surjective. Since $\mathrm{I}_{\varphi}^{\prime}()$ is a complete homotopy invariant for loops in $\mathscr{U}(\mathscr{A})$ it is also injective, and hence is an isomorphism of $\pi_{1}(\mathscr{U}(\mathscr{A}))$ onto the additive group of reals in which $\pi_{1}(\mathscr{Z} \mathscr{U}(\mathscr{A}))$ is mapped onto the subgroup \boldsymbol{Z} of integers. Q.E.D.

Remark. If \mathscr{A} is a factor of type I_{n} then substantially the same argument with the invariant $\mathrm{I}_{\varphi}()$ shows that $\pi_{1}(\mathscr{U}(\mathscr{A})) \cong \boldsymbol{Z}$ by an isomorphism taking $\pi_{1}(\mathscr{Z} \mathscr{U}(\mathscr{A}))$ to $n \boldsymbol{Z}$. This result is classical and the details are left to the reader.

Remark. In a von Neumann algebra of finite type, but not necessarily a factor, it should be possible to use the center valued trace and substantially the same argument to compute $\pi_{1}(\mathscr{U}(\mathscr{A}))$.

Appendix (by L. Pitt): A Technical Point

Theorem. Let \mathscr{H} be a Hilbert space, and

$$
\begin{aligned}
\mathscr{H} & =\mathscr{H}_{0}+\mathscr{H}_{\alpha}+\mathscr{H}_{\beta}+\mathscr{H}_{\gamma}, \\
\mathscr{H} & =\mathscr{H}_{A}+\mathscr{H}_{B}+\mathscr{H}_{C}
\end{aligned}
$$

be two orthogonal splittings of \mathscr{H}_{0}. Let E_{j} be the orthogonal projection onto $\mathscr{H}_{j}, j=0, \alpha, \beta, \gamma, A, B, C$.

If $\left\|E_{0} E_{C}\right\|,\left\|E_{\alpha} E_{B}\right\|,\left\|E_{\beta} E_{A}\right\|$, and $\left\|E_{\gamma} E_{B}\right\| \leqq \varepsilon$, then
(1) $\left\|E_{A} E_{0} E_{B}\right\| \leqq 3 \varepsilon$.
(2) There exist projections $E_{0 A}, E_{0 B}$ onto $\mathscr{H}_{0 A}, \mathscr{H}_{0 B}$ with $\mathscr{H}_{0}=\mathscr{H}_{0 A} \oplus \mathscr{H}_{0 B}$ such that

$$
\left\|E_{B} E_{0 A}\right\| \leqq 12 \varepsilon
$$

and

$$
\left\|E_{A} E_{0 B}\right\| \leqq 32 \varepsilon
$$

Proof. First we show (1). Since

$$
\begin{aligned}
E_{A} E_{0} E_{B} & =E_{A}\left(I-E_{\alpha}-E_{\beta}-E_{\gamma}\right) E_{B} \\
& =0-E_{A} E_{\alpha} E_{B}-E_{A} E_{\beta} E_{B}-E_{A} E_{\gamma} E_{B}
\end{aligned}
$$

we have

$$
\begin{aligned}
\left\|E_{A} E_{0} E_{B}\right\| & \leqq\left\|E_{A} E_{\alpha} E_{B}\right\|+\left\|E_{A} E_{\beta} E_{B}\right\|+\left\|E_{A} E_{\gamma} E_{B}\right\| \\
& \leqq\left\|E_{\alpha} E_{B}\right\|+\left\|E_{A} E_{\beta}\right\|+\left\|E_{\gamma} E_{B}\right\| \leqq 3 \varepsilon
\end{aligned}
$$

To prove (2), let $F=E_{0} E_{A} E_{0}$ and $F=\int_{0}^{1} \lambda \mathrm{~d} F_{\lambda}$ be the spectral representation of F. Let $E_{0 A}=F([a, 1])$, where $a>0$ is to be determined later.

If $Q_{1}^{*} Q_{1}-Q_{2}^{*} Q_{2} \geqq 0$, then $E Q_{1}^{*} Q_{1} E-E Q_{2}^{*} Q_{2} E \geqq 0$ for any projection E and hence $\left\|Q_{1} E x\right\|^{2} \geqq\left\|Q_{2} E x\right\|^{2}$ for all x, namely $\left\|Q_{2} E\right\| \leqq\left\|Q_{1} E\right\|$. Applying this to $Q_{1}=a^{-1} F, Q_{2}=E_{0 A}$ and $E=E_{B}$, we obtain

$$
\left\|E_{0 A} E_{B}\right\| \leqq a^{-1}\left\|F E_{B}\right\| \leqq a^{-1}\left\|E_{A} E_{0} E_{B}\right\| \leqq 3 \varepsilon a^{-1}
$$

Hence

$$
\left\|E_{B} E_{0 A}\right\|=\left\|\left(E_{B} E_{0 A}\right)^{*}\right\|=\left\|E_{0 A} E_{B}\right\| \leqq 3 \varepsilon a^{-1}
$$

Next let $E_{0 B}=E_{0}-E_{0 A}$. Then $\left(E_{A} E_{0 B}\right)^{*}\left(E_{A} E_{0 B}\right)=F E_{0 B}$ and hence $\left\|E_{A} E_{0 B}\right\|=\left\|F E_{0 B}\right\|^{1 / 2} \leqq a^{1 / 2}$, where $\left\|Q^{*} Q\right\|=\|Q\|^{2}$ is used. Substituting $\left\|E_{A} E_{0 B} E_{A}\right\|=\left\|E_{A} E_{0 B}\right\|^{2},\left\|E_{A} E_{0 B} E_{B}\right\| \leqq\left\|E_{A} E_{0} E_{B}\right\|+\left\|E_{A}\left(E_{0 A} E_{B}\right)\right\|$ $\leqq 3 \varepsilon\left(1+a^{-1}\right)$ and $\left\|E_{A} E_{0 B} E_{C}\right\| \leqq\left\|E_{A} E_{0 B}\right\|\left\|E_{0} E_{C}\right\| \leqq \varepsilon$, into

$$
\left\|E_{A} E_{0 B}\right\| \leqq\left\|E_{A} E_{0 B} E_{A}\right\|+\left\|E_{A} E_{0 B} E_{B}\right\|+\left\|E_{A} E_{0 B} E_{C}\right\|,
$$

we obtain

$$
\left\|E_{A} E_{0 B}\right\|\left(1-\left\|E_{A} E_{O B}\right\|\right) \leqq \varepsilon\left(4+3 a^{-1}\right)
$$

By using $\left\|E_{A} E_{0 B}\right\| \leqq a^{1 / 2}$, we have

$$
\left\|E_{A} E_{0 B}\right\| \leqq\left(1-a^{1 / 2}\right)^{-1}\left(4+3 a^{-1}\right) \varepsilon
$$

By choosing $a=1 / 4$, we obtain (2). Q.E.D.

References

1. Breuer, M.: A generalization of Kuiper's theorem to factor of type $I I_{\infty}$. J. Math. Mech. 16, 917-925 (1967).
2. Dixmier, J.: Les algebres d'operatuers dans l'espaces Hilbertien. Paris: GauthierVillars 1957.
3. Kuiper, N.: The homotopy type of the unitary group of Hilbert space. Topology 3, 19-30 (1965).
4. Murray, F. J., von Neumann, J.: On rings of operator I. Ann. Math. 37(2), 116-229(1936).
5. Singer, I.S.: On the classification of U.H.F. C^{*}-algebras (unpublished).
6. Smith, M.B., Smith, L.: On the classification of U.H.F. C^{*}-algebras (unpublished).

Prof. Dr. H. Araki
Research Institute for Mathematical Sciences
Kyoto University
Kyoto 606, Japan
Prof. Dr. Mi-Soo Bae Smith
Departement of Applied Mathematics Thornton Hall
University of Virginia
Charlottesville, Va. 22903 USA
Prof. Larry Smith
Departement of Mathematics
Cabell Hall
University of Virginia
Charlottesville, Va. 22903 USA

[^0]: We would like to thank M. F. Atiyah and I. M. Singer for discussing with us their own work on these and related questions.

