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Abstract. By a new choice of the arbitrarily given quantities on an initial 3-manifold
we reduce the system of constraints, in General Relativity, to an elliptic system of four
equations, the coefficients of which have a simple geometric interpretation on the
3-manifold. The system seems well suited for a global study and some results are given
in this direction.

Introduction

An initial data set «/, in General Relativity1, is a 3 dimensional
differentiable manifold F3, a negative definite riemannian metric on
F3,#, and a second rank, symmetric, tensor P, satisfying the constraint
equations :

R + H2-P2 = Q, H2 = PίjP
ij.

Where R is the riemannian scalar curvature, and V the covariant deriv-
ative of g.

An einsteinian space time is a 4-dimensional differentiable manifold
F4, endowed with a hyperbolic metric g, with vanishing Ricci tensor.
It is said that (F4, 0) is a solution of the Cauchy problem, associated
with the initial data </, if there is a diffeomorphism A of F3 with a
submanifold Σ of F4 such that the image by A of g and P coincide
respectively with the metric induced on Σ by A and the second funda-
mental form of Σ as submanifold of (F4, g).

It is known that to each initial data set corresponds an einsteinian
space time, and only one in the class of maximal, globally hyperbolic
space times [4].

The system of constraint equations (1), (2) has been already ex-
tensively studied2, but rather few global (i.e. interesting) solutions are

1 We speak, for simplicity, of empty-space equations. We will, in an appendix, show
how the interior case can be treated along the same lines.

2 For a bibliography up to 1962 see Bruhat (1962).
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known. The form (1), (2) does not seem convenient for a global mathe-
matical study. Starting from the idea of Wheeler and Sharp of the
"thin sandwich" formulation of constraints (important from the quanti-
zation point of view), and using harmonic coordinates, I have written
(Bruhat, 1962) the constraints as an elliptic system for the tensorial den-
sities G°°, Gθ1, the Glj and d0G

ij being given arbitrarily (with Gij negative
definite).

Using involved techniques and the Schauder fixed point theorem, it
has been proved (Vaillant, 1967) that this elliptic system has a global
solution (with G°° > 0) on a manifold F3 homeomorphic to #3, if Gij

falls off exponentially to the euclidean metric at infinity and d0G
ίj is

small enough.
A drawback of the obtained system is that it is coordinate dependant,

and is not suitable for the study on a manifold non homeomorphic to R3.
More over its coefficients have no simple geometric meaning3. We will
therefore, in this paper, take another line of approach, which originates
from the first work on constraints by Lichnerowicz (1944) and has had
already several applications in a particular case, the so called "static"
case.

In his 1944 paper Lichnerowicz shows that if:

ds2 = φ4ds*2

then ,
R=—Γ(-%

where R* and zl* are the scalar curvature and Laplacian of the metric g*
The Eq. (2) then reads:

which is a rather simple equation if L is given (particularly if L = 0).
We will in this paper write the three remaining equations under a form
such that their principal part will also be the Laplacian A* of an unknown
vector λf.

We will then give some classes of obvious solutions of the obtained
equations.

A. Elliptic System

1. Some Formulas in an Orthonormal Moving Frame

We will, in order to have in evidence geometrically meaningful
quantities, use the Cartan's method of orthonormal tetrads. Let

3

ds2 = gΛβdx«dxβ = (Vdx0)2 + £ (Oijdd+λidx0)2 (1.1)

3 On the other hand it has been proved (Komar, 1968) that the system obtained by
giving arbitrarily gtj and d00y is not of classical type, and unstable.
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be an expression of the space-time metric g in an orthonormal frame.
The quantities in the right of (1.1) are related to the metric gΛβ in the
natural frame by :

3 3 3

#00 = V2 + Σ %> Σ aijaih = djh = 9jh, Σ λ ί a ί j = djo
ί=l ί=l ί=l

where g is the metric induced on S(x° = 0) by g.
We have V real, λt and atj purely imaginary. If we denote by alj the

inverse matrix of aij9 and gjh the inverse matrix of gjh we have:

The extrinsic curvature of S(x° = 0) is given by (cf. Foures-Bruhat,
1956):

_ FjAj+Pμ, 1 / , „ Sajh daίh'
ίj~ 2V 2V ( dx° + dx°,

where V is the covariant derivative in the metric g.

2. Initial Metric Conformal to a Given Metric

Suppose that the metric g of S is given up to a conformal scalar
factor which we call for further convenience φ4; thus, in the orthonormal
frame:

where g* is the given metric on S.
We define λf by: 2

and Afj to be the symetric tensor on S:

Λfj = a*ih da\ I a*Jh daΐ .

The coefficients of connexion yfj.fc = y.^ and γfjk, related to the metrics g
and g* respectively, are easily found (cf. [2]) to be such that

1 ί ... 2V?φ „ 2Vfφ t

while the derivative Vfφ of a scalar φ is given by

The covariant derivative of a vector being :

pμ. = djλi + γkijλk .
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A straight forward computation shows then that :

P, the mean extrinsic curvature of S, being then

* 6 dφ

with

A*= ^ A f t = Q log|α*|2, α* = det(α? ).

3. Constraint Equations
They are:

It is already known that 3.2 gives:

— 8A*φ + R*φ + Lφ5 = 0, L = PijPίj — P2. (3.3)

Using the Ricci identity, and denoting by A*λf a generalized
Laplacian for the vector λf (i.e. Δ*λf = VfVfλf - Rfjλf) we get:

p.*. _ _ _
' \ 2F φF θx° φ2 φ φ

The Eqs. (3.4) simplify by the gauge conditions:

1 dφ 1
-- L— — _ 17* 3* Π 5ΐ
φ dx° 8 J' J' ^

and (less essential)
K = l (3.6)

to the equations where the principal part in λf is Δ*λf :

??afJ = 0 (3.7)

where α J = i(^4* — δ;j ̂ 4*) is an arbitrary symmetric tensor.
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Let us remark that the gauge conditions (3.5) and (3.6) do not restrict
the generality of the solutions of the constraints, since, for an arbitrary
space time, we can always find orthonormal frames and conformal
metric g* on S such that λi = 0 and V=φ = l.

We can now recapitulate the obtained results under the form of a
theorem:

Theorem : The most general initial data set is obtained by
1) giving arbitrarily on a 3 dimensional manifold V3 a metric g*,

negative definite and a second rank symmetric tensor Afj.
2) Solving on V3 the elliptic system 3.3, 3.7 for the unknown λf, φ. The

geometric initial datas g and P being then given by

Pij = ~ (VfλJ + Vfλf] - ~ (Vfλΐ) δtj + ~ λf Ffφδtj - ~ Afj .

4. Ellipticity

The characteristic determinant of the system of partial differential
equations (3.3) and (3.7), for the four unknown φ, λf is:

and thus, g* being negative definite, this system is elliptic on V3. These
equations have a linear principal part, — A*, but are non linear. The
methods developped by Vaillant-Simon in [5] to construct solutions of

an analogous system which is not strongly elliptic, due to the term

V? \ λk in (3.7) on V3 homeomorphic to R3, with g* asymptotically
\ 9 J I

euclidean (with an exponential fall off), will probably apply here. On
the other hand the form of the Eqs. (3.3) and (3.7), manifestly covariant
on F3, seems well appropriate for solutions on a general manifold F3.

B. Some Classes of Solutions

We will give here some global solutions, on a 3. dimensional manifold
F3 of the constraints 3.3, 3.7 by making, first, a convenient choice for
the arbitrarily given quantities.

5. Time Symmetric (or Static) Case

The three Eqs. (3.7) are obviously satisfied by the choice

45=0, λ? = o
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which is, by definition, the "time symmetric" case |00. = 0, Q

the last equation reduces then to the well known one:

R*φ = Q (5.1)

which has (Araki, 1959) at most one admissible solution (i.e. φ>0 and
bounded). The solutions exists on F3 = R3 if g* is asymptotically euclidean
i.e. euclidean outside a compact (Araki, 1959) or exponentialy falling off
to euclidean (Simon-Vaillant, 1965).

One can study the Eq. (5.1) on a manifold F3 by Hubert space methods.
It is easy to prove that if g* and R* are locally integrable and bounded

on F3 with #* < 0, and #* square integrable on F3 then the equation
(deduced from (5.1) by setting φ=l + u)

-A*u + ̂ R*u=-±R* (5.2)

has one and only one solution (in a weak sense) tίe#o(F3), where
HQ(V$) is the closure in Hl(V^) of 2 (infinitely differentiate functions
with compact support), where Hl(V^) is the Hubert space of functions
on F3 which are square integrable together with their first derivatives
in the distribution sense. Thus we have two kinds of results :

1) F3 is compact: then the function w = — 1 on F3 belongs to
HQ(V^) — HI(V^\ and the only, non physically admissible, solution of
(5.2) (with φ - 1 e H1^)) is φ = 0

2) F3 is non compact then, in general, u = — 1 does not belong to
f/o(F3). The solution φ = 1 + u, u e #o(F3)

 may ^e physically admissible.
It has been shown (Vaillant, 1965), by use in particular of the maximum
principle, that φ is of class C2, and φ > 0 if F3 = R* and if g* is of class C2.

6. Conformally Minimal Initial Surface

It is still possible to satisfy the Eqs. (3.7) by taking λf = 0 if the
da*

arbitrary quantities afj9 -r-̂ - and the unknown φ satisfy the following

relations (which make the Eqs. (3.7) homogeneous in λ f s ) :

0 (6.1)

which may be written :

—^ Vf(Af^6) - -̂  V?(A*φ2) = 0. (6.2)
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Instead of giving arbitrarily the second rank tensor l£ we will
u .x

consider as given the tensor

and will choose it so that the relation (6.2) is satisfied. This may be done
by imposing on the arbitrary tensor Bfj the properties

0 (6.3)
and

B* = 0. (6.4)

The conditions J3* = 0 expresses (when λf = 0) the fact that the initial
manifold S is a minimal surface4 of the space-time.

Bfj being given satisfying (6.3) and (6.4) and λf = Q taken as solution
of (3.7) (which is the only one with reasonnable behavior), the only
equation remaining to solve is (3.3) wich reads now:

where we have set

The standard methods on monotone operators do not apply here,
since φ ~ Ί is not defined on a vector space. However it is certainly possible
to construct, in special cases, solutions of the Eq. (6.5) on manifolds (a
solution in K3, for R* <0 and L* small enough is easy to obtain, it has
already been given, in a bounded domain of #3, in Lichnerowicz [1]).

Appendix

7. Interior Case

When the stress-energy tensor Taβ does not vanish Eqs. (3.7) and
(3.3) become:

- ^ ^
- 8 Δ*φ + R*φ + Lφ5 + T00φ

5 - 0

where, by physical arguments T00 > 0.
When T0ί = 0 the methods used in §5 and 6 to construct global

solutions (with λt = 0) may still be used.
4 Cf. Lichnerowicz [1] who also used this property in a somewhat different context.
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Let us consider, for example, the case where Taβ is the stress-energy
tensor of a one particle distribution function /(x, p), then:

τ*β(χ)= ί f(x,P)PΛPβ<»
px

where Px is the mass-hyperboloϊd at x

9aβ(x)P*Pβ = ™2 Pα>0

and ω the invariant volume element of Px:

ώ= , η = |0|* dp1 r\dp2 πdp3

Po

let us denote by f(x\ 77^) the expression of /(x, p) for x e S, when the
Πi are the space components (in the orthonormal frame) (1.1) of the
vector p (momentum of the particle). We have, on S

T0ί= J/(x>,Π 7 )Π f ϊ/=£ J {f^Π
Px Px

which gives the sufficient condition for T0i — 0
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