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Abstract. The definition and classification of classical relativistic particles requires the
classification of certain invariant tensor fields on the inhomogeneous Lorentz group. The
entire 10-parameter set is exhibited. At the same time, a much larger class of Lie groups is
treated. The connection with particles will be presented in the succeeding article.

1. Introduction

The action of time in the phase space of a dynamical system can for
Hamiltonian systems be carried out by "canonical" transformations.

In an Einstein-Lorentz invariant system, the entire space-time group
(Poincare group )̂ acts in the phase space. Those systems where one has
or can introduce a suitable Poisson bracket operation preserved by the
entire group and not merely the time are of special interest. Here the
cases in which the group acts transitively are of basic interest. This
problem is what we study here.

The phase space in these cases has the form G/Γ where Γ is a closed
subgroup of the "space-time" group G. Let C2(G;Γ) be the closed
invariant 2-forms on G for which the Lie algebra of Γ is singular, but
which are non-singular on the residue linear space of the Lie algebra of
G modulo that of Γ. Then C2(G;Γ) corresponds 1:1 to the possible
Poisson brackets.

It is shown that for many pairs G, Γ the "generating functions" (in
particular the Hamiltonian, which "generates" time translation) are
linear combinations of matrix elements from the adjoint representation
of G. This includes the case of the Poincare group.

The application of these findings to the classification of elementary
particles will be published separately. It requires taking into account
which pairs of Poisson brackets are equivalent.

2. Alternating Structures

Let M be a differential manifold [4]. Suppose A is a contravariant
tensor field of order 2. In terms of coordinates x1,..., xn for M one can
define {/, g} — A l j f t g j for any two functions /, g defined on M where Aίj

are the components of A, ft is df/dxl and gj is dg/dxj. Suppose A has the
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properties

2.1 {f,g}=-{g,f}
2.2

Then we call A an alternating structure for M and call {/, g} the Poisson
bracket of / and g defined by A. The implication of 2.1 is obvious. The
meaning of 2.2 has been explored in [7].

We call the alternating structure A regular if in some coordinate
system (and hence all) the determinant of Aij is never 0. Of course this
implies that M is even-dimensional. The classical Poisson bracket is
regular. When A is regular one can define a 2-form atj dxl Λ dxj where
(atj) is the inverse of the matrix (Aij). For regular alternating structures
it follows from 2.2 that 1 [7, § 11]

2.3 atj dxl Λ dxj is closed, which is equivalent to

datj δajk dakί _

dχk dχl dχj

The proof of this can be easily supplied by the reader.
A function h is called a generating function for a vector field Z if for

every / one has {h,f} = Zf. In terms of coordinates and components,
a necessary and sufficient relation is

2.4 Z 1 ^ " - -

If A is regular, this is tantamount to

2.41 dh = Zjajkdxk.

We say that Z has generating functions locally if, in a neighbourhood
of any given point, an h can be found such that 2.4 holds. In the regular
case this is tantamount to demanding that Zjajkdxk be closed, that is

949
dχl " dχk '

Suppose T is a map of M into itself, where M has some alternating
structure. If {/° T,#° T} = {/,#} ° T, then we say T preserves this
structure. If Tt is the local one-parameter group generated by an in-
finitesimal transformation (i.e. vector field) Z in M, then Tt preserves { , }
if and only if

2.5

If this holds, we say Z preserves the structure.
1 We conform to the summation convention.
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If Z has generating functions locally then 2.2 yields 2.5 immediately.
In the regular case, the converse holds also.

2.6 // A is regular and Z preserves A then Z has generating functions
locally.

The proof consists in establishing 2.42. If M is simply-connected,
a global generating function exists for such Z. If A is not regular, not even
local generating functions need exist.

Even when the closed 2-form 2.3 is not regular, 2.42 is the condition
that Z preserve it. It would be unwarranted, however, to describe the
relation 2.41 between Z and h in the non-regular case by saying that h
generates Z because h hardly determines Z. We will just say that

2.7 Z and h are ^-related

supposing that the 2-form 2.3 involved in 2.41 be called α. (When α is
regular it is often called a symplectic structure [5].)

3. Hamiltonian Actions

A group G is said to act in a space M if there is defined a "product"
Tm for T in G and m in M with values in M such that S(Tm) = (ST)m.
If G is a Lie group and M is a manifold, suitable differentiability is
tacitly required. In any case, one requires enough differentiability such
that if Tt is a one-parameter subgroup of G, then there is a vector field A'
in M such that

3-1

for all real-valued (differentiable) functions / on M. (If, for example,
G is acting on itself by left multiplication - the left action - then A' will
be a right invariant vector field on G.) If the element X of the Lie algebra
of G is the generator of Tt we denote Δ' by Δ'x.

Now suppose all this holds. Suppose, moreover, M has an alternating
structure enabling every such vector field Δ'x to have generating functions
locally, then we will call this action a Hamiltonian action. Let G0 be the
normal subgroup of G containing the elements connected to the identity
of G. Let Γ2(M, G0) be the space of fields of tensors of contravariant
degree 2, which are invariant under the action of G0 in M.

3.2. Proposition. The alternating structures which make the action
of G in M a Hamiltonian action are precisely the alternating tensors in
T2(M,G0).
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3.21 Notice. In this paper, we consider only Hamίltonian actions in
which the alternating structure is preserved by all of G.

A group action is transitive if for each pair of points m and p in M
there is at least one T in G such that Tm = p. In this case M is in 1:1
correspondence with the space G/Γ of cosets TΓ of some subgroup Γ.
In the differentiable situation, transitivity usually2 brings with it local
transitivity, i.e.,

3.3 At each point m of M the linear space of vectors Δ'x\m (where X
ranges over the Lie algebra) includes every vector in M at m.

3.4. Theorem. Let G act locally transitively in M and suppose that the
action is Hamiltonian. Then the alternating structure is regular.

Proof. Let X^,..., Xp be a basis for the Lie algebra of G. Let x1,..., xn

be a system of coordinates in M. Let /zα be a generating function for A'Xgc,
in symbols

* dxj dxl '

It follows from 3.3 that p x n matrix of the quantities

must have rankrc, whence the matrix of the A's is non-singular, q.e.d.
Now suppose we have an action of G in M. An alternating structure

A for M which renders this action Hamiltonian may be called a Hamil-
tonization of it. The following is thus an immediate consequence of 3.4.

3.5. Theorem. Let G act differentiably and locally transitively in M.
Then the Hamiltonizations of this action are in 1:1 correspondence with
those invariant (under G) 2-forms on M which are non-singular.

It may happen that while there are plenty of invariant 2-forms, there
are none which are non-singular.

Locally transitive actions in M are easily analysed by noting that M
is the disjoint union of open submanifolds on each of which G acts
transitively and each of which is in fact equivalent to a coset space G/Γ.

"Equivalent" here is based on the following. Let M and N be spaces
on which G acts and let U map M into N. Then U is a G-mαpping if

-i
U(T(m)) = T(Unϊ) for every T in G and m in M. If T is also onto and T, T
are both G-mappings then T is an equivalence.

2 For example, suppose G has at most an enumerable number of components and M
is of the second category [4].
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We want to increase the utility of 3.5 by reformulating it in terms of G
alone. The following is a step in that direction.

3.6. Proposition. Let G act differentiably in M and N and suppose
U : M-*N is a dίfferentiable G-map. Then in the naturally induced linear
mapping of k-forms on N into k-forms on M, closed forms go into closed
forms and G-invariant forms into G-invariant forms.

The induced mapping 17* of forms is that in which a form such as
fdg Λ dh Λ . . . on N passes into (/° C7) d(g ° 17) Λ d(h ° C7) Λ . . . . Thus
this mapping commutes with exterior differentiation3. As to the in-
variance, it is expressed for a given fc-form (or indeed any covariant
vector field) α by a formula involving k "contractions"

where m is a point of M and X, Y, ... are k vectors in M at m. This formula
leads to a short proof of 3.6.

Let us retain the entire hypothesis of 3.6 for a further observation.
Suppose X is an element of the Lie algebra of G. Then we get a vector
field Δ'x in M and also one in N. Let us denote these by XM and XN.
Because U is a G-map we will have

But now suppose XN is α-related (2.7) to some function h defined on N,
where α is a 2-form on N. By substitution we obtain a function h ° U on M.
The following is easily proved :

3.61. Proposition. Λ < > U is U*ot-r elated to XM.

.Let us call the map U locally onto if, for each point m of M, every
vector at U(m) in TV is of the form dU(X) for some vector X at m.

The set of those vectors Z in M for which dU(Z) = 0 shall be denoted
by ZU9 for brevity. Recall that a vector X is called singular for a k-form
α if <α; X, Y9 Z, ...> = 0 no matter what these other k— 1 vectors are.
If a form has no non-zero singular vectors it is regular.

3.7. Theorem. Suppose U is locally onto. Then the map J7* establishes
a 1:1 correspondence between the closed invariant k-forms on N and those
closed invariant k-forms on M for which each vector in Zv is singular.

Proof. Let α be a non-zero form on N. So <α; X, Y, . . .> Φ 0 for some
X, Y, . . . . But these are of the form d U(X'\d U( T\ . . . and < (7* α X'9 Y', . . . >
= <α;dί7Cr), >Φθ, so (7*aφO and U* is shown to be 1:1. Next
we observe that if d U(X') = 0 then X' is singular for 17* α, using the same

3 This and the other observations on transformation groups are well known. See, for
example, [3, § 13].
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equation. Finally we must show that if β has all the vectors in Zv as
singular vectors, then it has the form C7*α. The α can be constructed by
defining (aιX9Y,...y = (β;X\Y',...ywteredU(X') = X9dU(Yf)=Y9....
The singularity of β is enough to make (β',X', ...> independent of the
choice available for X', . . . .

Having established 3.7, let us now suppose

3.8 G αcίs differ entiably, transitively and locally transitively in M.

Then the following things will be true (cf. [3]):

3.81 Choose a point m0 of M. Then the map G-»M \vherein T maps on
T(ra0) is locally onto.

3.82 Let Γ be the subgroup defined by TmQ = m0. Then M is G-equivalent
to G/Γ.

3.83 In the resulting G-map of G onto G/Γ, the set Zv (of vectors anni-
hilated) consists of those vectors in G which are tangent to Γ or its
cosets TΓ.

The substance of 3.7 can now be stated as follows:

3.9. Theorem. Let 3.8 hold. Find the subgroup Γ of 3.81. Then the
closed invariant k- forms on M are in 1 : 1 linear correspondence with the
linear space of those alternating k-linear functional A on the Lie algebra
Q of G for which

3.91 the elements of § which belong to the Lie algebra ofΓ are singular and

3.92 if X1 , . . . , Xk + 1 belong to g then the sum

extended over all even permutations of {0, 1, 2, . . ., k} is 0.

This follows from 3.7 when we observe, first, that 3.92 is true at the
identity element of G if and only if the /c-form is closed; second, any form
given at the identity element gives rise to an invariant4 /c-form on G;
and, third, that 3.91 together with the uniqueness of invariant extension
of A to G, gives the required singularity of Zυ.

Now we recall 3.5 and ask which of these alternating 2-forms give
rise to Hamiltonizations of G/Γ. The following is the obvious answer:

4 Here we mean invariant under left translation, of course; for only then is the map
G-> G/T a G-map. 3.9 resembles but differs from [3, Theorem 13.1] which is about invariant
forms not necessarily closed. Even so, a formula related to [3, 13.10] must hold in our case
and is deducible from 3.91 and 3.92. This formula is not explicitly involved in our proof.
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3.93. Theorem. Let A be as in 3.9, where fe = 2. Let Xl9 ..., Xn be a
basis for g such that Xm + l9 ...,Xn is a basis for the Lie algebra of Γ.
Then A corresponds to a Hamiltonization of G/Γ if and only if the
determinant of A(Xh Xj) 1 ίg z, j ^ m, is not 0.

4. Examples and Applications

In order to apply 3.93, the first thing to do is to get some idea of the
closed invariant 2-forms on G. We denote this5 linear space by C2(G).

Let G be a Lie group and let X1 , . . . , Xn be a basis for its Lie algebra g,
which we suppose is formed by the (left) invariant vector fields on G.
The Maurer-Cartan μl are defined by <μf, A}> = δ]. If α belongs to C2(G)
then it can be represented by an antisymmetric matrix (αz 7 ) such that
tt = Σaijμ

ί Λ μj. The fact that α is closed forces some linear relations on
the atj. Only when these are easy to describe can one conveniently apply
3.93. There are some important groups for which this description is easy.
The 2-form dμl belongs to C2(G), of course.

Let σ = (g1 , g2, . , gp) be a sequence when each gt is ± 1. The group
of linear homogeneous transformations in Rp which preserve 04 (x1)2

+ 02(χ2)2 H — is to be denoted by 0(σ). The group generated by 0(σ)
together with the translations in Rp we denote by E(σ) since the Euclidean
group is of this form. When O(σ) is the Lorentz group then E(σ) is the
Poincare group. In the case of 0(σ\ a basis {M f /: l^i<j^p} for its
Lie algebra can be found such that [M12, M34] = 0, [M12, M23] = #2M13

as well as all the other relations obtained by replacing 1, 2, 3, 4 by any
four elements of {1, 2, ...,/?}. When Mtj arises with i>j it means — Mj{.

In case of E(σ) this basis is augmented by Pv , . . . , Pp where [Pf , P7 ] = 0,
[Pi, M12] = 0! P2, [Pi, M23] - 0, and so forth [1, but delete the i included
there for a reason not relevant here].

Speaking more generally now in terms of a basis Xl9 . . . , XN of any
Lie algebra, we may write down its multiplication table, and in the body
of the table replace each Xt by a real parameter A{. This gives us an
N x N matrix depending on these parameters (when dealing with E(σ)
it is neater to denote the parameters by Atj and Bj). Any such matrix shall
be called compatible with the basis Xl9 ...,Xn.

4.1. Theorem. Let Xί9...,XN be any of the bases described above
either for an 0(σ) or an E(σ\ Then an N x N matrix is the matrix of a
closed invariant 2-form if and only if it is compatible with the basis.

We prove first that if a 1 be placed in the multiplication table where
Xt occurs (for some fixed fe) and zeros for all other Xp then this is the

5 A closed invariant 2-form α is locally of the form dβ, but β need not, nor is it required
to, be invariant. "Invariant" here, as before, means "left invariant".
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matrix for a closed invariant 2-form ak. In fact

ak = 2 Σ μl Λ μj

where this sum is extended over all ij such that [Xi,Xj']=Xk. Here
μ1, ...,μN are the Maurer-Cartan forms. It is possible to verify that ak

is a multiple of dμk (see [2, 4]). Since d(dμk) = 0, ak is closed. It is surely
invariant. It easily follows that every compatible matrix gives a member
of C2(G) (and in a 1 : 1 way since the ak are all different because Xk does
occur in the table — but this need not concern us at the moment.)

We now turn to the converse. In our table we see, for example,
[M12, M34] = 0. We must therefore show that

4.11 α(M12,M34) = 0

for a in C2(G). Let us abbreviate the left side of 4.11 by (12, 34). We ask
the reader to write down 3.92 with (X09Xl9X2) = (M149M24.9M34) and
he will obtain

4.12 (34, 12) + (23, 14) - (13, 24) - 0 .

Now he should write down 3.92 using M14,M13,M12. This yields

4.13 (34, 12) + (23, 14) + (13, 24) - 0 .

The result of these is (13, 24) = 0, which is just as good as 4.11.
Next consider that [M12, M23] = #2M13 and [M14, M34] = — #4M13.

Hence these entries have the relation

4.14 04[M12,M23] + 02[M14,M34]=0

whence our assertion requires us to establish

4.15

A single appeal to 3.92 suffices, namely using M14,M24,M23, as the
reader can verify. Of course if p = 3 then 4.14 does not arise. This finishes
the proof of 4.1 for O(σ\ For E(σ) we go on and consider the P's.

We denote a(Ph Mjk) by (ίjk) and a(Ph P7) by (ij). We cannot prove
(1,2) = 0 by using the P's alone! However, appealing to 3.92 with
M12,P2,P3 yields (1,3) = 0.

We observe next that ^ι[P2)M23] = ̂ 2[P1?M13]. Using 3.92 with
M12,M23,P1 yields at first #2(13, 1) + ̂ (2, 23) = 0 which gives imme-
diately the desired 34 (2, 23) - g2(l, 13).

Finally, 3.92. Using first M13,M23,P3 and then Mί2,M13,P1 gives
two equations which combine to show (2, 13) = 0. Thus we have proved
that the matrix of components of a is compatible, q.e.d.
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Theorem 4.1 cannot be generalized to all groups. It does not hold
for the group of translations. Incidentally, 4.1 says that the groups in
question have E2(G) = 0 in the sense of [3] 6.

4.2. Corollary. The most general closed invariant 2- form on 0(σ)
is given by

4.21

where μlj is the Maurer- Carton form dual to Mfj . The sum is extended
over all distinct triples in {1, ...,p}. When μij arises with i>j, it stands
for -μjί.

The proof consists in observing that an arbitrary linear combination
of the ak of 4.1 has the form 4.21 when we switch to the double-index
notation appropriate for the basis {M^ }.

We can now ask whether the left action of O(σ) on itself admits of a
Hamiltonization. This is the same as asking whether 4.21 has singular
directions.

Our findings are incomplete.

4.3. Theorem. When N(N — l)/2 is odd, every closed invariant 2- form
is singular. When σ = (+1, +1, ..., +1), also. Likewise when
σ = (+l,-l, -1, -1).

Proof. The degree of the matrix whose determinant determines the
singularity is N(N — l)/2. As to σ = (1, 1, ..., 1) we assure the reader that
Σ AijMij is a singular vector for 4.21 where the A's here are taken as the
very ones in 4.21. For the case of the Lorentz group, (1, — 1, — 1, — 1),
the determinant vanishes identically, by inspection. It does not seem
possible to extend this theorem by using the "unitary trick" [3].

We pass to the pseudo-Euclidean groups E(σ). The result is again
immediate from 4.1.

4.4. Corollary. The most general closed invariant 2-form for E(σ)
is given by

4.41

where in the second sum fe, i runs over all distinct pairs and μl is dual to Pi .

4.5. Theorem. On E(σ\ every closed invariant 2-form is singular.

The proof consists of verifying that Σ g^Pf is always singular for
4.41. Thus the left action of E(σ) on itself does not admit Hamiltonizations.

In order to illustrate the application of 3.93 to cases where Γ is not
just the identity, we confine ourselves to the case of the Poincare (or

6 For the case of 0(σ\ Theorem 4.1 is deducible from [3, Theorem 21.1].

10 Commun math. Phys., Vol. 21
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"inhomogeneous Lorentz") group E(— 1, — 1, — 1, 1). As a basis for
its Lie algebra we choose

We now write down the multiplication table, or rather, its body.
We will abbreviate Pf to i and Mtj to ij.

4.6.

0

-12

31

0

-43

42

0

-3

2

12

0

-23

43

0

-41

3

0

-1

-31

23

0

-42

41

0

-2

1

0

0

-43

42

0

12

-31

4

0

0

43

0

-41

-12

0

23

0

4

0

-42

41

0

31

-23

0

0

0

4

0

-3

2

-4

0

0

0

0

0

3

0

-1

0

-4

0

0

0

0

_2

1

0

0

0

-4

0

0

0

0

0

0

-1

-2

-3

0

0

0

0 0 0 1 2 3 0 0 0 0

According to 4.1 we may regard this array as the matrix of the most
general closed invariant 2-form provided we replace i by some numbers
BI and ij by some numbers Atj (and — i by — Bi!). Let us now think of
this as having been done in 4.6. Let us suppose that Γ (see 3.93) is the sub-
group generated by P4 and M12. Then we have to set equal to zero those
components in 4.6 which occur in the P4 and the M12 columns. This is
what 3.93 says. So Bl = B2 = B3 = A23 = A31 = A41 = A42 = 0. Then we
remove these rows and columns from the matrix, leaving

0

-A12

0

-^43

0

0

0

0

A12

0

Λs
0

0

0

0

0

0

-^43

0

A12

0

A4

0

0

^43

0

-A12

0

0

0

A4

0

0

0

0

0

0

0

0

A4

0

0

— A4

0

0

0

0

0

0

0

0

-A4

0

0

0

0

0

0

0

0

-A4

0

0

0

This matrix is regular as long as A4A12 + 0.
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4.7. Theorem. There is a ^-dimensional linear space of closed invariant
2-forms on E(— 1, — 1, — 1,1)/Γ and a ^-dimensional variety of these are
regular. There is a ^-dimensional family of Hamiltonizations of the
action of E(— 1, — 1, — 1,1) in this coset space.

The subgroup Γ here is generated by "time" translations and the
rotations in the x1 x2-plane which preserve orientation. Thus we may say
Γ is R x SO(2). The coset space is the union of four copies of R6 x S2,
S2 being the ordinary sphere. 4.7 applies equally well to Γ = E(l) x £0(2),
R x 0(2), or E(l) x 0(2). In the last case, the coset space is R6 x S2.

Let us now switch Γ to be E(l) x O(3) where this O(3) is presumed
working in x*x 2 x 3 space. We look at 4.6 and recognize that all A's and
£'s have to be set equal to 0, except B4. The result is as follows:

4.8. Theorem. On the Poincare group modulo E(ΐ) x O(3) the space C2

is 1-dimensional, and all except the 0 element are regular.

5. Construction of the Generating Functions

The possibility of doing so depends on the fact that if h is the
generating function on M = G/Γ for Δ'x (X in g) then h ° π is a generating
function for the vector field7 on G corresponding to X. More generally,
we have the proposition, whose proof is so like that of 3.6 that we omit it.

5.1. Proposition. Let G, M, N and U be as in 3.6. Let α be a closed
invariant 2-form on N. Let h be ^-related (2.7) to Δ'x in N. Then h°U
is α-related to Δ'x in M.

The next theorem tells us what the generating functions are on any
Lie group G related to the infinitesimal left multiplications (i.e. right-
invariant vector fields) through the medium of a closed invariant 2-form

5.2 α = 4 k C V Λ μ >

where μ1, ...,μ" are the Maurer-Cartan forms dual to some basis
X1,..., Xn for cj. We let A stand for the column matrix of A's. Let ξ be a
row matrix and consider X = ξiXi.

5.3. Theorem. A function h which is a-related to X has the form

5.31 h = const. + ξBA, where B is the transpose of the inverse of the
matrix of the adjoint representation of G relative to the basis Xl9 ...,XN

forG.

By "const." we mean something constant on each connected com-
ponent of G.

7 The right-invariant vector field Y agreeing with X at e in G.
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Proof. For a 2-form α and vector field Y we mean by a\X the 1-form
<oc|X; 7> = <α;JT, 7>. Thus we have (2.41) dh = a Y where Y is <^7p

and Yp is the right-translate of Xp\e. We choose canonical co-ordinates
x1,..., x" in G in order to use [2, 157]. It follows from [2, 157] that

5.32 μt=(-£^L\dxl9

\ 1 h

5.33 Jffr = | Γ

, e r-l
and

5.34 " ' ~Γ

?-r _

where Γ is the matrix such that /y = C/fcx
fc.

We observe that a\Yp = AkC
k

imμi(Yp)μm. On the right here we use
5.32 and 5.34. After some simplification we obtain

5.35 dh = a\Y=(ί

We interpolate a lemma.

5.4. Lemma, dh — ξ der A. Here Γ etc., are as in 5.3.

We use a formula in [6] to evaluate der. According to [6]

where Σ is adΓ, i.e., Σ(B) = ΓB-BΓ for any n x n matrix B. Now JΓ
is a matrix; dΓ = Ckdx\ Σ(dΓ) = Σ(Ck)dx\ where (Ck)/ = qk. Because
of the Lie Jacobi relation, Γ(Ck) = Γ/f Cj. From this it follows by induction
that ΣqCk = (Γq){Cp where q is any exponent 1,2,.... This extends to
convergent power series, so

Γ ,k

OΎkC
Σ \~~ \ Γ 1 j'

With some change of indices
s>Γ

;
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whence

O-r j rye _ e ~"
\e ae )m— \ Γ

V 1

This is inserted into 5.34 yielding

dh = (ξeΓ)mAk(e-ΓdeΓ)k

m = (ξere~r der)kAk,

from which 5.4 follows.
To complete the proof of 5.3 we next show that, on the connected

component of the identity in G,

5.5 er is the transpose of the inverse of the adjoint representation of G in g.

To see this we first show that (see [4] for "ad")

5.51 Γ evaluated at expX in G is the negative of the transpose of the
matrix of adX.

Proof. Relative to the basis Xί9 ...,XN, the matrix of an operator V
is M/ where V(Xi) = MJiXj (see [6].) Now suppose X = ξpXp. Then
3dX(Xi) = ξpίXp,Xi'] = ξpCJ

piXj=--Cipξ
pXj. On the other hand, the

value of Γf = C{px
p at expξpXp is C{pξ

p because the canonical coordinate
xk has the value ξk at expX. This proves 5.51.

Now let Γ be the negative of the transpose of Γ. Then er evaluated
at T=QXpX is the matrix of eadx. From [4, 118] we note that eadx

= Ad(exρX) = Ad(T), so er at T is the matrix of adT from which 5.3
follows.

We repeat that this does not give us all the conceivable generating
functions when dealing with closed invariant 2-forms not of the type 5.2.
But we have seen in Section 4 that the Poincare group and many others
have no other closed invariant 2-forms than these.

6. Constants of the Motion

In the traditional case, when there is a Poisson bracket and a
Hamiltonian h, a function / defined on the phase space is called α
"constant of the motion" if {/, h} = 0. When the entire space-time
group is brought in this definition gives rise to another, namely that /
"is the same for all observers" and the defining condition is that A'x.f = Q
for all Xt in the Lie algebra.

When the action is transitive, this means that / is constant on each
component of M, or that df = 0.

When the action is Hamiltonian and Λ'x. has the generating function
hi9 then such invariant functions are usually discovered by seeing if
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{f9 /j.} = 0 for each L When the ht have the same commutation relation
as the Xi9 this comes down to

Λ r

6.1 —— C\mhk = Q for all m; and supposing that f depends only on

We wish to point out that even in the irregular case (when there is
no Poisson bracket) the condition 6.1 is still sufficient to prove / locally
constant, i.e., df = 0.

6.2. Theorem. Let G be a Lie group. Let α be as in 5.2. Then the
functions ht which are a-related to the infinitesimal left translations on G
can be so selected that 6.1 implies df = 0.

Proof. We take the constant in 5.31 to be 0, so that hp = Aj(er)j

p.
A simple calculation using 5.32-5.34 shows that <μ, 7p> = hp as well.
We now evaluate Ymhk. Ymhk=(Ymιdhky = <α| Y k ; Yw> = <2dμ; Ym9 7fc>
where μ = Akμ

k. This shows Ymhk= —Ykhm. It is a general law that
<2rfμ; rw, Yky = <μ; [7k, YJ> - 7k<μ, 7m> + 7m<μ, Fk>. We observe that
[r fc,rj=-CLϊί. Thus Ymh;ι=-Cί

kmhi + 2Ymhk. Thus 7w/zk is a
constant times C^fy. From this we see that the expression in 6.1 is a
constant times Ymf. Thus, if 6.1 is assumed then df = 0.
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