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Abstract. The thermodynamic equilibrium state can be defined directly for an infinite
system via an equilibrium condition or via the variational principle. Both definitions are
used to calculate the equilibrium state for a one dimensional lattice gas with finite range
interactions.

1. Introduction

In this paper, the equilibrium state for a one dimensional classical
lattice gas with finite range interactions will be calculated explicitly. As a
starting point, two different definitions for an equilibrium state for an
infinite system will be taken. Usually, the equilibrium state for given
temperature and chemical potential is found as the limit of finite volume
Gibbs states. Because the limit may not be unique, it may be useful to
define the notion of equilibrium state directly for the infinite system.
There are two ways known.

1. The Variational Principle. An equilibrium state is a translationally
invariant state, that maximizes the pressure [1]. By the occurrence of the
mean entropy, translations play an essential role.

2. A number of equivalent equilibrium conditions. A set of equations
is given, solutions of which are by definition equilibrium states. Examples
are the KMS condition [2, 3], and the condition given by Dobrushin
[5, 6] and Lanford and Ruelle [4]. For classical lattice systems, both
conditions can be proved to be equivalent [7].

For the classical lattice gas, there is the following connection between
the variational method and the equilibrium condition. If the interactions
are translationally invariant, an invariant state satisfies the equilibrium
condition precisely if it maximizes the pressure [4].

In the present paper, the above ideas will be applied to the one
dimensional classical lattice gas with finite range, translationally invariant
interactions. It is well known, that no phase transitions occur in this
case [21].
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In Section 4, the equilibrium state is calculated, starting from the
equilibrium condition. As it should be, it proves to be unique and
translationally invariant. It follows, that the variational principle must
lead to the same state. However, since the calculation is quite different
and interesting in itself, it will be given in Section 5.

In Section 2, the necessary preliminaries are given. The partition
function is rewritten with the help of the well known matrix method in
Section 3.

2. Definitions

In the present model, each point of a v-dimensional lattice Z v can be
in two states. We will concentrate on the lattice gas, where each point
can be empty or occupied with one particle. Mathematically equivalent
is the Ising model, where each point contains a molecule with "spin"
up or down.

In this paper, we use the mathematical framework introduced by
Ruelle, Gallavotti and Miracle [1, 8-10]. We will briefly summarize
the necessary preliminaries. In Section 2.2 and 2.3 some special attention
will be payed to the one dimensional lattice.

2.1. States

A configuration of the lattice is determined by specifying for each
lattice point, whether or not it contains a particle. So to a configuration
there corresponds a subset X of the lattice, viz. the set of occupied points.

For the definition of observables and states, see [1,7-10], For the
present paper, the following notion of state will be sufficient. A state is a
set of non-negative quantities

{μΛ(X):Λ finite, XcΛ},

satisfying the consistency relations

Σ ΛΛ*)=I
(1)

Σ μM(XuY) = μΛ{X).
YCM/Λ

The quantity μΛ(X) is interpreted as the probability, that the lattice
points in X are occupied, whereas the points of Λ/X are empty. This
interpretation leads to the relations (1). It follows, that the state is
already determined by its correlation functions
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for finite X φ 0 . An arbitrary μΛ(X) is expressed into correlation func-
tions according to [10]

= Σ Q(XuY)(-l)NiY), (2)
YCΛ/X

where N(Y) is the number of points in Y.

2.2. Translations

A v-dimensional lattice is mapped onto itself by translation over any
lattice vector a. The configuration X is then carried over into the con-
figuration X + a. A state is translationally invariant if

μΛ + a{X + a) μΛ{X),
or (3)

Let us now consider the one dimensional lattice. A finite volume
will often be an interval of the form [1, fc]. For notational convenience
we will use the abbreviation

[U] (4)

A state will be called invariant in the interval [1, ή] if

for any
Let a set of 2" numbers

be given. They define an invariant state in [1, ή] if and only if

l]

The last equation is equivalent to Eq. (5) for Λ = [ί,n—l~]; cf. Eqs. (1).
For an arbitrary Λc[l,n—1'], Eq. (5) can be derived by repeated
application of Eqs. (6).

Finally, a set of 2" numbers μn(X), Xc[ί,ri], and a set of 2"" 1

numbers μn_1(X\ I c [ l , n - 1 ] , define an invariant state in [1, ή] if
and only if

XC[ί,n]

l , π - 1 ] , (7)
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2.3. Interactions

To a set X of n occupied lattice points there corresponds an π-body
potential Φ(X\ so that the total energy of a finite set X of occupied
points is

U(X)= X Φ(Y). (8)

YCX

The interaction Φ usually has the properties [1,4]

1. Φ(0) = O

2. Φ(X + a) = Φ(X)

3a. 11*11!= Σ \Φ(X)\N(X)-1<oo (9)
OeX

3b. | |Φ| | 2 = X |Φ(X)|<αo.
OeX

The norm ||Φ|| t plays a role in connection with the variational principle
[1,10]. The norm | | Φ | | 2 , which is greater, naturally arises when time
translations and equilibrium conditions are considered [4, 7].

One introduces the observable

OeY

which is interpreted as the contribution of the origin to the total energy
of the configuration X. The expectation ω(Aφ) for an invariant state ω
is then the mean energy per lattice site.

We now consider a one dimensional lattice with interactions of
range n. That is, from

0 G X, Φ(X) Φ 0

it follows that

Then the conditions 3 a, b of Eqs. (9) are automatically fulfilled. Also,
Aφ is a local observable in the interval [— n + 1, n — 1], so

ω(Aφ)= £ μ,_n+Un_lλ{X)Aφ{X). (11)
IC[-«+l,n-l]

Another expression, which will be of special use for our purposes, is

-], (12)

XC[l,n]
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where

χM = Xn[2,ri]; X{n) =

With Eqs.(l), (8), and (10), one easily proves that both (11) and (12) equal
the expression

Σ Q(X)Φ(X).
XC [ί,n]

leX

3. The Partition Function

In statistical mechanics, one is generally interested in the grand
canonical partition function of a finite volume Λ,

ZΛ= Σ exp[—t/(X)]. (13)
X CΛ

The chemical potential μ is absorbed in the interaction as the one
body potential, thus giving rise to a term —N(X)μ in the energy U(X).
The inverse temperature β has been absorbed as a factor in the interaction.

The thermodynamic pressure is now found by

The existence of the limit has been proved for the classical lattice gas by
Gallavotti and Miracle [8].

Let us return to the one dimensional lattice with interactions of
range n. Then the partition function can be rewritten with the help of the
matrix method [11, 12]. Take an interval

and let X C M. Because of the range n of the interaction

U(X)= U(X1vX2)- U(X2)+

where

So
m - l

ZM=
..,x™ j = i (15)

<κρί-U(X)-]Rm-HX,X'),
X,X'
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where the 2"~ 1 x2"" 1 matrix R is given by

R(X, X') = exp[- ί / ( I u Γ ) + l/(X)] . (16)

In Eqs. (15) and (16), X is a subset of an interval of n — 1 points, and X'
is a subset of another such interval, immediately to the right of the first
one. Due to the invariance of the interaction, R is independent of the
precise position of the intervals.

Another expression for ZM is

ZM= Σ e x P C - U{XJ] Π e x p [ - U(XjuXJ+1) + U(XJ+1)2

where
L(X, X') = e x p [ - l/(X'uX) + L/(X)] . (18)

In Eqs. (17) and (18), X' is on the left of X, so in general the matrices R
and L will differ. Introduce the matrices

r(X, X') - K (X, X') exp [ - \ U(X) + £ £/(X')] ,

/(X, X7) = L(X, X') exp [ - \ U{X) + ^

They are each other's transpose, so the matrices R, r, / and L have the
same eigenvalues.

The matrices under consideration consist of positive elements. By
Perron's theorem (Bellman [13], Ch. 16.4) the absolutely greatest eigen-
value of such a matrix is positive and non-degenerate. The corresponding
eigenvector can be chosen to consist of positive elements.

Let λ be the largest eigenvalue of R and L. Eqs. (14), (15), and (17)
give then

^ (19)

Because L(0, 0) = £(0, 0) = 1, we have that λ > 1, so P > 0.

4. The Equilibrium Condition

In a previous paper [7], a number of equilibrium conditions have
been proved to be equivalent. For the one dimensional lattice with
interactions of range n, these conditions reduce to the very simple
form [4, 7]

μΛ(X) = μΛ(X') ^ P [~ U(X) + l/(X')] (20)
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for any interval A = [α, b], and any X, X' with

2] = Xf

L,
(21)

b] X'

Let us rewrite Eq. (20) in the form

μΛ(X) = PΛ(XL, XR) exp [- l/pQ] , (22)

where the pΛ(XL, XR) are non-negative numbers. We will show, that
the consistency relations (1) uniquely determine the numbers pΛ.

Theorem 1. The condition (20) uniquely determines the equilibrium
state. The solution is

μΛ(X) = μΛ{β) ΨL(XL) ΨR(XR) exp [- E/(X)] , (23)

where ψL and ψR are the eigenvectors of the transfer matrices L and R,
corresponding to the largest eigenvalue. They are normalized according to

Proof. With any A = [a, b], define

Am = [α, b + m(n - 1)] (m ̂  0),

A_m=[a-m{n-\\b-]
Write

VΛJX) = Pm(Yo, Xm) exp [- U{X)] ,

μA_JX) = p_m(7m, Xo) e x p [ -
where

[ α - w ( n - l ) , a-{m- l)(n- 1)

The consistency relations (1) yield

Pm(Y0,Xm)exp[-U(X)-]= £ p m + 1 (7 0 ? X m

Using

u(γm+,ui)- ι/(x) = u(Ym

we have
p m ( y 0 , * j = Σ Λ ( A m , A m + 1 ) p B + 1 ( y 0 > x m + 1 ) ,

(24)

) )
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The transfer matrices R and L are defined in Eqs. (16) and (18).
They consist of positive elements. Also the numbers pm must be non-
negative. Then, according to Lemma 2, which will be proved hereafter,
the only solution of Eq. (24) is

p o(Y o, Xo) = cxpL(Y0) ψR(X0),

which proves the theorem.
We see, that the equilibrium condition (20) uniquely determines

the equilibrium state. Remark, that no translational invariance has been
imposed upon the state beforehand. The resulting state (23) proves to be
invariant.

To conclude this section, we give the lemma used in the proof of
Theorem 1.

Lemma 2. Let L be a N x N matrix with positive elements. Let its
greatest eigenvalue be λ, with the corresponding eigenvector ψ. Let
{φj , n^tO.be a sequence of vectors with non-negative elements, such that

φn = Lφn+1, n^O.
Then

φo = cψ.

Proof. Let the transposed matrix L have the eigenvector ψ' corre-
sponding to λ. Choose the elements of ψ and ψ' positive.

We have

k=ί

Each term is non-negative, so for any k

φnW^λ-'lψ'ik)-}-1 (ψ',φ0).

Also for any vector χ

ύλ-nw,φ0) Σ ι>'wrΊ(£

According to Bellman [13], Ch. 16.10,

limλ-"L" 1χ = φ'(χ,
n—• o o

for any vector χ, so

\ φ0) |(χ,

In particular, if χ is orthogonal to ψ, χ is orthogonal to φ0. That is,

φo = cψ.
This proves Lemma 2.
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5. The Variational Principle

Let us now formulate another way to come to equilibrium states.
Given a translationally invariant state ω, the mean entropy associated
to it is defined as [14]

s(ω)= l i m E J V ^ ) ] - 1 ^ ) , (25)

where

SΛ(ω)=- Σ μΛ(X)logμΛ(X). (26)
XC A

Now the pressure, corresponding to an interaction Φ, Eqs. (13, 14), can
also be found by [1]

P ( Φ ) = s u p [ s ( ω ) - ω μ φ ) ] . (27)
ω

The supremum has to be taken over all translationally invariant states.
Actually, the maximum is reached by a convex set of states. These states
are defined to be equilibrium states.

In this section, we find once more the equilibrium state for the one
dimensional lattice gas, now starting from Eqs. (25-27). The calculation
is entirely different from the one in Section 4. It is somewhat more
complicated, mainly, because translational invariance has to be imposed
upon the state, which gives rise to the unhandy restrictions (6) and (7).

5.1. The Mean Entropy

The entropy for a one dimensional chain has first been studied by
McMillan [15] in the context of information theory. An important
result is the following.

Lemma 3. Let ω be any invariant state, and let

Sn(ω)=- Σ μn(X)logμn(X). (28)
XC[1,«]

Then
0^Sn+1-Sn£Sn-Sn-l9 (29)

so

s(ω) = Jim n-' Sn = Jim (Sn+ί- Sn). (30)

Let us assume now that all μn(X) are given for some fixed n, and let
them satisfy Eqs. (6). Then Sn and Sn^1 are fixed, and for any invariant
state with the given μn(X)

Sn_1. (31)

We have the following lemma.
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Lemma 4. Let the quantities μn(X) be given for some fixed n, and let
them satisfy Eqs. (6). Then there is precisely one invariant state ω, such that

s(ω) = Sn-Sn_ί. (32)

The state ω is determined by (notation as in Eq. (12)j

if μ t2 . k - i ] (* ( l k ) )Φ0, (33)

both relations for any k ^ n + 1.

Proof. The state ω, defined by Eqs. (33), is indeed invariant. If the
quantities μk_1(X) satisfy Eqs. (6), it follows from Eqs. (33) that the μk(X)
do. Computing Sk with Eqs. (28) and (33), one finds

^k = ^^k-l ~ $k-2

for any k ^ n + 1, which yields Eq. (32).
The uniqueness of the state ω follows from the concavity of the

entropy,
Sk&cox + ^ω2) ^ ^Sk(ωx) + $Sk{ω2),

with the equality sign only for ω1 = ω2.

5.2. The Variation

If the interaction has range n, the mean energy ω(Aφ) only depends
on the quantities μn(X) (Eq. (12)). It follows, that a state ω, that maximizes

s(ω) - ω(Aφ),

must satisfy Eqs. (33) for any k ^ n + 1. Further

P = max[Sn(ω) - Sn_x(ω) - ω(Aφ)] , (34)

where the maximum has to be taken over all sets {μn(X)} satisfying
Eqs. (6). Let us first show that the maximum is reached for a unique set.

Lemma 5. The function

f({μn(X)))=- Σ μπ(*)lθgμπ(X)
XC [l,n]

i W - Σ μn(x)B(x),
XC[l,n]

5 Commun. math. Phys., Vol. 21
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where B(X) is arbitrary, and μn{X) and μn-i(X) satisfy the consistency
relations (7), reaches its maximum for a unique set {μn(X)} with

μn(X) + O for all I c [ l , n ] .

Proof. Let α of the numbers μn(X) and γ of the numbers μn-γ{X)
equal 0, with α + 0.

Because of Eqs. (7),
α

Define

Then also the quantities vn(X) and vn_ X(X) satisfy Eqs. (7). Now

f({vn(X)}) - f({μn(X)}) = (~ α + 2y) 2""ε logε + C?(β),
so

if ε is small enough. This proves that f({μn(X)}) cannot be maximal if
one of the μn(X) equals 0.

The uniqueness of μn{X) follows from the concavity of f({μn(X)}).
With Eqs. (7) and μn(X) φ 0, one shows directly that

and that
δ2f({μn(X)}) = 0 only if δμn(X) = 0.

This proves Lemmay5.
Let us now calculate the state that maximizes Eq. (34).

Theorem 6. Let the interaction Φ have range n. Then the equilibrium
state is uniquely determined as follows. The quantities μn{X) and μn_ί(X),
and the parameters VL(X) and VR(X) follow from the Eqs. (7), together
with

μn(X) = μn(&) exp [ - U(X) - VL(XM) - FK(Z(1>)] , X C [1, n] ,

μn-1(X) = μn_1(0)expl-U(X)-VL(X)-VR(XK, I C [ l , « - l ] (

The quantities μk(X),k^.n—1, are then

μk{X) = μkW expί~U{X)- VL(XL)- FR(XR)] , (36)

where XL = X n [ 1 , n - 1], XR = I n [ k - n + 2, fc].

Proof. We have to maximize Eq. (34) with the constraints (7). With
the Lagrange multipliers λ, λ', VL(X) and VR(X), the quantity to be
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maximized becomes

g({μn(X)l {μn-M)},λ,λ\ {VL(X)}, {VR(X)})

= - Σ μn{Xnogμn(X)+ Σ
XC[1,B]

XC[l,n]

λ \ l - Σ μ n ( ] \
L XC[l,n] J L XC[ l , ί i - l ]

Σ ίμn-1(
XC [ l .w-1]

The extra terms ^U(X) in the Lagrange multipliers have been
introduced for convenience. Remark that 1/(0) = 0, and that FL(0) and
VR(0) may be chosen to be 0, because the corresponding two equations
follow from the remaining 2" equations of (7).

Now

' dμ{X)dμn(X)
give

Substituting

0), λ'=

one arrives at Eqs. (35).
To conclude the proof, suppose that Eq. (36) is satisfied for some pair

fc-2, k- 1 with k^n+ 1. Then Eqs. (33) give, that (36) is valid for fc.
To see that, one must realize that for X C [1, fe]

) + U(X{k)) - U(Xak)),

because the interaction has range n ^ k — 1, and that

γ(l) _ Y γ(k) _ y γ(lk) _ γ(k) γ(lk) _ γ(l)

This proves Eq. (36) for all /c ^ w — 1 by induction.
Let us now give the converse theorem.

Theorem 7. Let a translationally invariant state ω satisfy Eqs. (33)
for k^n-\-1, and /eί

μM(X)Φθ for any X c [ l , n ] .
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Then there is a unique finite range interaction, the range of which is n,
such that ω is the corresponding equilibrium state.

Proof. Take the logarithm of Eqs. (35), and consider the quantities
VR{X), VL(X) and U(X) as unknown. One has (3.2""1 - 2 ) linear equa-
tions with as many unknowns. In fact, there are 2(2" - 1 — 1) quantities
VL(X) and VR{X\ and 2"" 1 potentials Φ(X). It remains to be proved that
the homogeneous set of equations only has the trivial solution.

The homogeneous equations correspond to

Suppose that there is an interaction of range n, that gives ώ as an equilib-
rium state. Eqs. (33) yield then

for any k. From Eq. (36) for k = 3n — 2,

U(X)+VL(Xj)+ VR(XR) = 0

for any X C [1, 3n - 2]. If X c [n, In - 1], XL = XR = 0, so

U(X) = 0 for all X C [n, In - 1]

Φ(X) = 0 for all X.

Taking I c [ l , n - 1 ] and XC [2n, 3w- 2], one finds that

VL(X)=VR(X) = 0

for all X. This proves Theorem 7.

6. Conclusion

The equilibrium state for a one dimensional lattice gas is found in
two ways. The equilibrium condition, with the help of the matrix method,
rather directly leads to the result. The variational method is more
complicated. This arises from the fact, that translational invariance has
to be imposed upon the state. The constraints, corresponding to this,
in a natural way lead to the Lagrange multipliers VL(X) and VR(X). One
may compare them with the temperature and the chemical potential,
which occur as Lagrange multipliers if the entropy is maximized for
given energy and density.

Comparison of the results in Eqs. (23) and (36) yields

ψL(X) = exp [ - VL(X)-] ψR(X) - exp [ - VR{X)2 .
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The restriction of the equilibrium state to a finite interval [α, b~] is a
Gibbs state, where the energy of a configuration X is taken to be (Eq. (36))

U(X)+VL(XL)+VR(XR).

That is, on both ends [α, a + n - 1] and [b - n + 2, 5] of the interval [α, ί?]
there are extra interactions, which are independent of the length of
[α, b~\. However these interactions do depend on the temperature and
the chemical potential.

We also found (Theorem 7), that there is a one to one correspondence
between the interaction of range n and the invariant states with

μn(X)Φθ, and s = SH-Sn-x.

The uniqueness of the equilibrium state, found here, implies, that it is
the limit of finite volume Gibbs states. Generally, every limit of Gibbs
states satisfies the equilibrium condition. The converse is not known
(see e.g. [7], Section 7).

Let us make a remark on the Gallavotti-Miracle (Kirkwood-
Salsburg) equations [16] for the correlation functions ρ(X). They are
proved [4, 7] to follow from the equilibrium condition. They have only
one bounded solution if the temperature is high enough, thus giving rise
to an upper bound for the critical temperature.

Now it is clear, that Eqs. (24) have more than one bounded solution,
as soon as there are two or more eigenvalues of L (and R) with absolute
value ^ 1. Then also the Gallavotti-Miracle equations have more than
one bounded solution. Moreover, in that case the question remains open,
whether the Gallavotti-Miracle equations are equivalent to the equilib-
rium condition.

There is a strong resemblence between the exact methods described
in this paper, and the Bethe [17] approximation. Indeed, the Bethe
approximation is known to be exact in one dimension.

Take, for example, a lattice where each point only interacts with its
γ nearest neighbours. With a lattice point x, take the volume

Λ=

where Λ(x) is the set of nearest neighbours of x.
Then the equilibrium condition, Eq. (22), gives that

where X1 =XnΛ(x). In the Bethe approximation, one simply takes

with a positive parameter p. If translational in variance is required for the
state, one immediately arrives at the well known results [17,18].
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The Bethe approximation is treated in a variational way by Hijmans
and De Boer [19, 20]. By combinatorial arguments, an expression for the
mean entropy is found in terms of a few parameters. The difference of
mean entropy and mean energy is then maximized with respect to these
parameters.

In the simple example above, the mean entropy is approximated by

For 7 = 2 (one dimension), this reduces to the exact expression (32).
The methods used in the present paper for calculating the equilibrium

state are typically one dimensional. In more dimensions, the most
obvious generalization is the Bethe approximation. Exact solutions for
two or more dimensional problems don't seem to have come closer.
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