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Commutators and Scattering Theory

I. Repulsive Interactions
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Abstract. We use commutators to find classes of operators which are smooth with
respect to the Hamiltonian H for a system of quantum mechanical particles which repel
each other. It follows that H is absolutely continuous, the wave operators are complete
in many cases when they exist and limits of momentum observables as time approaches + oo
exist even in cases where the long range of the interaction precludes existence of the wave
operators.

1. Introduction

Let Ho be the self adjoint operator in X = if 2(R3N) which represents
the Hamiltonian for N free quantum mechanical particles, and H the
Hamiltonian operator for the same system with repulsive interactions
between pairs of particles and between each particle and a fixed center.
Physically it is clear that if the potentials describing these interactions
become small at large distances, for any initial state the interacting system
should resemble the free system in the distant past and future, since no
clustering of particles is possible. But even though the real complications
of many particle scattering do not arise for purely repulsive interactions,
the standard methods of scattering theory have failed to justify this
physical certainty in some cases and do so only with difficulty in many
others. The states φ which do appear free as ί-» ± oo in the sense that
for some φ±,

\\e~ίHtφ-e~ίHotφ±\\-^0 as ί-+±oo

are just those in the range of both wave operators

Ω+=s-\imeίHte~iHot. (1.1)
- ί-> ± oo

Thus what should be proved is that Ω± exist and are complete in the
sense that their ranges equal all of Jf.

Problem 1. The wave operators can be shown to exist only if for all
pair potentials V:R3->R, F(x) = 0(|x |" 1" ε) as |x|->oo, (ε>0); thus the
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theory fails at the outset for potentials which do not decrease at infinity
faster than the Coulomb potential. Alternative theories have been
proposed for long range potentials by Dollard [3—7] and others [1,2,12]
but these have only been shown to apply in special cases1.

Problem 2. Techniques for showing completeness of the wave opera-
tors depend even more strongly on rapid decrease of the potential as
|x|-*oo; completeness is never easy to prove even in the case of one
particle, and has been shown for many particles only for the case when
the pair potentials decrease very rapidly at infinity [8].

Problem 3. The ranges of the wave operators are automatically
contained in J^C5 the subspace of absolute continuity for //, and some
results in scattering theory state that 3t(Ω+) = JΓαc. Thus a partial
result would be that H is absolutely continuous, i.e. Jf = Jίac. Even
this has not been shown in general, although Weidmann [16] has shown
that there are no positive eigenvalues. The known results on absolute
continuity are mostly for one body [2, 11, 15].

In this paper we use the theory of smooth operators and positive
commutators due to Putnam [13] and Kato [9, 10] to solve some of
these problems. This theory, which we describe partially in Section 2,
says that if A is a bounded observable (self-adjoint operator) whose
expectation value (Ae~iHtφ,e~~ίHtφ} increases with time, then the
commutator i[//, A~\ is positive and its square root is "smooth" with
respect to H in a sense (to be described) which is very useful in scattering
theory [9]. In particular, if T is //-smooth the range of T* is a subset
of JΓαc, and if the potential V — T* S where T is //-smooth and S is Ho-
smooth the wave operators exist and are complete. In Section 3 we find
operators A such that /[//, v4]^0 and deduce that certain classes of
operators are //-smooth (thereby solving Problem 3). These results are
applied in Section 4 to prove completeness of the wave operators for
one particle if the potentials are Oflxl"1-8) as |x|->oo. (In the many body
case we consider only spherically symmetric potentials and particles of
equal mass for simplicity; here the potentials must be 0(|x|~3~ε) as
|x|->oo.)

Since Dollard [3] has shown that the wave operators (1.1) do not
exist for the Coulomb Hamiltonian, it is not clear what would constitute
a solution to Problem 1, but his modified wave operators [3] provide
as much information as one is likely to be able to get for this case. They
tell as much about the unitary equivalence class of H as do the usual
wave operators in the short range case, but their physical meaning is not
as clear, and their existence has only been proved for F(x) = 0(|xΓ3/4)

1 Further results have been obtained by Buslaev and Matveev, Teor. i Mat. Fiz 2,

367—376.
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as |x| -»oo [1]. We introduced in [12] an asymptotic condition to replace
(1.1) for long range potentials. In the case at hand, where no bound
states are possible, this can be written:

s-\imeίHtΛe~ίHt^ω + {A) (1.2)
t~* ±oo -

exists if A is a function of the momentum operators, A = f{P1, P2,..., P3N)
where/: R3N->C is continuous and approaches zero at infinity. (Similar
proposals appear in [1, 2].) This condition was verified in [12] for poten-
tials F(|x|) = 0(]x|~ε), ε > 0 , which are not necessarily repulsive, but the
methods used there depend essentially on spherical symmetry and there
a separate proof of absolute continuity is required. In Section 5 we show
that (1.2) follows quite naturally from the results of Section 3. We also
draw some conclusions from (1.2) to support the contention that it is a
reasonable replacement for (1.1), and prove that the homomorphisms
ω+ are injective.

Our approach here is completely time dependent. In part II we
intend to investigate the use of positive commutators and the time-
independent (or Fourier transform) theory of smooth operators to prove
absolute continuity of the positive part of H, existence of the limits
(1.2) and completeness (when the wave operators exist) for one particle
with a non-repulsive potential.

2. H-smooth Operators and Positive Commutators

In this section we present the part of the theory of smooth operators
and positive commutators which we shall need. This theory, due to
Kato [9, 10], provides a new proof of results on absolute continuity of
Putnam [13] which shows their connection with the behavior of e~ιHt

at large times. Because the theorems we need are not stated in the litera-
ture in the most convenient form for us, we shall indicate their proofs
below. (Also, this will indicate how brief and elementary a proof of
completeness becomes using these ideas.)

Throughout this section H will denote a self-adjoint operator in a
Hubert space Jί with inner product <, >; we shall write 3>(A) for the
domain of an operator A in Jf\ &t(A) for its range, and A(t) for eiHtAe~iHt.

A bounded operator T is called H-smooth if

ί- J \\Te-itHφ\\2dt/\\φ\\2<ao. (2.1)

We call T relatively H-smooth if 9{T) D 9{H) and

J \\Te~iίHφ\\2 dt^C{\\Hψ\\2 + \W\\2) (2.2)
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for all φ e 2{H). Clearly Tis relatively fί-smooth if and only if T(H + i)~1

is //-smooth. If B is a bounded operator commuting with H, smoothness
of T implies smoothness of TB. The importance of smooth operators
for the problems raised in the introduction is indicated by the following
two theorems.

Theorem 2.1 (Kato [9]). // T is H-smooth, then @(T*)C 3fac.

Proof. To show for φ e ^ ( T * ) that T*φeJf α c it is sufficient to
prove that measure d(fiλT*φ, Γ*φ> is absolutely continuous with
respect to Lebesgue measure (where Eλ is the spectral resolution of H).
This will be true if the Fourier transform / of this measure is square
integrable. But

1/(01 = e-itλd(EλT*φ,T*φ>

GO

So j

Theorem 2.2 (Kato [9, 10]). Let H^ and H2 be self-adjoint operators
on a common domain 9), and B a bounded operator which takes Q) into
itself Then

s-\imeiHίtBe-iH2t

t~* ±oo

exists if i(ii 1J5-BJtf 2)=T 1*T 2 where 7} is Hrsmooth (j=l,2). The
same is true if i(Hx B — BH2) is a finite sum of such products.

Proof. It suffices to prove existence on Θ. Let φ e 2, ψ e jf\

\{(eiHίt Be~iHlt - eίHlS Be~iH2S)φ, φ>|

= lie^^lHiB-BH^e-^φ^ydu

\l/2 it

l / 2

l/2

The proof for sums of products is a trivial extension of this.
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There are two important cases: if B = /, H2 = H0, Hί=H = H0 + V
we have existence of the wave operators, and by symmetry their com-
pleteness, if V = 7j* T2. If B is a function of momentum and Hί=H2 = H
we have existence of the limits (1.2) if i[H, £] = Tf T2.

Conversely, the relation between limits as t tends to infinity and
smoothness can be used to find smooth operators. The following is a
version of a theorem of Kato [9] which is adapted to our purposes.
(In our version, domain considerations obscure somewhat the striking
simplicity of the original, where all operators are bounded.)

Theorem 2.3 Let A be a symmetric operator with 3){A) D Θ(H)
and Θ{[H,A]) a core ofH. IfB is an operator with @{B)j@(H), and for
all φ e 9{\H, A])

then B is relatively H-smooth.

Proof. Let φe@(H).

-4- <A(t)φ, φ> = KAe~iHtφ, He~iHtφ} - i(He~iHtφ,
at

4~ <Λ{t)φ, φ) - <i[H, A] e~iHtφ, e~iHtφ} ^ \\Be~iHt(p\\2 .
at

Both the left and right members of this inequality are continuous in the
graph norm on 3){H\ and {φ : e~ιHtφ e @([H, A])} is a core of H, so
this inequality holds for all φ e @(H). Hence for t < s and φ e 3

J ||Be" iH>||2 du^l-j- <A(u)φ, φ) duu

i)φ\\2. M

Corollary 2.4. // the situation of Theorem 23 occurs, the H is ab-
solutely continuous on <%(B*).

3. Classes of H-smooth Operators

In this section we find a self-adjoint operator A with i[Jfί5i4]^0
so that Theorem 2.3 can be applied. From the expression for i[_H,A]
we shall be able to find classes of relatively if-smooth multiplication
and differential operators.
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If A is regarded as a quantum mechanical observable, the condition
i[//, A]>0 means that (A(t)φ, φ>, its expectation value at time ί,
is constantly increasing, so we shall refer to such an operator as a "progress
operator". One observable which tends to increase for a particle under-
going scattering is the scalar product x p of position and momentum,
for the change in x tends to be in the direction of p. The obvious choice
of an operator for this observable is —i(x V+ V x), the generator of
the unitary group of dilations. But the presence of the unbounded posi-
tion operator means this operator is not //-bounded, and Theorem 2.3
cannot be applied. (It is an interesting question whether there is a theorem
applying to this operator A which says that /[//, τ4]>0 implies H is
absolutely continuous. The use of the Virial Theorem by Weidmann [15]
to prove absence of point spectrum can be considered a weaker version
of such a theorem. This operator also enters into an interesting absolute
continuity theorem of Combes [2].)

Our progress operator will be a modification of this operator, with
x replaced by a bounded vector field G(x):Rn-*Rn. Let h: [0, oo)->Λ
be a function in ^ 2 ( [ 0 , oo)) with h(\x\)G(^co{Rn)9 and let

g(r)=\h2(s)ds9

o

G(x)=y0(r) (r = |x|).

We define A to be the symmetric operator defined for functions in Q),
the set of ̂ °° functions on Rn with compact support, by

Aφ(x)=-i{G(x) V+ V G(x)}φ{x). (3.1)

(Such an operator was used to prove absolute continuity in [11].)
Let Ho be the self-adjoint operator — A on its natural domain in ££2(Rn\
and Fa Kato potential so that Ho + V = H is self-adjoint on ® (if) = 2{H0).
It is clear from (3.1) that A can be extended to Θ(H\ and is //-bounded.

It will be convenient to represent J^2 (Rn) as i?2([0, oo);βSf2(SII~1))
where -S""1 = {x: |x| - 1} C/Γ, so that the function φe^2(Rn) is re-
presented by Φ : [0, ao)-+t&

2(Sn-1),

{Φ(r)} (u) = /n~1)l2 φ(ru) (weS""1, re[0, oo)).

Then if / is a multiplication operator on £^2(Rn\

{(/Φ)(r)} (u) = f(ru)φ(ru)
and

HΌ Φ(r) - -^-y- Φ(r) + ~ I 2 ~ φW + ~ϊ φ W ' (3'2)
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where L is the Laplace-Beltrami operator on Sn *. We also have

d
AΦ{r)= -i

Now we calculate i[H, A].

1
g{r)Φ{r)\.

dV

(3.3)

Lemma 3.1. Suppose H is as specified above, and r~— a Kato potential.
or

Then @([H,A~\)D® and ifφe^is represented by Φe&2([0, oo), ^2{Sn~1))

dr2

+ 9 -f
4L

(3.4)

Proof. It can be shown using Taylor's theorem that #(|x|)/|x| is
in (igcc(Rn). It follows that 9{HA) D3f, and multiplication by g(\x\)dV/dr
takes 9 into ^2{Rn) so that

r dr dr

Let us calculate the terms involving multiplication operators in the left
side of the commutator first:

We

and

also

the

[n- 1)0

4r^

have

adjoint

a- •3)

(n-

~-2g

= c
\(n

d2

dr2 ' !

1 I/
.2 + V >

l ) ( n -

4r2

d ί(«

d r l

- 1 ) ( «

r3

7 d l -
dr J

of this equation

J2

a
dr2

d

dr

d

dr

1

- D ( «
4r 2

- 3 )
T

- V
gives

1 d

dr

L

r2

- 3 )

AL

r3

dr

a" 2

\

2 d h2

dr

L \

,.2 + V)

dVλ

ri
dr29-
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Thus we have

dr2'

d d

17 + 17
d2 d2

 I 2 \ Γ d

2{h'2 + h"h)

ar

dr

dr

4
dr

2hh" + 2{h'2 + h" h)

4h4^rh
dr

72

= _ 4ft _ _ - ft + 2(ft" ft - ft/2). M
dr2 v ;

To apply Theorem 2.3 we must have i[H, A] ^ 0. If V is repulsive in
dV

the sense that —— ^ 0 , all terms in (3.4) but 2(ti'h-ti2) will be non-

negative if n ^ 3. The next lemma shows that the first two terms of (3.4)

taken together are positive for a certain choice of h.
Lemma 3.2. Let h(r) = (l +r

2y{1+m, ( 0 < ε ^ 1). Then

(3.5)

Proof. A calculation shows that

h"h-h'2 (

h2 2(r2 + I) 2 "

Now it is known that — d2/dr2 ^(2r)~ 2 . (A simple proof: Let

dr2

1dr fir
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Therefore

d2 hh"-h'2 1 1 (l+ε)(r2-l)

Ίr2^ h2 ~4?r-^r

Ύ+ 2(r2+l)2

__ ( r 2 + l ) 2 + 2 ( l + ε ) r 2 ( r 2 - l ) _ 1 - 2εr 2 + (3 + 2ε)r4

~ 4 r 2 ( r 2 + l ) 2 " 4r 2(l + r 2 ) 2

which is positive since 0 < ε g 1 implies that (2ε)2 < 4(3 + 2ε). p
Now we apply these lemmas to find //-smooth operators.

Theorem 3.3. // H satisfies the conditions of Lemma 3.1 and d V/dr :g 0,

(with n^3) then operators of the following form are H-smooth:
a ) f(χ) (H + 0~\ where

I f(v\\2 <Γ2(\ J - Λ " 1 / 2 4
or

c) D./ίxJίiί + i)" 1 , w/ϊβre |/(x) | 2 ^ C 2 ( l + x 2 )~ ( 1 + ε ) / 2

(where Dr is the symmetric operator on Θ{H0) given in the representation
j^ 2 ( [θ, oo); £e2{Sn-χ)) by -id/dr).

Proof. We apply Theorem 2.3. Let B = f(x)/C and note that 9{B) D 3f(H).
Then for φe%${Rn\

Now g'(r) = h2{r) = (1 + r 2 ) " 1 / 2 ' ε / 2 and

( r ( l + r 2 Γ 1 / 2 ) ' = (l + r 2 ) - 3 / 2 (3.6)

so gf(r) ̂  r(l + r 2 ) " 1 / 2 , and we have

by (3.4) and (3.5). Therefore by Theorem 2.3, B is relatively //-smooth,
and hence any multiple of B is relatively //-smooth. It follows that the
operator a) is //-smooth.

For operators of the form b), we first note:

Lemma 3.4. // A is given by (3.1)

i[//0, A] ̂  Ah Hoh + 2(h"h - h'1)
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Proof. Since by (3.6)

we have

L

and therefore by (3.4) and (3.2),

i [Ho ,A]^4hH0h + 2{h" h - h'2).

The second inequality follows from Lemma 3.2. ϋ
To conclude the proof for b) observe

WΫΪΓohφW2 ̂  <i[ff0, A] φ, φ) g <*[/

since V is repulsive.
Smoothness for operators of the form c) follows directly from (3.4)

and Lemma 3.2. ϋ

Corollary 3.5. The operator H of Theorem 3.3 is absolutely continuous.

Proof. Let T = (2r)~1 (1 + r 2 ) ~ ε / 4 (if + i)"1- Since T is Ή-smooth,
<%(T*)Ctfac. But T* = (jFf-i)" 1(2r)~ 1(l + r 2 )~ ε / 4 has dense range,
since the range of the multiplication is dense in Jf, so that (H — i)'1

takes it into a core of H. ϋ
This improves the results of [11]. Its most important physical applica-

tions are to a single particle with repulsive potential (n = 3) and to

H=-Δ+ Σ VjkίXj-Xk)
l^j<k^N

where Vjk :R
3-+R,d Vjk/drjk ^ 0 and xt is the position of the ith particle,

rjk = \Xj-xkl for

But for a more searching study of the many particle problem the
smooth operators identified in Theorem 3.3 are not sufficient. We would
like to know that operators like Vjk(xj — xk) and its partial derivatives,
which do not approach zero as (xί,...,xN) approaches infinity, are
essentially products of //-smooth operators. Let us consider the case
where there is no fixed center of force, but only interactions between
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pairs of particles, and assume that these potentials are spherically sym-
metric. In the Hubert space i ? 2 ( # 3 N )

where Ai is the Laplacian with respect to x{ and Vjk is a Kato potential
Let Pjk represent twice the relative momentum between particles j and k:

Note that if f:R3^R,

iP]k,f(xj-xkft=-2i(Vf)(xj-xk).

We shall need a progress operator Ajk for each pair of particles:

Ajk = {G(Xj — xk) Pjk + Pjk - G(Xj — xk)}

which operates only on the variables Xj and xk. Note that Ajk = Akj.

Theorem 3.6. // H is given by (3.7) and for allj<k^N,0^ rjk d Vjk/drjk

is a Kato potential then operators of the following form are H-smooth:
a) f(x)(H + i)~i where

\]\X)\ ^=<- \l+rjk) \~Zrjk~^ ^\Zrjk) \[~T~rjk)
I drjk

c) Djklf(x)(H + ί)~1 where \f(x)\2 S C2(l Λ-ήk)~{l + c)l2

(where Djk r is the symmetric operator on &{Pfk) given by d/drjk in the
representation of functions of Xj — xk as ̂ 2 ( [ 0 , oo); J£2(S2))).

Proof. Let A— Σ Ajk. Then

i[H,.4]= Σ i[#>4/fc]

= - i Σ Σ C4-> Ajk] + i Σ Σ
i = l j<k Km j<k

Consider first

Note that
-{A, + Δk) = - \ ( P, + Vk)-{ V: + Pfc) + i Pik P / k .

The first term on the right side commutes with AJk so that

- i[Δj + Δk, Ajk] = ~ [PJk • Pjk, AJk] .
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Then we have by Lemma 3.2,

• r Λ A A ~\ - ^ o \ — 2 / 1 2 \ — (1 + p ) / 2 /"> o \
7 I A _L_ /I M \ ^ I AT* I I 1 -4— 1*. 1 ^ •" I "1 ci I

By Lemma 3.4,

- ilΔj + Δk, Ajk] ^ h(rjk) Pj2

k h(rjk). (3.9)

Now let us look for fixed /, m, at

N o w L j<k

iLVlm,Alm]=-4g(riJ?^^. (3.10)
Orlm

We shall show that for any k, /Φίcφm,

We have

(^k ~~ Xm) ' *m Vlm\\Xl ~~ Xm\
rrkm

rlm

rlm

Now — V{m(rlm)/rlmέi0, and the scalar product of two vectors in R3

whose directions lie between the directions of the vectors xt — xk and
xk — xm, but closer to that of the longer one, must be nonnegative.
Thus we have shown i\_Vlm, Alk + Akm\ ^ 0, and it follows from (3.10) that

ff Σ Vlm,A\*-2 Σ g(rlm)ψ^{rlm). (3.11)
[Km J Km Crlm

Using (3.8) and (3.11) we get for all 7 < k

jk

from which follows the smoothness of operators of the form a),
and smoothness for operators of form b) is deduced from (3.9) as in
the proof of Theorem 3.3. Operators like c) are smooth since
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The following lemma will be needed in our applications, and has
some interest of its own since it says that each pair of particles separates
as f-> + oo. (We will get more information on the spatial behavior of
e~iHtφ in Section 5.)

Lemma 3.7. Let H be as in Theorem 3,6 and let χR be the characteristic
function of the ball of radius R in R3. Then for 1 g j < k g N,

Furthermore, if Vjk(rjk)-+0 as rjk-> oo we have for ρ = ± 1

t-> ± oo

and
s-lim Vik(H + ip^1 e~ιHt

ί^±00 j k K ^'

(i.e., Vjke~ίHtφ->0 as t-+±oo for φe9{H)).

Proof. By Theorem 3.6, for φ e

is integrable. Furthermore / has a bounded derivative, so / is uniformly
continuous. It follows that f{t)-*O as ί-> + oo. Since

χR(rjk)^c(l + rjkΓ^ + *>2

we have
c-ι\\χR{rjk)e-iHtφ\\2^f{t)^ as t->±oo.

Since χR is bounded, we have convergence for all φ.
Now since Vjk(r)-+0 as r-^oo, given δ > 0 one can find R such that

\\(H0±i)-1 Vjke~ίHtφ\\^\\(H0±i)-1 VjkχR(rjk) e-
iHtφ\\ +δ\\φ\\

^\\(H0±i)-1Vjk\\\\χR(rjk)e-iHtφ\\+δ\\φ\\.

Finally, Vjk = q1+ q2 where || qγ (H + i) ~11| < δ and || q2 \\ < C. So we have

4. Completeness of the Wave Operators

In this section we prove that the wave operators are complete for one-
particle operators H with repulsive potentials F(χ) = 0(|x|~1~ε) as
|x|->oo. In the many particle case we need Vjk(x) = 0(\x\~3~ε) as |x|->oo.
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Theorem 4.1. Let H= -A + V, V a Kato potential,
a Kato potential, and V = V1 + V2 where

|FΊ(X) | ^ b(2r)~2 (1 + r

2)'iL+ε)/2 , (4.1)

| F 2 ( x ) | ^ c ( l + r 2 ) - ( 1 + ε ) / 2 . (4.2)

Then the wave operators exist and are complete. In fact

Ω + (H,Ho) slim
~ ί-» ± 00

and
Ω + (H0, H) = s-limeίHoί e~iHt = Ω + (H, H o )*

Remark. Of course the r~2 singularity permitted by (4.1) is not
actually possible for the Kato potentials which we are considering,
but these inequalities are all we use in the proof.

Proof. First we show that

s-lim Bt = s-lim eίHot{Ho + i)~2H0{H + i )" 1 e " ί H ί

ί-> + oo ί-» + oo

exists. By Theorem 2.2 it is sufficient to consider

= - (tf0 + 0" 2H0(H0 - H) (H + i)-1

= H 0(H 0 + ί ) " 2 ^ ( i / + Γ

(Ho + i)" 2 f l 0 ^ ( H + 0" 1 = (Ho + i)~2Hoh(V2/h) (H + (Γ 1

= (tf0 + 0 " 2 { / I H 0 ( F 2 / / I ) + [Λ, H o] (72/Λ)} (H + i)

[_(H0 + 0"2Λ"(l + ί"2)1'2] [(1 + r2r ll2(V2/h) (H + i)" 1 ]

+ 2[(ί/0 + 0"2Λ'] — (V2/h) (H + iΓ1

These are all products of the required type by Theorem 3.3 (and the
remarks following (2.2)) since
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The remaining term in (4.3) is also such a product:

= {IHO(HO + i Γ 1 ] [ ( H O + i ) ' 1 n 1 / 2 3

But convergence of Bt implies convergence of eiHot e~iHt on a dense set:

a) eiHot(H0 + i)~2H0(H + i)'1 e'iHt = eίHot{Ho + i)~2Hoe~iHt(H + i)~ι

= eiHot(Ho + iy2e~iHtH(H + i)" 1 -e i H o t (H o + i)~2 Ve~ίHt

and compactness of (Ho + i)~1V implies the second term converges to
zero, since H is absolutely continuous.

b) eiHot(H0 + 0 " 2 e~iHt = e i H o ί(H 0 + i)" 1 ^ " ί H ί ( H + i)" 1

+ e ί H o f(H 0 + 0 " 2

and again the second term converges to zero.

c) eiHot(H0 + i)'1 e^ίHt

( ^ ( o ) ( tyl e-iHt

Therefore
5-limeίiίoί e~iHt(H + iy3H= s-limB..

Existence of Ω±(H, Ho) could be proved similarly, but since this is a
well-known theorem we omit it. ϋ

Theorem 4.2. Let H be as in Theorem 3.6 and

\Vjk(rjk)\ S b(2rjk)~2 (1 + rjk

2y{1 + ε ) / 2 . (4.4)

Then the wave operators exist and are complete.

Proof. First we shall show that

sΛimeiHot(H0 + i )" 1 (H +1)" 1 β" i H ί (4.5)

exists. This is true by Theorem 2.2, since

and (4.4) implies that ^ fc(r/k)
1/2(H0 + ϊ ) " 1 is #0-smooth and F i fe(r j fc)

1/2

• (H + i)" 1 is H-smooth, by Theorem 3.6. But

e ί H o t(H 0 + O"1 (H + O"1 e~iHt - e ί H o ί(H o -h ί ) " 1 e~iHt(H + i)" 1

23 Commun math Phys., Vol. 20
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Since the second term converges strongly to zero as ί-̂  + 00 by
Lemma 3.7, we have convergence of eιHot e~ιHt on a dense set, and there-
fore on all of jfT. U

Remarks. 1. A time independent representation of the wave operators
is also available from the theory of smooth operators [9].

2. A proof of completeness for the many particle case with potentials
Vjk(rjk)=O(rjk'

ί~ε) along the lines of Theorem 4.1 would be possible
using the theory to be developed in Section 5 if one knew that

lim eiHtPjk'Pjke~iHtφφ0 for each φe@{H).

5. Convergence of Momentum Observables

Now we prove that limits (1.2) of momentum observables exist.
The following lemma shows that for this it is sufficient to prove that such
limits exist for one type of operator.

Lemma 5.1. If H = H0 + V in ^2(Rn) and if for ρ = ± 1

iρ)" 1 Ve~iHt = 0slim
t-> ± 00

and for j = 1, 2 , . . . , n,
s-\imeίHt{H - i)~ι Pj(H + z)"1 e-iHt = Bf

exists, then the limits (1.2) exist, and co+(f(Ho)) = f(H) if f is continuous
and /(Λ.)—>0 as λ-+ 00.

Proof. First we show that because of the resolvent identity

(Jίo + 0" 1 = (H + ϊ Γ 1 + (Ho + 0" 1 V(H + I)" 1 (5.1)
we have

s-\imeiHt(H0 - i)'1 Pm0 + i)~l e~ίHt = Bf .
ί - * ± GO •*

To see this, note that

= {(Ho - i)-1 Pj(H0 + iy1 - (H - i)'1 Pj(H + i)-1} (t)

The second term converges strongly to zero as ί-» + 00, and

{(Ho -1)"1 Pj(H0 + O"1 - (H - iY'PjiH + i)'1} (t)

= {(Ho - iΓιPjl(H0 + i)"1 -(H + 0" 1]} (ί)

+ {[(Ho - iY'-iH - ί )" 1 ] Pj(H + i)'1} (t)

= {(Ho - iy'Pj} (t) {(Ho + i)-1 V(H + iΓ1} (t)

+ {(Ho - 0 " 1 V] (t) {{H-iΓ'PiiH + iΓ1} (t).
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The first term is the product of an operator bounded uniformly in t
with an operator which converges to zero, and the second term is the
product of two strongly convergent operators, the first of which converges
to zero.

The set of bounded operators A for which A(t) converges strongly is
clearly an algebra which is closed in the operator norm. By the Stone-
Weierstrass theorem the operators {(Ho — ί)'1 Pj(H0 + O^KO f° r which
we have proved convergence generate an algebra whose closure (in norm)
is the set of all operators represented as Fourier transforms of multi-
plication by a real valued continuous function approaching zero at
infinity. The result follows immediately for complex-valued functions.
(A similar argument appears in [12]). ϋ

For the problem of one body and a repulsive potential we need to
make stronger smoothness and repulsivity assumptions to prove (1.2)
than were necessary for absolute continuity.

Theorem 5.2. Let H be as in Theorem 3.3 and suppose that dV/dr = 0(r~2)
atr = 0 and that the angle between the force — V V and the position vector x
is bounded away from π/2, i.e., for some β > 0,

x dV
\VV\£-β — . V V = ~ β ^ r ' ' ( 5 2 )

Assume also that F(x)->0 as |x|-»oo. Then the limits (1.2) exist.

Proof. Since

dV dV

or

it follows from Theorem 3.3 that \dV/δxj\ll2{H+ Ϊ)-1 is H-smooth,
so by Theorem 2.2, {(H-i)'1 Pj(H+ i)~ι}(t) converges as f-+±oo,
since i[_H,Pj] = —dV/dXj. Therefore by Lemma 5.1 we need only note
that (H0±i)~1Ve~ίHt converges strongly to zero since (H0±i)~'1V
is compact and H is absolutely continuous by Corollary 2.4. U

Theorem 5.3. Let H be as in (3.7), with Vjk(rjk)-*Q as rjk-+oo, 0 ^ V-k

= O(rfk) at rjk = 0. Then the limits (1.2) exist.

Proof. Since it has been shown in Lemma 3.7 that (Ho + iρ)" 1 Ve~iHt

converges to zero as ί-> + oo, by Lemma 5.1 it remains to show that
{(if - i)~1(-iej • Vk) {H 4- i)~ι}{t) converges as ί-+ + oo, whereβjj= 1,2,3
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are the standard basis vectors i

\i[_H,{-ier Vk)-\\ = \er

=

VII

Σ
Km

Σ
Km

n R

V

3 and fc=i,2,...

1
KVlm

rlm
lm\ lm)

, N. But

or m

S Σ WmfoJI

The desired result then follows as in Theorem 5.2 from Theorems 3.6
and 2.2. ϋ

It is clear that ω+ is a representation of the commutative C*-algebra
of operators of the form f(Pι,...,Pn) (/ continuous, f(p)-»0 as \p\->oo)
into operators commuting with Ή. (See [12].) We can draw some con-
clusions about limits of other operators if we use the fact that for φ e ζ${H\
VeιHtφ—>0 as ί-> + oo. (This is true by relative compactness of Vin the
one-particle case, and was proved in Lemma 3.7 for the many-particle
case.)

Theorem 5.4. Assume that the limits (1.2) exist and V(H + l ) " 1 ^ " ' ^
converges to zero as ί-> + oo. If f: Rn-^C is continuous, f(p) (p2 + I ) " 1

approaches zero as \p\ —• oo, ami φ = (H + I ) " 1 χ,

/// is real, such limits determine self-adjoint operators which are essentially
self-adjoint on any core of H. These limits exist for all φ e J£2(Rn) if f
is bounded.

Proof. Let φ = (H + I ) " 1 χ. Then

The first term converges to ω±(f(Pι,..., Pn) (//0 + l ) - 1 ) χ and the second
converges to zero. If/ is bounded then the limit exists for all φ e if2(Rn),
since it already exists on a dense set.

Suppose / is real. Then

The product of the self-adjoint operator H+l and a bounded
self-adjoint commuting operator is essentially self-adjoint on any core
of H. (This can be seen by representing them as multiplication opera-
tors.) ϋ
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The problem stated in Section 1 was to show that every state of the
interacting system can be understood as a scattering state in the sense
that the interacting system resembles the free system as t -> + oo. We have
proved that momentum observables are asymptotically constant, as
in the free system. Now we shall show that position observables also
behave as t—• + oo as they would in a free system. (See [6].)

Theorem 5.5. Assume that H is as in Theorem 5.2 or 5.3. If f:Rn-*C
is a continuous function and /(x)-»0 as |x|-»oo, then

We need a few lemmas for the proof of this theorem.

Lemma 5.6. Let Xj be the self-adjoint operator of multiplication by the
fhcoordinateinRnΛfφE9{H)n9{x^thenforallUe~iHtψe9{H)n9{xJ)
and

t

eiHtXje~iHtφ = Xjφ + 2 J eiHsPje~-ίHsφ ds .
o

Proof. First note that

t

eiHteixJhe-iHtφ = eix3hφ + j eiHs^H^ eixjh-j e-ίHsφ ^

hPj + i/i2] e'iHsφ ds ,
o

and

eiHtχ

J
J i dh

(Differentiation under the integral is justified by dominated con-
vergence.) H

Lemma 5.7. // the limits (1.2) exist and if V(H + I ) " 1 e~ιHt converges
to zero as t-^ ±oo then for φ e

lim —eiHtX:e~ίHtφ = 2 lim eiHtPie-iHtφ = 2Pi

± φ .

Proof. By Lemma 5.6

— eiHtxje-iHtφ-2Pjkφ= —xjφ+ — l(Pj(s)-P±)φds.
t t t o
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The right member of this equation clearly converges to zero as t -» ± oo. ϋ

Proof of Theorem 5.5. Convergence of f(eiHt(xj/t)e~iHt) (for /
continuous, /(x)-*0 as |x| -> oo) follows from convergence of
eim(x}lϊ)e~imφ to 2 P / φ for φe@(H)n@{Xj) since P / is essentially
self-adjoint on this domain ([14], § 135). But by the Stone-Weierstrass
theorem, finite sums of products of continuous functions fj.R->C

are dense in the uniform norm in the set of continuous functions g :Rn->C
which approach zero at infinity. Therefore for such g,

s lime'*' g (yje" '" ' = ω±(^(2P1>..., 2Pn)). M

Theorem 5.8. Let H be as in Theorem 5.5 and let E±(-)be the projection
valued measure on Rn obtained by simultaneous diagonalization of
2P^,..., 2PII

±. Let B be a ball in Rn and Bδ the set of points of distance
less than δ from B. If \\E±(B)φ\\ = | |φ| | = 1, the probability

J \e-iHtφ(x)\2dx
(x/t)eBό

of finding x/t e Bδ at time t approaches 1 as ί-> + oo.

Proof. Let g be a continuous function with

g{x)=l if xeB

g(x) = 0 if xφBδ

Then
j \e~iHtφ(x)\2

i ι H t φ , e ι H ι φ

which converges to <ω±(^(P1 ? ...,Pn))φ, φ> as ί-> ±oo. H
Such a system behaves very much as if it were free if (1.2) is satisfied,

even though this condition is weaker than some others which have
been proposed, where the algebra of operators A for which convergence
oϊA(t) is required is larger. In [1] and [2] this algebra is taken to contain
all bounded measurable functions of momentum. We have not been able
to prove convergence for all such operators (although convergence could
be shown e.g. for the characteristic function of a box).

The algebra {Ho}' of operators commuting with Ho seems natural
to consider (as is done in [ 1]), but it is not suitable for many body problems,
and probably not for a potential which fails to be almost spherically
symmetric. The physical reason for this is that if transverse forces persist
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far from the origin, such observables as the angular momentum may not
be asymptotically constant. (Classically the asymptotic orbits would not
be straight lines.) The formula (71) of [3] which is used by Dollard to
obtain modified wave operators reveals the difficulties with the algebra
{Ho}' in the many body case.

The family of operators

eiHte-iHotAeiHote-iHt (53)

for A in some irreducible algebra is also studied in scattering theory,
especially for field theoretic problems, but the similarity between this
approach and those of [1, 2,12], and (1.2) is not deep. For long range
potentials it is essential to consider a reducible algebra. Another difference
is that (1.2) makes a statement about every vector φ for which convergence
takes place, whereas for compact A, the limit of (5.3) is automatically zero
on the orthocomplement of the range of the wave operator (if it exists).
On the other hand the limits (1.2) do not answer the first question of
scattering theory: can every type of free behavior be observed as ί-> ± oo?
The existence of the wave operators, or limits of (5.3), or Dollard's
modified wave operators all answer this affirmatively.

This question can be put in a weak form: are momenta in any neigh-
borhood in momentum space impossible to observe as f-* ±oo? One
can imagine physical situations with infinite barriers where this does
happen. (It is difficult to say how one would recognize physically the
situation when this does not happen, but the Dollard wave operators
do not exist.)

This question can be answered "no"' if the homomorphisms ω±

are injective, for any neighborhood in momentum space supports a
non-zero continuous function.

Theorem 5.9. Let H be as in Theorem 5.2. Then ω+ is injective.
In fact an inverse is given by

ω + ί(ω + (A)) = s-\imeiHotω + (A) e-ίHot.
t~+ ± 00

The idea of the proof is that for a state vector φ which describes a
particle which is far away from the center and moving out, / (P l 5 P2-> P^)φ
should be close to ω+(f(P1,P2,P3))φ, and therefore the latter can't
vanish. Such a vector φ can be obtained by taking φ = e~iHotχ for t
large, and the extent to which φ is far away and moving out is effectively
measured by the progress operator A. First we note:

Lemma 5.10. In ^2(R3) let A be the operator defined by (3.1), and H
as in Theorem 52. Then for φ e

lim (Ae-iHtφ, e-ίHtφ) = ± (2g(co) l/f/φ,
-* + oo 'ί-* + oo
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Proof. First we show that

lim eiHt^Lg(r)e~iHtφ= ±g(oo)Pj

± H~1/2φ .
ί-> ± oo Γ 7

Let BE be a ball of center p = (pl9p2, P3) + 0 and radius ε<\p\. Then by
Theorem 5.8, one can make

?~iHt E{Bε)φ <±δ\\E(Bε)φ\\

by choosing ε small and +1 large. But since H is absolutely continuous,
it does not have 0 as eigenvalue and any φ can be approximated by a

M

finite sum ]Γ E(Bj)φ where each By is contained in such a ball. It

follows that

lim eίHt(x:/r) air) e~ιHtφ = ±Pi

± H~1/2 q(oo)φ .

S 0 lim
±

= lim V 2
t^±oc %

Proof of Theorem 5.9. First we note that since Ve~iHot converges
to zero we have for φ e

l t a e I H o t H112 e'iHQtφ =

Using this and Lemma 5.10 (applied to Ho) we have for any ε there exists

T such that for t > T

1
(Ae~iHotφ, e~ίHotφ} ^ (H1/2e'iHotφ, e'ίHotφ) - ε |

Let

= sup-
XΦO

-e ί ί ί s φ(t),e iHsχ)ds

^ C sup J <i[H, A] (s) φ(ί), φ(t)> ds
1/2

l/2

= C'{3(oo) 2</ί 1 / 2φ(t),

<C"ειl2
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Thus for φ e

and therefore

s-lim eίHot /(P+, P2

+, P3

+) e~iHot = f{P1,P2, P3)
t~* oo

by an argument like that in the proof of Theorem 5.5. These limits provide
an inverse to ω+ similarly ω_ has an inverse. H

We hope we have made a case for the usefulness of positive commuta-
tors and the progress operator A in scattering theory. But there is still a
long way to go in applying these ideas to more general problems.
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