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Abstract. A necessary and sufficient condition for unitary equivalence of pure quasi-
free states over the Weyl algebra is proved. Some partial results on states over the Weyl
algebra are formulated in Theorem 1, and Lemmas 1, 4, 5 and 6.

I. Introduction

As early as 1931 von Neumann [1] proved the uniqueness of the
Schrόdinger representation, for Boson-systems with a finite number of
degrees of freedom. Afterwards a number of people [2] proved that for
Boson-systems with an infinite number of degrees of freedom this theorem
fails and that there exists a lot of inequivalent representations.

Kastler [3] gave for the first an algebraic formulation of this problem
and proved von Neumann's theorem [1] in a more general form. He
defined the underlying C*-algebra for a free Boson-system roughly
speaking generated by the Boson creation and annihilation operators,
and formulated the problem of equivalence in terms of states on this
algebra.

In this work we follow the same method and prove a necessary and
sufficient condition (see Theorem 2 below) in order that two pure quasi-
free states on the Boson C*-algebra are unitarily equivalent.

The essential technical difficulty which we had to solve to derive the
proof of the criterium, is the construction of finite symplectic subspaces
of a sympletic space H which are invariant under two different complex
structures on H. This problem is solved in the case that the product of
the complex structures has a pure point spectrum.

Some other partial results on states over the Weyl algebra are for-
mulated as remarks following the lemmas, the proofs being trivial
extensions of the proofs of the lemmas.

* Aspirant N.F.W.O., Belgium.
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II. Pure Quasi-free States on the Weyl algebra A (H, σ)

Let (H, σ) be a separable symplectic space, i.e. a real vector space H,
equipped with a regular, antisymmetric, real bilinear form. Hence H is
a locally convex topological space equipped with the topology defined
by the semi-norms

Qφ' ψ->\σ(φ>ψ)\

and we suppose that H is complete for this topology, we call H σ-complete.
Let A (H, σ) be the algebra generated by finite linear combinations of

the functionals δ:ψeH->δψ defined by

δψ(φ) = 0 if ψ + φ

= 1 if ψ = φ

with the product law:

°ψ°φ — e °ψ + φ

The mapping δψ->δ* = δ_ψ is an involution and

Σ aiK = Σ lαϊl w i t h ai

is a norm on A (H, σ) such that A (H, σ) turns out to be a normed *-algebra.
The set of representations π of A (H, σ) such that the mapping

Λ,eIR-»π(<5Av;) is strongly continuous, determines a unique C*-algebra
norm on A(H, σ). Its closure 2ί = A(H, σ) is a C*-algebra, which we call
the Weyl algebra. For more details see [4].

A state on the Weyl algebra is a positive linear functional, normalized
to one.

Any operator J on H satisfying

J+ = — J (" + " adjoint with respect to σ)

J2 = — 1 (1 unit operator)

Sj(ψ, xp)= — σ(Jxp, ψ)>0 for all ψ =f= 0, ψ e H

defines a complex structure on the real space H. Given such a complex
structure J on H, the linear functional on A (H, σ) defined by

ωj{δ) = exp {- \ Sj(ψ, ψ)}

extends to a state ω3 on 21 = A (H, σ). In fact ω3 is a pure quasi-free state
(see [5]).

In what follows we denote by J and K two such complex structures,
by Sj(ψ, φ)= — σ(Jφ, φ) and sκ(φ, φ) = — σ(Kψ9 φ) the corresponding
real scalar products and by ω3 respectively ωκ the corresponding pure
states; further by Uj(πκ\ <Jfj(.tfκ) and Rj = ^(2l)/r (Rκ = πκ(SO)") the GNS
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representation, representation space and the associated von Neumann
algebra induced by the state cθj{ωκ).

Consider a net & = {Ha}aeI of symplectic subspaces of H satisfying:

(i) JHa Q i7α KHa g Ha for each Ha e &,
(ii) each Ha is a finite regular symplectic subspace of H9

(in) to all pairs Ha9 Hβe^ there is a Hye^ with HaκjHβQHv

(iv) (J Ha generates H.

Then J — {SΆa = A(Ha, σ)}aeI is a net for 21: i.e. it is a collection of
C*-subalgebras of 21 satisfying:

(i) to all pairs 2lα, Wβ e J there is a 2Iy e J with 2Iαu SΆβg %,
(ii) the unit of 21 is contained in all 2Iα 6</,

(iii) for any continuous representation π (i.e. tp—•π((5v.) is continuous)
(J π(2ϊα) is weakly dense in π(2ί)".

By analogous techniques as in [6] we prove:

Theorem 1. The pure states cθj and ωκ on A(H, σ) are quasi-equivalent
(hence unitarily equivalent) if and only if there is a 2Iα e ,/ such that

Ucoj-coJlKW < ε f°r ε > 0 -

21̂  is the set of elements of 21 commuting with 2Iα.

Proof Suppose coj and ωκ equivalent, then it follows immediately
from [6, Corollary to Propositions 2 and 3] that there is a 2Iα e J such
that || {ω3 — ωκ) 12Ϊ£ || < ε. The converse is proved by a slight modification
of the proof of Proposition 13 of [6] and using von Neumann's theorem
[1] yielding that for all Hae$ the restrictions ω 7 |2Iα and ω κ | 2I α are
type I states, hence that ω3 and ωκ are locally normal states in this sence.
We omit further details of the proof. Q.E.D.

III. Unitary Equivalence

Now we will apply Theorem 1 to establish the theorem of unitary
equivalence. First we prove a number of Lemma's.

Lemma 1. If coj and ωκ are unitary equivalent states, then the operator
1 + JK is a compact operator with respect to the metric defined by sκ or
by Sj.

Proof We prove it for Sj. For sκ the same proof can be repeated.
Now <x>j and ωκ being equivalent factor states, for every ε > 0 there is
a finite subspace Ho such that [6; Corollary to Propositions 2 and 3]

(ωj-ωκ)\Δ(H0,σ)c\\= sup \ωj(x)-ωκ{x)\<ε.
ιΔ{H0,σ)cxsΔ{h
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This follows from the definitions of the nets *§ and </. The condition of
invariance for J and K is irrelevant for this statement. Hence

\\(ωj-ωκ)\A(Hlσ)\\<ε

where HQ=HQH0 is the orthogonal complement of Ho with respect to
σ. Moreover Ho can be taken as an invariant subspace for the operator J
(not a priori invariant for J and K).

In particular for all ψ e HQ such that Sj(ψ, ψ)=l

sup \ωj(δψ)-ωκ(δψ)\<ε.

Hence
sup \l-e*σaJ-K)v>ψ)\<εe*.

Since the function x -> exp x, x e IR is continuous, it follows from the
previous inequality that for any δ > 0 there is a finite subspace Ho such
that

sup I σ((J — K) ψ, ψ) I < δ

sj(ψ,ψ) = 1

which is equivalent with

sup \sj({ί + JK)ψ,ψ)\<δ.

Let Eo be the orthogonal projection on Ho then we have that

|| (1 + JK) - £ 0 ( l + JK) -(1 + JK)EO-EO(1 + JK) Eo \\Sj<δ

where

Since Eo is of finite rank, this inequality proves that the operator
1 + JK can be approximated in norm by finite rank operators and hence
is compact. In particular the operator JK has a pure point spectrum.

Q.E.D.

Remark i. Without proof we remark that an analogous result as in
Lemma 1 can be proved for all quasi-free states on the Weyl algebra.

Lemma 2. Let E be a non-zero finite projection, commuting with J and
K. Consider the operator A— — \ (1 4- JK) E. Then A is hermitian with
respect to Sj and we have the following inequalities.

1 g 1 + i Tr A g det£(l + A)^ exp(i Tr A)
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where det£(l + A) is defined as the product of the eigenvalues of (1 + A) E
on EH.

Proof. First remark that

Sj((— JK) ψ, φ) = — σ(Kψ, φ) = σ(ψ, Kφ) = — σ(Jψ, (— JK) φ)

= Sj(ψ, (-JK)φ) = sκ(ψ, φ)

and that sκ is a scalar product, hence the operator — JK is strictly
positive with respect to Sj.

Since [£, J] _ = [JE, X] _ = 0, the operator —JKE is a hermitian
finite rank operator on EH which can be diagonalized. Let ψ be an
eigenvector in EH of ( — JKE) with eigenvalue λ then λ>0 and

(-JK)Kxp = Jιp= -K(KJ)ψ= -K(JKΓ1ψ=~Kψ
A

hence 1/λ is an eigenvalue of — JK with eigenvector Kψ e EH.
Consequently, if { ^ 1 = 1,..., n} are the eigenvalues of —JKE, then

| i = 1,..., n} is exactly the same set of numbers. Therefore

Otherwise

Let

since λt>0 we have μt^0 hence

= Π 1 +
λ<+T~2

^ 1 + Y Σ ̂  Π

which is equivalent to

1 ^ 1 + y Tr A ̂  det£(l + 4̂) ̂  exp — Tr A .

Q.E.D.
Lemma 3. Let {Ha}oceI be an increasing and absorbing net of finite,

J-invariant subspaces of H and let the real dimension of Ha be 2na for all
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aeI. Then the elements

a)=(~Y J ωj(δψ)δψdψ

where dψ is the Lebesgue measure on H induced by the metric determined

by Sj, form a decreasing net of projections in A (//, σ)

Proof Since || δψ || = 1 for all α e I

j ωj(δψ)dψ<co

and further A(Ha, σ) is a simple type I C*-algebra, hence P(Ha) eA(H, σ).
Further ωj(δψ) = cΰj(δ_v) and so

- Γ f ωJ(δtp)δ-ψdψ=l—Y

It remains to prove the inclusion, if Hα Q Hβ then

because for Ha = Hβ this proves also that P(#α) is a projection.
Consider now

= } j ωj(δv)ωj(δφ)δφδφdφdφ
ψ G Hx φ e Hβ

ψeHo, ξeHβ

= ί exp(-^sj(ξ,ξ))δξl(ξ)dξ

where

I(ξ) = j exp [ - sj(ψ, ψ) + Sj{ξ, ψ) - iσ(ψ, ξ)] dψ .

We prove now that I{ξ) = πnac, yielding the result. Consider the
symplectic basis1 of Hβ: {eb Jet \ i = 1,..., nβ} with respect to J, such that
{ei,Jei\i= 1,..., wα} is a symplectic basis of HΛ with respect to J, then

ί = 1

ς = 2^ (^^ + μiJej ,

x , yf, Ai5 μ; G 1R (real numbers)

1 {<?,-, Je f} is a symplectic basis if it is a basis and if {e{} is an orthonormal set for
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and one checks that

«α +00

I(ξ) = Π J exp [ - (x, + λi- iμf - (yt + μt + ίλf] dxt dyt
ί= 1 — oo

hence I(ξ) = πn\ Q.E.D.

Lemma 4. Suppose Ho is a J-invariant finite subspace of H, let Eo be

the orthogonal projection on fί0, then with the same notations as in

Lemma 3:

dip .

Proof By definition of P{H0) we have

/1 \"° Γ 1 1
ωκ(P(H0)) = — J exp - — Sj(ψ, ψ) - — sκ(ψ, ψ

\ π I ψeH0 L Z L

For all ψeH0

1 1
— Sj{ψ, ψ)+~2 sκ(ψ> ψ) = sΛQψ, Ψ)

where Q = EQ Eo is a strictly positive finite rank operator on

(H0,Sj). There exists an orthonormal basis {ψi\i = l9 ...,2n0} with

respect to Sj such that

2 no

Let ψ = Σ XiΨi then
ΐ = l

2 no

and
2n0 !

2 n 0 Λ

= Π 1 7 Γ =
Q.E.D.

Lemma 5. With the same notations and assumptions as in Lemma 3 the

following holds true:

(i) for all subspaces Ha one has ωJ(P{H(X))= 1,

(ii) if ω is any state on Δ(H, σ) such that for all Ha, ω(P(Ha)) = 1 then

ω = (Dj.
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Proof, (i) Follows immediately from Lemma 4 putting K= J. To
prove (ii) for each Hα consider the restrictions ωα = ω | $Iα and ωj = Co, | $ία,
because the union (J π(9Iα) is dense in π(9I) for any continuous representa-

α

tion π it is sufficient to prove that ωα = ω] for each Hα. This will now be
proved.

Let πj, Ωj, Jtiff be respectively the representation, cyclic vector and
representation space induced by ωj, then it follows from (i) that

Furthermore the set {πj(δφ) Ωj\φe HJ is dense in the representation
space j^f and an easy calculation (see e.g. the proof of Lemma 3) shows
that

πJ(P(Ha)) iή{δφ) ΩJ = (ΩJ, πj((5v) ΩJ) ΩJ.

Hence πj(P(Hj) is the projection operator on ΩJGJFJ.
Each Hα being finite dimensional it follows from von Neumann's

theorem [1] that
ωn = T r &* ρ α c πar

where ρα is a density matrix (0 rg ρα ̂  1, Tr ρα = 1). From ω(P(Hj) = 1 we
get ωa(P(Ha))=l and Ύγ^fρ

aπ}(P(Hj)= 1. Hence (ΩJ,ραΩJ)=l and ρα

being a density matrix, it follows that ρα is the projection operator on
Ω J a n d ω α = ωJ. Q.E.D.

Corollary 1. Wί/i the same notations and assumptions as in Lemma 3
we have that | |ω3 — ωκ\\= 2(1 — qf where q = inf ωκ(P(Ha)).

Proof. It follows from Lemma 3 and 5 that Lemma 2.5 of [7] holds
true for the net of projections {P{HOί)}aeI as defined in Lemma 3. Hence
ωκ being pure, we have the result. Q.E.D.

Lemma 6. Suppose that ojj and ωκ are pure quasi-free states on the
Weyl algebra A (H, σ) and that Ho is a finite, J and K invariant subspace
of H, then

|| (ωj -ωκ)\Δ(Ho, σ)c\\ = ||(ωj -ωκ)\Δ(H^ σ)\\ .

Proof. Let Ψ = π3 0 πκ be the direct sum of the representations π3

and πκ; Ψ is a representation on Jf = ̂ 3®^κ. Let x = Ω,® 0,3; = 0© Ωκ

and denote by ωz, ze j f the vector state ωz(>4) = {z,Az) on JB(jf). Then

o1, σ) || - || (ωx - ωy) \ Ψ(Δ (Ho

x, σ) \\

and
II (ωj -ωκ)\Δ(Ho, σ)c|| = || (ωλ - ωy)\{Δ(Ho, σ)c|| .
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Applying Kaplansky density theorem we get

- ωκ) A (Ho1, σ) || = || (ωx - ωy) | Ψ(Δ (H£, ρ)" |

and

|| (ω, - ωκ) Δ (Ho, σf || = || (ωx - ω}.) | Ψ{Δ (Ho, σ)J II .

It remains to prove that

Y = Ψ(Δ(H0,σ)cγ.

Ho being J and K invariant, the restrictions πj\A(H0, σ), πκ\A(H0, σ)
and hence Ψ\Δ{H0,σ), Ψ\Δ{H^σ) [8; Prop. 5.4.12] are irreducible
representations. Hence the von Neumann algebras: P= Ψ(A(HQ, σ))",
Q = Ψ(Δ(H0,σ))", and R = Ψ(Δ(H, σ))" are of type I. Moreover it is clear
that the von Neumann algebra generated by P and Q equals R and that
P Q Q'. Hence P and Q is a factorization of R. Since P and Q are type I
factors, it follows that this factorization must be paired [9] i.e. P and Q
are each others commutants:

and

P = Ψ{Δ{H0,σ))f 2 Ψ{Δ{H0,σ)cy 2 P •

Hence

Ψ{Δ(H0,σ)c)"=Ψ(Δ{H£9σ))"
Q.E.D.

Remark 2. Without proof we mention that Lemma 6 can also be
proved for locally normal states on the Weyl algebra.

Theorem 2. The pure quasi-free states ω3 and ωκ on the Weyl algebra
A (H, σ) are unitary equivalent if and only if the operator (J — K)+ (J — K)
= [J, K] + + 2 is a trace class operator with respect to Sj.

Proof Suppose first that [J, K] + + 2 is a trace class operator with
respect to Sj. Then JK 4- KJ = JK + (J'K)"1 has a pure point spectrum
and hence JK has this property; JK being hermitian with respect to Sj,
there exists an orthonormal basis of eigenvectors {t/̂ }f of H. To any
finite subset {ψnτ\i= 1,..., k} corresponds a finite subspace generated
by {ψnι,Jψnτ\i=U .Λ}. If JKψnι = λnιψnι then KψHι= -λHιJψnι and

KJψnι — —— t/^ hence this subspace is invariant for J and K, and the

orthogonal projection on this subspace commutes with J and K.
Consider the net {Ha}a of all such subspaces of H. Each Ha is invariant

under J and K and their union (J Ha generates H. Let {£α}α be the
α

corresponding net of projections; each £ α commutes with J and X.
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Since [ J, K] + + 2 is a trace class operator, for every ε > 0 there is an
index α0 such that for all £α < 1 — Eαo

or
| T r ( l + J X ) £ α | < ~.

By Lemma 2:

Ί-JK\ . ε
detj^-^]^

and by Lemma 4

Let p = inf ωκ(P(Ha)) then 1 ̂  p §: exp — — j and from Corol-

lary 1 and Lemma 6 we get

Clearly if ε tends to zero, then (1 — p) tends to zero and from Theorem 1
it follows that ω 7 and ωκ are unitary equivalent.

Conversely, suppose that ω 7 and ωκ are unitary equivalent, then by
Lemma 1, the operator 1 + JK is compact and JK has a pure point
spectrum. Again we consider the net {Hoc}a of subspaces and the net {£Jα

of projections as defined above. Moreover we consider the corresponding
net {2Iα = Δ{Ha,σ)} of C*-subalgebras of 2Ϊ. By Theorem 1 and Lemma 6
there is a subspace Hao e {Ha}x such that

From Corollary 1 it follows that

inf wK(P(H))^l-^~.
Eγ<(i~E<XQ) Ύ 4

Eγe{Ea}a

By Lemma 4
ίl-JK\ / ε2

sup deuμ^-U 1-τ

By Lemma 2

sup Tr — £ l l - τ
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or

Since HΛo is a finite subspace the operator 2 + [ J, K]+ is a trace class
operator Q.E.D.

Remark 3. The condition appearing in Theorem 2 can of course also
be expressed in terms of the scalar product sκ. The problem is completely
symmetric in Sj and sκ. It is just a matter of choosing a symplectic basis
in H with respect to J or to K.

Remark 4. After the preparation of this work we were informed about
an analogous result by Courbage, Miracle-Sole and Robinson [10] who
gave a characterization of all states quasi-equivalent with the Fock
representation of the canonical commutation relations. An essential dif-
ference with our work is a different choice of underlying C*-algebra and
method of derivation. Furthermore our criterium is given directly in
terms of the states we are considering.
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