Commun. math. Phys. 19, 83—105 (1970)
© by Springer-Verlag 1970

Quantum Stochastic Processes 11

E. B. DAVIES*
Mathematical Institute, Oxford, England

Received April 13, 1970

Abstract. We investigate properties of a class of quantum stochastic processes subject
to a condition of irreducibility. These processes must be recurrent or transient and an
equilibrium state can only exist in the former case. Every finite dimensional process is
recurrent and it is possible to establish convergence in time to a unique equilibrium state.
We study particularly the class of transition processes, which describe photon emissions
of simple quantum mechanical systems in excited states.

§ 1. Introduction

In earlier papers [1-3] we have shown that in order to treat repeated
measurements or measurements extended over a period of time, it is
necessary to extend considerably the conventional description of meas-
urement theory in quantum mechanics. In order to describe regorously
the photon counting experiments being done in quantum optics, for
example, it was necessary to develop a theory of quantum stochastic
processes [3]. These are generalisations of classical Markov processes
and can be analyzed in terms of, and constructed from, two infinitesmal
generators. The first of these is the Hamiltonian of the quantum mechani-
cal system, and the second is a stochastic kernel, describing how the
measuring instrument interacts with that system. In the presence of the
measuring instrument the system evolves according to a one-parameter
strongly continuous semigroup of positive endomorphisms of a space
of self-adjoint trace class operators.

In this paper we start the analysis of the properties of a class of
(quantum stochastic) processes. A process is called irreducible if it cannot
be restricted to any proper closed subspace of the underlying Hilbert
space and we restrict attention throughout to the irreducible processes.
As in classical probability theory the reducible processes are of a much
more complex nature and cannot be “decomposed” as direct integrals
of irreducible ones. A class of processes, called simple, has the property
that certain order ideals associated with compact subsets of the value
space of the process are finite-dimensional. We establish necessary and
sufficient conditions on the infinitesmal generators of a process for it
to be simple and irreducible. We also prove that the simple irreducible
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classical stochastic processes are precisely the irreducible continuous
time Markov chains in the sense of [4].

Section 3 is concerned with proving that every simple irreducible
process is either recurrent or transient. Here a process is called recurrent
if for every initial state and every non-null open set in the value space
the number of events in that set is infinite with probability one. A process
is called transient if for every initial state and every open relatively com-
pact set the number of occurences of events in that set has finite expec-
tation. A process with an equilibrium state must be recurrent. Every
finite-dimensional process is recurrent and it is possible to establish
convergence in time from any initial state to a unique equilibrium state.

In Section 4 we consider the class of transition processes, behind
which there is a rather simple physical model. This consists of an atom
emitting photons in various directions at random times under external
excitation. The Hilbert space used is that describing a finite number of
electrons moving in a central potential. The irreducibility hypothesis
means that an electron can jump from any energy level to any other
energy level eventually, perhaps via intermediate levels. The hypothesis
on the order ideals means that each of the energy levels of the atom must
be finite-dimensional. For a spherically symmetrical atom the group
SU(2) has a unitary representation on the Hilbert space, and this can
be used to restrict greatly the possible variety of structures.

As far as the interpreation of this model is concerned two attitudes
are possible. One can argue that an exact treatment of the radiation of
the atom requires a quantisation of the electromagnetic field to be in-
cluded and that the one-parameter semigroup we obtain on the space
of self-adjoint trace class operators on the small Hilbert space is just the
“best approximation” to a one-parameter unitary group on the larger
Hilbert space. While partially justified this overlooks the fact that any
theory which describes the actual arrival of individual photons at counters
at random times must incorporate something like a stochastic process.
Indeed we have described in the earlier paper how to construct a quantum
stochastic process on Fock space in order to describe the action of photon
counters. Therefore the choice of Hilbert space depends on the level of
accuracy desired, but in neither case can the evolution be properly
represented by a one-parameter unitary group. If the photon density in
the electromagnetic field is low and the counter is effectively decoupled
from the radiating atom then either approach will give essentially the
same probabilistic predictions.

In the final section we exhibit a class of processes which we call
reversible, and hence find a simple and rather surprising condition on
the infinitesimal generators of an infinite dimensional irreducible process
for there to exist no equilibrium state. We illustrate this by an example
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of an elementary particle moving through a bubble chamber with periodic
boundary conditions imposed.

Since the main techniques of the paper are adaptations of very
standard methods in classical probability theory [4], three remarks about
the ways in which quantum processes differ from classical processes
are in order. Firstly quantum processes with discrete time turn out to
be very difficult to analyse because very complicated multiple periodi-
cities can occur. Secondly simple quantum stochastic processes can
have non-trivial connected groups of symmetries, and hence these pro-
cesses actually have a richer structure than the continuous time Markov
chains. We include such a symmetry group systematically in our treat-
ment, and without loss of generality since it can always be taken to be
trivial. Thirdly irreducible quantum processes need not have equilibrium
states even when they are very strongly recurrent, as we show by an
example in Section 5.

§ 2. Irreducible and Simple Processes

We recall some of the notation of [3], which will be followed system-
atically here, and at the same time construct the family of processes
with which we shall be concerned for the rest of the paper. Let # be
a separable Hilbert space and V = () the real ordered Banach space
of self-adjoint trace class operators on # with the trace norm. The trace
tr defines a strictly positive linear functional on ¥V, which is called the
state space. Let U be a unitary representation of a separable locally
compact group G on # and define a representation o of G as a strongly
continuous group of positive, trace-preserving automorphisms of ¥ by

a,(0) = Uyo Uy (2.1)

where ge V. Let X be a separable locally compact Hausdorff space,
called the value space, and let there be a jointly continuous action
X x G- X of G on X. Suppose that a G-invariant measure dx on X
with support equal to X is specified and that 4: X — Z(#) is a strongly
continuous map such that for all xe X and ge G there is a number
A(x, g) of absolute value one such that

A= Ax,9) UfAU,. (2.2)

Also suppose that there exists a constant K such that for all £ e #
JlA4E17dx < K[E)12. (23)
X

Then it is easy to verify that the formula

tr[ #(E, o) B] = [ tr[A,0 A B]dx 2.4)
E

7*
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where ECX is a Borel set, pe V and Be Z(#) defines a bounded
stochastic kernel on X in the sense of [3]. Moreover if g € G then

tr[#(E;,-1,0) B]= | tr[A,04%B]dx
Eg-t
= g tr[A,,-10A%,- 1 Bldx
= J 15 90 U, AUy oU, AT Uy B dx
= [l A4.2,-.(0) AU} BU] dx

= tr[ #(E, a,-1(0)) U} BU,]
= trla,{ #(E, «,-(0))} B]

o)

FEy-1,0) = o0, { F(E, ay-1(2))} 2.5)
and # is covariant with respect to G in the sense of [2].If R is the operator
on # defined by

tr[Re] = tr[#(X, )] (2.6)

then 0SR< K1 and U,R=RU, for all ge G.

Now let H, be a self-adjoint operator on # such that H,U,= U, H,
for all ge G. As in [3] we define Z =iH,—4 R and let B, be the semi-
group on s with infinitesmal generator Z. S, is the semigroup on V
given by S,(¢) = B,¢Bf. By Theorem 4.7 of [3] # and Z are the infinitesmal
generators of a unique quantum stochastic process € on X, V. Moreover
& is covariant with respect to G in the following sense. G has an action
on each of the sample spaces X, induced from its action on X and for all
t=20,0eVand ECX,, & satisfies

E(Ey-1, 0) = 0, {&(E, 0p-1(0))} - 2.7)

This equation implies that the semigroups S and T on V defined in [3]
satisfy
T, =a,T;;  So,=0a,S, (2.8)

for all t=0 and g € G. For the rest of the paper the term process will mean
a quantum stochastic process constructed from given Hy, A: X - Z(#),
U:G- ¥ (#) as described above.

In order to formulate further conditions on processes we define an
order ideal on a state space V as a subset I C V" such that

(1) if x,yel and o, $ =0 then ax+ fyel;

(i) f 0<x<yel then xel.

In an abstract state space order ideals do not have very good proper-
ties, but for the case V=7 (#) the following results are well known
and easy to prove. The closure of an order ideal is an order ideal and



Quantum Stochastic Processes 11 87

every finite-dimensional order ideal I is closed, the set {ge I:tr[p] =1}
forming a compact base for I in the sense of [5]. There is a one-one
correspondence between closed order ideals I € V* and closed subspaces
A C A given by

I={oe 7 (H)" :supp(Q)S A} . (2.9)

If I is a closed order ideal then W =1 —1 is a closed subspace of V and
even a state space. If SC V™ is any set then

I={QEV+ZQ§ Y a,s, for some oz,gO,s,eS,n}
r=1

is the smallest order ideal containing S and is called the order ideal
generated by S.

Now suppose & is a process on X, V and T,(¢)e I for all peI and
r=0, where I is a certain closed order ideal. Then for all >0 and all
Borel sets EC X, and all pe [

0=6,(E 0 =8(X,0=Tlel

so &,(E, g) € I. Therefore it is possible to define a restriction of the process
to the state space W =1 — I. The process is called irreducible if dimV > 1
and & has no proper restriction. We comment that our notion of restric-
tion does not agree with that introduced in [6]. Indeed in the sense of
[6] the state space IV has no proper restrictions because the von Neumann
algebra ¥ () has no proper central projections.

Proposition 1. If dims# > 1 the process & is irreducible if and only
if there is no proper closed subspace A~ of H such that A, A C A for
all xe X and

=2 {A D2y =H (2.10)
where 9(Z) is the domain of the infinitesmal generator Z.

Proof. Suppose IC V™ is a closed invariant ideal corresponding to
the subspace " C . Suppose & e # and f, is a sequence of positive
continuous functions on X with | f,(x) dx =1 and such that the support

X

of f, decrease to {x}. For every t >0 we define #, on X, V as in [3] and
obtain

0 A(f E®StT16,(X, E®D)
=t 'T(E®F)

SO

(A,H®(4,9)" = lim #(f,, £ ®F)
= hm hm jm“(ﬁni@E)

n—ro m-—>ow
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lies in I. Therefore 4,&€ . Also for all t=0
0=(BYH® B =S(E®IH=T(E®I

so the one-parameter semigroup of contractions B leaves J invariant.
The equivalence of the last statement with Eq. (2.10) is a straightforward
consequence of the general theory of one-parameter semigroups [7].
The converse proposition is obtained in a similar manner by ex-
amining the construction of & from ¢, Z in Theorem 4.7 of [3].
If & is any process on X, V and g€ V™ we define a positive measure
P, with total mass tr[g] on X, for t < coby

Py(E) = tr[€(E, 0)] (2.11)

for all Borel sets E C X,. There measures are compatible under the natural
maps n: X,— X, defined for co=t>s, and therefore there is a measure,
which we also denote by P,, on X, compatible with all of them. For
each set EC X, the map ¢ — P,(E) is positive, linear and bounded with
norm not greater than one. Instead of regarding &, as defined on X,
we regard it as defined on the o-field %, of Borel sets in X which are
inverse images under n: X — X, of Borel sets in X;. The & form an
increasing family of o-fields in X, and the union generates the o-field
Z of all Borel sets in X. If w € X is a sample point containing at least
n events we denote by x,(w) and t,(w) the place and time of the nth
event. If a sample point w does not contain n events we adopt the con-
vention t,(w)= +oo0. It will be convenient to introduce the following
notation for certain Borel subsets of X, where U is any Borel subset
of X.

Al ={t,(0) St, 1,41 (@) >1}. (2.12)
B"U = {x,(w)e U on at least n occasions with
(2.13)
ti(w) =t}

except for t =00 we demand all ¢;(w) < c0.

e

L= U {ti{lw)st, x}(w)e U, t; () >t} . (2.14)

i=1

If ¢ is an integral multiple of 1/n we define

-1
C)= {if T " <ti(w)= % for any » <nt and i then ¢, (w) > %}
(2.15)
From [3] we have the estimate
o X KH t'l
tr[&(B", 0] = trfe] (2.16)

n!
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for all pe V*, where K is a bound on the total interaction rate of the
process. The following lemma allows us to use the sets C} to construct
approximate discrete skeletons to the continuous time process &.

Lemma 2. If t >0 is an integer, g€ V,E€ %, and n= K then

K2t
o el - (2.17)

Proof. Define W(o)=&,,,(X,,— B}, 0) so that &(Cy,0)=W"(o).
Suppose first that ge V. If n> K then Eq. (2.16) yields

K2 nt K2
wEa(Ch o)z (1- 5 wla1z (1- 5.1t

Therefore

I6(ENCE, @) = E(E, o)l =

[E(ENCT, 0) = E(E, o)| = tr[£(E—ENCY, 0)]
str[6(X - CY0)]

K?t

2n

=

lell -

For a general element g € V we can solve ¢ =9, — 0, where g;,0,€ V™
and [oll = lle, ]| + lle2ll. Therefore

2
16ENCL o)~ 6,(E, o)l < -5 {lleul + leal}

_ K?t
2n

We call a Borel set EC X null if P,{BL¥} =0 for all pe V™.

Lemma 3. An open set U C X is null if and only if A, =0 for all xe U.
If & is irreducible then either U is null or P,{B%;"} >0 for all non-zero
oe V*, moreover the set X cannot be null.

lell -

Proof. Suppose A,¢ # 0 for some x € U and hence for x in a subset of
positive measure in U. Then for g =¢®¢

FU,0) = [ (4,H)®(A,5) dx=+0.

In the notation of [3] er
F U, 0 =1lm 7,0
=lim:™'¢,({0<t (@) =t, x;(@) € U, t,(w) > 1}, 0)
and so by choosing ¢ suitably small

PABLY} 2 P{0<t;(w)<t, x,(w)e U, t,(w)>1t}>0.



90 E. B. Davies:

Conversely suppose ge V* and

0< P,{BLY}

=Y P{x(w)¢U for i<n and x,(w)e U}

=1
=3 Y Pix(w)¢U for i<n x,(w)eU m—1<t(w)<m}
n=1 m=1
=Y Y limP{weC, x(w)¢U for i<n,

n=1 m=1 "%

X (w)eU,m—1<t,(w)Em}

by Lemma 2. Therefore for suitable m, n,r and ¢'e V*

0<tr [(51/, ({xl(a))e Ut (w) %, t,(w)> %}, Q')]

= tr[jl/r(U’ Q/):l

1/r

= {tr[sl/r—sj((L SSQ,):[ dS

by Eq. (4.5) of [3]. Putting ¢” = S0’ for some 0 <s< % we obtain
0< #2(U,0" = f A0 A¥dx .
U

It follows that A, 40 for some xe U.

Now suppose that & is irreducible and U is an open set which is not
null. The set J of g V" such that P,{B};Y} =0 is a norm closed order
ideal which is invariant because if g€ J

Pr o {B%Y} =P, {x(w)e U some i with <t (w)<o}
<P{BLY} = 0.

Since J+ V" we must have J =0.

Finally suppose X is a null set. Then A, =0 for all xe X so #=0
and R=0. Therefore Z=iH, and T,(¢) =¢'""oge~"Ho Since we have
dim## > 1 there exists a proper projection P commuting with H, and
then J={pe V*:Po=9P =y} is a proper closed invariant order ideal,
which contradicts irreducibility.

Returning to the general situation we say that a process & on X, V
is simple if it satisfies the condition

(S) for every open U C X with compact closure the order ideal V' generated
by the set of &L, g) where ge V™ and t >0 is finite-dimensional.
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Proposition 4. A process & is simple if and only if for every open
relatively compact set U C X there exists a finite dimensional subspace
A CH such that A, H# A for all xe U, H CD(Z) and ZA C A .

Proof. This is just a slight modification of Proposition 1 and Lemma 3.

Before develooing the implications of our hypotheses we interpret
them for the case of classical Markov processes, slightly generalising
the situation of [3]. The notation used for the remainder of this section
will not be referred to elsewhere. We start with the space X as before
but now define the state space V as the space of all bounded signed
measures on X. If 4 is the o-field of Borel sets in X a Markov process
can be constructed from a bounded stochastic kernel K:X x #—1R.
The total interaction rate is the bounded Borel function R(x)= K(x, X)
and the semigroup S is given by

(Seu) (E) = [ e *"pu(dx) 2 e~ u(E)

for all pe V*, where « is any bound on R. As we have formulated them
the definitions of simplicity and irreducibility apply to processes defined
on completely general state spaces, and therefore to this situation. We
observe that the order ideal generated by a set SC V' * can be finite dimen-
sional only when there exists a finite set Y < X such that u(X — Y)=0
for all ueS.

Proposition 5. If & is an irreducible simple Markov process on X then
X is discrete and & is an irreducible Markov chain in the classical sense.
& cannot have any connected group of symmetries.

Proof. Let U be any open set in X with compact closure, let xe X
and let u be the measure E— K(x, EnU). Then
0 é e_at:u é gt({tl(w) é [, XI((U) € .Ua [2((1)) > t}’ 8x)
é gt(L[t], ex) € VU+ .
Therefore there exists a finite set X, C U such that for all xe X the
measure E— K(x, EnU) has support in X;;. We take X, to be the
smallest such set and observe that the union X' of the X, as U runs
through all open sets with compact closure, is discrete and therefore
countable. Also forall xe X, K(x, X — X)=0.If I={ue V™ : u(X — X')=0}
then I is a closed invariant order ideal in V*,so I = V" by irreducibility,
and X = X'. The closed ideals of V* correspond one-one with the subsets
of X and the process is irreducible if and only if there is no subspace of X
invariant under K. The last statement of the proposition is obvious.

§ 3. Recurrence and Transience

Throughout this section we suppose & is a simple irreducible process
on X, V and that U, W are two given open subsets of X with compact
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closures. If EC X is a Borel set we say the process is m times recurrent
at E for the state pe V" if

P,{B% "} =tr[e]. (3.1)
Lemma 6. If & is singly recurrent at U for all ¢ €V, then it is infinitely
recurrent at U for all ¢ € V, unless U is null.

Proof. Suppose that for some integer m and all g€V, we have
established that P,{B%U} =tr[o]. If ¢>0 then by the compactness of
{oe V, :tr[o] =1} and Lemma 2 there exist integers ¢t and n such that
for all e V"

&
P (BN Cy) = (1- 5 utel.
Therefore
P, (B2 2 P {BI A CY )

-1
> ZPg{x,-(a)) e U for the mth time where d <ti(w) g% <t,
p.q
1
xj{w)e U for the 2mth time where % <tjw)
2
§—p—;—’;i§2t,weC'5,}. (3.2)

If we define

Q3= Eygm ({w € Cym» X;(w)e U for the nth time where

e

then 0 <0, < &,(L5 0) € V" so g,€ V. The right hand side of Eq.
(3.2) now becomes

q——1~<t(w)§
n

ERES

=) P, {w € Ch_gm xj(@)e U for the nth time where
p.q

gzz—i}
n

3|

= Z qu{cgt-q/nt';;liq/n}
q

>) P, {C5nB"Y}
q

z%(l— %) tr[e,]
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= (1 - —Z—) Y. P, {w eC,, x{w)e U for the nth time where
q

q/n>
qg—1 é%

= <o)
n

SRS

&
2 (1- ) Ricsnmr

2
> (1— g) gl = (1- 9 tr[e]

As &> 0 is arbitrary we obtain P, {B2™U} = tr[o]. Now we know that
P,{BLY} =tr[g] for all g € V;" so inductively we obtain P,{BX"V} =tr[g]
for all g e V,". The set

J={0e V" :P,{B2Y} =tr[o]}

is a norm closed invariant order ideal containing V", which is non-zero
if U is not null. By irreducibility J = V* and the lemma is proved.

Lemma 7. If the process & is singly recurrent at U for all g e V'
then it is singly recurrent at W for all g e V.

Proof. By Lemma 3 and the compactness of {g € V" : tr[¢] = 1} there

is a constant k>0 such that P,{BL"} >k tr[g] for all g€ V. Let k

be the largest such constant and let g, € ¥;," be a state such that P, {B};"

=ktr[go]=k. Let e>0 and let ¢t be a sufficiently large integer so that
P, {B/""}>k—e¢ Using Lemma 6 let s be a sufficiently large integer
that

P {if ti(w)=t then x/w)¢ W, but xjw)eU for some
t<tjw)St+sy>1—-k—e.
Using Lemma 2 let n be a sufficiently large integer that
P {weCyy,, if t(w)<t then xi(w)¢W, but x;weU

for some t<tw)St+s}>1—k—e.
Then

Py {By"} 2 Py {B/"} + ). P, {BL"} (3.3)
where m=t
Qm = gt-#m/n ({(D € C:'+ m/n> xi(w) ¢ W for t,((,l)) é t7 Xi((l)) ¢ U

for t<t(w)< m—1

,X;(w)e U for

ame 2= iy 2.0

é gt +m/n(thI+ min> QO) € VU+ .
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Since ¢,,€ V", P, {B%"} =k tr[g,] and Eq. (3.3) becomes

k2k—ctk S ktr[on]
1

=k—c+k ) Pgo{weC{‘+m/,,,xi(a))¢W for t(w)<t,
m=1
1

x(w)¢ U for t<t(w)< ”’n‘ ,

—1
x(w)e U for some <ti(w)= 1:11}

zk—e+ kP, {weCli,x(w)¢gW for t(w)<t but
x;(w)e U forsome t<tw)<t+s}
>k—e+k(l—k—g).
Letting e—0 gives 0 = k(1 — k), and as k>0 we have k =1, which is the
required result.

Lemma 8. Suppose U and W are not null. If & is singly recurrent at
U for all ge V" then it is infinitely recurrent at W for all ge V*.

Proof. Let ge V* and for ¢>0 let t,n be large enough integers so
that P,{C;nB/}*Y} = (1 —e¢) tr[¢]. Then defining

-1
Om= gm/n ({CL) € Cnm/n’ X,-(CU) ¢ U fOI' ti(w) é m

but x;(w)eU

m—1 m
for some <t(w)= “} Q)
n n

§ (gjm/n(Llr]n/n’ Q) € VU+

we obtain nt
P{BL"}z Y P, {BL"}
m=1

v

nZ_tl tr{o,,]
= P,{C;nB}'Y}
2 (1—-¢)tr[o].

Letting ¢—0 gives the equation P,{B%"}=tr[g] for all pe V. By
Lemma 6 it follows that P,{B%"} =tr[g] for all e V' *.

We now turn to the study of processes which do not satisfy the
hypothesis of Lemma 6. We define an integer-valued function NE: X
—[0, oo] for every Borel set EC X and every t <oo by

NE(w) = {number of i for which x,(w)e E and t(w)<t} (3.4)
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while for ¢t = o0 we demand t,(w) < oo. For each state e V* the expected
number of occurences N () of events within E up to time ¢ is given by

NE(@@) = | NE(w) P(dw) (3.5
so that Koo
NE(o) = Z P,{x,(w)e E}. (3.6)

Lemma 9. Suppose & is not singly recurrent at U for some gq€ V.
Then there exist 0 <k <1 and an integer m such that for all ¢ € V" and
all integers n

P,{(BY} <k"tr[e]. (3.7)

Proof. Let S, CV;" be the set of ge V" such that tr[p]=1 and
P,{B%Y}=1. Then S, CS,_; and if ¢, € ﬁ S,, we have tr[g,]=1 and
o €J where m=1

J={oeV":P{B2"} =tr[o]}.
But J is a norm closed invariant order ideal and g, ¢ J so by irreduci-

bility J = 0. Therefore () S,, = ¢ and by compactness S,, = ¢ for some m.
m=1
For that m there exists a constant 0 <k <1 such that for all ge V"
Eq.(3.7) holds if n=1.
Suppose now that we have established that Eq. (3.7) holds for some n
and all g e V. Then for any & >0 there exist integers r and ¢ such that

P{BI" D0} — g < P (B ACY)
rt (3.8)
= ZIPQS{C:~s/rmB;"—n’S%

where
0, =6&, ({a) € Cyy, Xj(w)e U for the nth time where

s—1

<tw= %}, Q)E |58
The right hand side of Eq. (3.8) is

rt
< Y k"trfeg]

s=1
< k"P,{B3"}
<k ir[o].

Going to the limit as ¢ >0 gives the required result by induction.
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Lemma 10. Suppose & is not singly recurrent at U for some gy € V.
Then there exists a constant oy < o0 such that NY(g) < oy tr[o] forallge V™.

Proof. For all pe V" we have
NS(@=lim lim [ Nf(w)P,(dw).
© n—oo CrABLU

Also if we define
—1
o=bul{veClx@e for to)s T xw)eU
and 6= ) o,e V", then tr[o] < tr[¢] and

n
+
}’ Q)EVU
s=1

) Pg(dw)=§{tr[gs]+ i Nﬁé(w)Pgs(dw)}

cpnBHU s=1 CP-s/m

<triel+ | N(w) P,(dw).
X

s
for some —— <t;(w)<
n

S |w

nt

By Lemma 9 there exist constants k and m such that
P{NY(w)zrm} Lk tr[o]

for all integers r. Therefore

I NE©) P, < ;i mi o] = " u[o]

Xoo

and

[ NY(o) P,(do) < (1+ —m——) tr[e].
2 1~k

We summarise all the results obtained so far.

Theorem 11. Call a process & on X, V recurrent if every state ge V*
is infinitely recurrent at every open set U C X which is not null. Call it
transient if every open subset U C X with compact closure has a finite
expected number of occurences for every state g e V*. Then every simple
irreducible process is either recurrent or transient.

The problem of determining whether a given process is recurrent or
transient is in general a difficult one, depending on detailed properties
of Hy and ¢, but some general guide is contained in the following results.

We call a process on X, V substantially finite-dimensional if there
exists a finite-dimensional projection P in 5 and a constant o > 0 such
that

(1) ,(P)P=PT,(P) forall t=0;

(i) tr[PT,(P)]=za forall t=0.



Quantum Stochastic Processes 11 97

By taking P=1 it is immediate that every finite-dimensional process
is also substantially finite-dimensional.

Proposition 12. FEvery substantially finite-dimensional, simple, irre-
ducible process is recurrent.

Proof. If U, is an increasing sequence of open sets with compact
closures whose union is X then NY(w) converges monotonely to NX (w)
for all w € X,. Therefore by Lemma 3 for all non-zero ge V™,

NY(@)— NX()>0.

If P and o are as described above then by the compactness of the set of
o with tr[p]=1in
J={0eV":Pg=¢oP=0¢}

there exist n and > 0 such that for all peJ
NZ"(@)z B tr[e]. (39)

If now & is transient then application of the dominated convergence
theorem to

[ NUw) P(dw)= | N/"(w) P,(dw)+ j NI (w) Py ,(dw)

X X

X

yields
lim j NI (w) Py, (dw)=

t—
for all e V*. Choosing in particular ¢ = P and defining ¢’ = PT,(P)e J
where ¢t is large enough gives

Xj N (@) Py (dw) < jNUn ) Py, (do)<Btrlo].

This contradicts Eq. (3.9), so & cannot be transient.
An equilibrium state of a process & on X, V' is by definition a state o
such that T,p=p for all t = 0.

Theorem 13. An equilibrium state of an irreducible process & has
support equal to H# . A simple irreducible process with an equilibrium state
must be recurrent. A finite-dimensional irreducible process possesses an
equilibrium state, unique up to a constant multiple.

Proof. The first statement follows from the fact that if g, is an equi-
librium state

J={oeV*':9<up, some o}

is an invariant order ideal, and so must be dense in V' *. For the second
statement we observe as in Proposition 12 that if & is transient and U
is an open set in X with compact closure then NY(g,)= NUY(T,0,)—0
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as t—oo. Therefore NY(o,)=0 for all such U and so N¥(go,)=0. But
now NZX(¢)=0 for all ge J and so for all g V*. By Lemma 3 this con-
tradicts irreducibility.

If dim# < co then Q={oeV"':trlo]=1}

is a compact convex set and T, is a one-parameter semigroup of affine
endomorphisms, so Q possesses at least one T-fixed point by the Markov-
Kakutani theorem. If there is more than one fixed point then by the
Krein-Milman theorem there exist two distinct extreme fixed points
say ¢, and g,. Both ¢, and g, have support equal to # so there exists
a non-zero constant « such that «g; <0, <a~'p,. But by the definition
of extreme points this implies ¢, = g,.

Note. We have not been able to establish whether an infinite dimen-
sional irreducible process may have more than one equilibrium state.

The following theorem gives rather weak sufficient conditions for
irreducibility of finite-dimensional processes and also describes the
limiting behaviour in time of processes satisfying those conditions.

Theorem 14. Let & be a finite-dimensional process covariant with
respect to a connected group G. Suppose

(i) there is no proper subspace of # invariant under all A,,xe X
and all Uy, ge G;

(i) the lowest common multiple of the dimensions of the eigenvalues
of the operators A,, xe€ X is one.
Then & is irreducible. There is a unique equilibrium state g, with tr[g,] =1
and for all ge V™ with tr[g] =1, T,(¢) converges to g, as t—co.

Proof. We refer to [8] for terminology and general theorems concer-
ning finite-dimensional associative algebras. Let & be the multiplicative
semigroup in #(#) generated by 1 and {A,:xe X}. Let o/ be the
linear span of & so that ./ is a linear algebra with identity, and
U, U; ' = o for all ge G. Let # be the radical of o7 and let #" = ZH.
Then # + # and since # is a G-invariant ideal in o/, # is invariant
under all 4,,xe X and all U, g€ G. By condition (i) # =0 so Z=0
and «/ is semisimple. Let ¢ be the centre of /. Then U, U, ' =% for
all ge G and G is connected. Therefore the action of G on C is trivial
and any central projection P € € must be equal to zero or one, again
by condition (i). Therefore .o/ is simple and by Wedderburn’s theorem
we can write S = #, ® #, and & = ¥ (#,)®C1. By condition (ii) we
now obtain dims#, = 1, so .of = Z(#). Therefore for all non-zero ¢ € #
there exist By, ..., B,€ % such that B¢, ..., B,¢ spans#. In particular
there is no subspace of 5# invariant under all 4,, x € X so by Lemma 1,
& is irreducible.

We next show that for all non-zero & e # the mixed state T,(( @)
has support equal to »# for all sufficiently small t. Suppose none of the
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operators By, ..., B, above is a product of more than m operators A,.
Then for p=¢(®E

n '___1 .
7;0(@); tho({l r [0<ti(w)§%t0 for i=1,...,r},Q)
r=0
=S+ | [ EL®E .t ...dt,
r=0 xieX i—1 i

Flo<te=ytlo

dxy ...dx,

where
ér,x:Bt—trAxrBtr—t,._‘Axhl "‘AxlBtlé

and t=(f, ..., t,), x=(xq,...,X,), by Eq.(4.13) of [3]. The result now
follows from the joint continuity of t, x— ¢, , by taking ¢, small enough.

Now let Q be the compact convex set {ope V' :tr[go] =1} generating
the affine hyperplane H = {gpe V:tr[¢]=1}. The interior of Q in H
consists of all ¢ whose support is equal to 5, so the unique equilibrium
state g, of T is interior. Let m be the Minkowski functional of Q in H
with respect to the “origin” g, so

m(e) =inf{AeR":(¢—0o) € AR~ o)} -

It is clear that m(g) < 1 if and only if ¢ € int Q, m(g,) = 0 and m(T,0) <m(g)
for all pe H and t=0. Also we showed above that m(T,g)<1 for all
pure states ¢ in  and all sufficiently small r > 0, depending on g. Therefore
m(T,0) <1 for all 1>0 and all g€ Q and by compactness for any t,>0
there is a constant k <1 such that m(T; o)<k for all ¢ € Q. Therefore
m(T,,,0) < k" and T,0— g, as t—co.

§ 4. Transition Processes

It seems difficult to say very much more about quantum stochastic
processes without imposing further conditions of a special nature on the
infinitesmal generators. In this section we study the properties of one
special class of processes, which we call transition processes because
of their relevance to the time evolution of simple quantum mechanical
systems emitting photons while undergoing transitions from one energy
level to another. We define transition processes by certain global proper-
ties and then prove certain results about their infinitesmal generators,
though it will become evident that we could just as easily have proceeded
in the other direction.

A quantum stochastic process & on X, V will be called a transition
process if

(i) there is a given separable locally compact Hausdorff space Y and
a continuous map o of X into Y x Y;

8 Commun. math. Phys., Vol. 19



100 E. B. Davies:
(i) for all peV*
P,{for some i, ox;(w)=(y,y,), 0%;+1(@)=(y3,ys) and

y2# 34 =0.

The first of these conditions was observed to hold for the hydrogen atom,
and this indeed constituted the first major advance in atomic spectroscopy.
The second cannot be observed directly since the emissions of an indi-
vidual atom cannot be distinguished from those of the surrounding
atoms. Explicitly for the hydrogen atom we take G=SU(2) and S, as
the unit sphere in Euclidean space. Y is the set of energy levels of the
atom and X =Y x Y x S, so at each event in X one determines the
energy levels before and after the emission as well as the direction of
emission of the photon whose detection is the event. The Hamiltonian
H, is here known and the transition operators (determining the prob-
ability per unit time of the emission of a photon in a given direction
causing a jump between given energy levels) are calculated by perturba-
tion methods using quantum electrodynamics [9]. It is interesting here
to note that the energy of the electron can only be observed by transitions,
so this observable is not repeatable in the sense of [1]. In spite of this
the following theorem still gives a general proof that the energy observable
is associated with a projection-valued measure.

For any Borel set E C Y we define W, as the norm closed order ideal
generated by the set of all &,(L7"Y*P), o) where o V* and t>0. Let
Py be the corresponding orthogonal projection.

(4.1)

Theorem 15. Let & be a simple, recurrent, irreducible, transition process
on X, Y, covariant with respect to the connected group G. Then P is a
projection-valued measure with discrete support in Y. P commutes with
all Uy, g€ G and with the Hamiltonian H,. If xe X and ox=(y, z) then
A, has support in P, and range in P, .

Proof.Let A € £ (#),0 < A <1 be the operator defined by the equation

tr[Ae] = P{x,(w)e s ' (F x Y)}.
The set
J={oeV":tr[A¢g] = tr[e]}

is a norm-closed order ideal containing all states of the form &,(I5 " *F) g)
because & is recurrent. Therefore J 2 W' and every g € W™ has support
in the eigenspace of 4 corresponding to the eigenvalue one. Similarly
if EnF=¢ every ge W;" has support in the eigenspace of 4 corre-
sponding to the eigenvalue zero. Therefore P, and Py are orthogonal
projections. It is immediate from their definitions that P, =0, that
P, < Pp if ECF, and from recurrence that Py =1.
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Let E, be a countable disjoint family of Borel sets in Y with union

0

E and let P, be the projection Py =P,— ) Pp . We show P,=0. For
allpe V" and t>0 n=1

t[Pod (LB o) =) [P 6L, )] =0
n=1
since P,P,=0 for all n. It follows that tr[P,0] =0 for all ge W;" so
Py P;=0. But Py < Pg, so P,=0, and P is a projection-valued measure.
We next show that if ox=(y,z) and 4,0 then P, #0. Let U be
any open neighborhood of z and let U'={x:0xe Y x U}. If 4,£=0
and U" is any open neighborhood of x contained in U’ then W' contains

o= [ [ &.®¢ dyds
yeU” s=0
where ¢, (= B,_ A,B.. By the strong continuity of y, s—¢, ; and taking
limits in the usual way it follows that

(A4:H)®(4.8)" e W. (4.2)

If Y={zeY:W, +0} then Y' is countable since we are supposing
that s is separable, and Py_y. = 0 since 4, =0 for all x withoxeY
x(Y—Y"). We write X'={xe X:A4,+0} and observe that X' is open
and invariant under the action of G.

Suppose x € X'. Then {o(xg):g € G} is a connected subset of Y x Y".
Since Y’ is countable it is totally disconnected so the image is contained
in Y x {z} for some ze Y'. Therefore forallze Y, {xe X' :0x€ Y x {z}}
is G-invariant, and W, is G-invariant. Therefore U,BU}* =P, for all
geGand ye Y, and P commutes with U.

Eq. (4.2) also establishes that if 6 x =(y, z) the range of A, is contained
in P,#. By the transition hypothesis 4,0A% =0 for all ge W, so the
support of A, is contained in P,#. Therefore

AXA = AXAP, = P A% A,

and in fact each operator A¥ A, commutes with the projection-valued
measure P. Therefore the total interaction rate R commutes with P.
Similar arguments show that B,P,# C P, for all yeY and t=0. If
U, is the one-paramter unitary group generated by the Hamiltonian
H,, where Z =iH, — R, then U, may be constructed from B,, Z directly
using a sequence of integral equations [ 7, p. 495]. Therefore U, P, # C P, #
for all yeY and t=0. It follows that P commutes with the spectral
projections of H,.

The study of certain transition processes can be reduced essentially
to a problem about ordinary classical Markov chains. We call a process
semi-classical-if it satisfies the conditions of the following proposition.

8*
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Proposition 16. Suppose & is an irreducible, simple, recurrent, transition
process on X, V, covaiant with respect to a compact connected group G.
Then the set W™ of states g € V¥ which commute with Pand U is invariant
under T, for all t=20. W can be identified with the set of all bounded
positive measures on a countable set I if and only if the restriction of the
representation U to each subspace P, is multiplicity free.

Proof. The fact that W™ is invariant follows from Theorem 15 and
Eq. (2.8). As a partially ordered space, W=W* — W can be identified
with the complete direct sum

W= Z @ {oe 7P, H):[U,,0]=0 forall geG}. 4.3)
yeY
W™ can be identified with the set of bounded measures on a countable

set only if W is a vector lattice, which happens if and only if U is multi-
plicity free on each subspace P,#. If this occurs we write P,=) P,

where P, , are projections commuting with U and on which U is ir-
reducible. Then P,,# is finite-dimensional since G is compact. If
e, ,= P, /tr[P, ] and I is the set of double indices y,n then

W*={Z<paea:<pazo, Z¢m<oo} (44)
ael ael
Now suppose that ¢ = 2 ¢,e, and
T(0)= Y o,(1) e, . (4.5)
ael

The following theorem shows that the restriction of T, to W™ is a classical
Markov chain.

Theorem 17. Let & be a semi-classical process. Then there exist
constants r, 20, B,.,20 and 0 < K < oo such that for all t=0

y Bywa=1,=K (4.6)
ael
and d
E— (pa(t) = ra(pa(t) + Zlﬁy—'a(pv(t) . (47)

Proof. The operator R commutes with U and P so there exist constant
0<r,<K such that Re,=r,e, forallaeI. If ge W* then #(X,0)e W~
so we define f8,,,20 by #(X,e)= Z B,-«¢, and immediately obtain

Eq. (4.6). If P, is the projection define:i above then by Eq. (2.10) of [3]

tr[P,T}(0)] = tr[P,S,(0)] + t tr[P, .7 (X, )] +0(t?). (4.8)
Now if g = ) ¢,(to) e, then S,(¢) = Y @,(t,) e "¢, s0 tr[P,S,(0)] is differ-
entiable with derivative — r, ¢, (t,) at = 0. The right hand side of Eq. (4.8)
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is now seen to be differentiable at t =0 giving

d
{E q)a(t "" to}}::o = - ra@a(to) +tr I:Pa%ﬂyﬂé(py(tO) ey:l

which on simplification becomes Eq. (4.7).

§ 5. Reversible Processes

We treat here another special class of processes, which can be extended
from V =7(H#) to L(H). Closely related work on duals of instruments
was done in [2].

Given X we define X, and X as before. A normal process & on
X, Z(H#) is then defined as a function &,(E, A) taking values in L ()
for each Borel set E C X,, each A € Z(#) and each t > 0, and satisfying

(i) E-&,(E, A) is o-additive in X, for each Ae ¥ (), the sums
being taken in the weak operator topology;

(i) A—6&,(E, A) is a positive normal linear mapping for each EC X,;

(iii) for each EC X, FC X, and A € Z(H)

&, (ExF,A)= &, é&,(F, A)).

If E is any subset of X, we define E° as its image under the time

inversion 0
(xla tl) (xna tn)_>(xmt— tn) (xbt—tl)'

Given any process & on X, V we can define its dual process &* on X, L(H)
by the equation

tr[6,(E, o) A1 = tr[o &*(E°, A)] (5.1
valid for all pe V, Ae £ (s#) and ECX,. It is easy to verify that &* is
a normal process.

Proposition 18. Let & be a process on X,V constructed from a
Hamiltonian Hy and a Borel map A: X — L (). If there is a constant K
such that for all Ee€ #

[1A4.8017dx = | | 4%¢|*dx < K||¢]| (5.2)
X X
then & has a unique extension to a normal process & on X, L (H) satisfying
E(X,)=1 for all t 2 0.

Proof. Uniqueness is clear from the fact that & is normal and V' is
dense in Z () for the weak operator topology. We construct & as the
dual of a process & C&*. ¢ is defined as the kernel

F(E,0) = | A0 A.dx (5.3)
E
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so for all g,ceV
tr[#(E, 0) 6] = tr[o # (E, 0)] (54)

and in partlcular R= R. Incorporating a time reversal we define
Z=—iH,—%R, so B,=B¥. & is now constructed from ¢ and Z by
the procedure of [3]. It follows from Eq. (4.6) of [3] that

tr[6,(E, ¢) 0] = tr[o ,(E’, 0)] (5.5)

for all g, QeV and all ECX,. Therefore £* is an extension of &, which
we call &. For all eV and t =0

tr[&,(X,, 1) o] = tr[&,(X,, 0)] = tr[e]
so &(X,, 1)=1.
The following theorem is a generalisation of a known result for
Markov processes with doubly stochastic kernels.

Theorem 19. Let & be an irreducible, infinite-dimensional process on
X, V such that the operator A, is normal for all xe X. Then & cannot
have an equilibrium state.

Proof. Eq. (5.2) is satisfied so we have a normal extension & with
corresponding one-parameter semigroup T. Suppose g is an equilibrium
state with largest eigenvalue 4 > 0 and corresponding proper eigenspace
. Then A=11-—p is a non-zero positive operator invariant under T
and with support contained in #"*. If

J={g0eV*':9g<aA some a=0}"

then J is a proper, norm closed ideal in V' * invariant under 7, all t > 0.
But this contradicts the irreducibility of &.

For such processes the operator 1 can be interpreted as an unbounded
equilibrium state.

We can illustrate the application of this and earlier theorems by a
rather interesting example. The physical model is of an elementary
particle moving freely in one-dimensional space with periodic boundary
conditions, and interacting with a position-measuring instrument.

Let X be the circle with the Haar measure dx of total mass one,
let #=2%%*X) and let V=7,(#). The group G=R has a natural
representation by translations on X, and hence on # and V. Let the free

2
—667. In Theorem 4 of [2] we have shown how
to construct a covariant instrument # on X,V from a certain family
of normal bounded operators 4: X - # (). There exist constants K >0

Hamiltonian H, = —
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and L >0 such that for all pe V*

tr[/(X, 0] = K tr[e], (5.:6)
tr[P Z(X, 0)] = tr[P¢], (5.7)
tr[P? #(X, )] = tr[P*¢] + L tr[e], (5.8)

where P is the unbounded momentum operator — i —a%— The interaction

rate R=K 1 of the instrument is independent of the state ¢ and the
constant L gives the amount the momentum distribution of the state
is perturbed during the act of measurement. We construct the covariant
process H,, ¢ in the standard manner. Observe that B,=e™ *Kteifof g0

tr[S,0] = e X'tro] . (5.9
By Lemma 1 and [2] it follows that & is irreducible, and by Theorem 19,
& has no equilibrium state. However by Eq. (5.9) the waiting time for
an event is finite and independent of the initial state, so the process is
recurrent in a very strong sense. This feature of the example is explained
by the fact that each time an event occurs the variance of the momentum
increases by a fixed amount. Therefore the variance of the momentum
of any state should diverge linearly to oo as t—o0. However one would
expect that the position distribution of the state would converge to the
uniform distribution on X as t— 0.
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