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Abstract. We investigate properties of a class of quantum stochastic processes subject
to a condition of irreducibility. These processes must be recurrent or transient and an
equilibrium state can only exist in the former case. Every finite dimensional process is
recurrent and it is possible to establish convergence in time to a unique equilibrium state.
We study particularly the class of transition processes, which describe photon emissions
of simple quantum mechanical systems in excited states.

§ 1. Introduction

In earlier papers [1—3] we have shown that in order to treat repeated
measurements or measurements extended over a period of time, it is
necessary to extend considerably the conventional description of meas-
urement theory in quantum mechanics. In order to describe regorously
the photon counting experiments being done in quantum optics, for
example, it was necessary to develop a theory of quantum stochastic
processes [3]. These are generalisations of classical Markov processes
and can be analyzed in terms of, and constructed from, two infinitesmal
generators. The first of these is the Hamiltonian of the quantum mechani-
cal system, and the second is a stochastic kernel, describing how the
measuring instrument interacts with that system. In the presence of the
measuring instrument the system evolves according to a one-parameter
strongly continuous semigroup of positive endomorphisms of a space
of self-adjoint trace class operators.

In this paper we start the analysis of the properties of a class of
(quantum stochastic) processes. A process is called irreducible if it cannot
be restricted to any proper closed subspace of the underlying Hubert
space and we restrict attention throughout to the irreducible processes.
As in classical probability theory the reducible processes are of a much
more complex nature and cannot be "decomposed" as direct integrals
of irreducible ones. A class of processes, called simple, has the property
that certain order ideals associated with compact subsets of the value
space of the process are finite-dimensional. We establish necessary and
sufficient conditions on the infinitesmal generators of a process for it
to be simple and irreducible. We also prove that the simple irreducible
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classical stochastic processes are precisely the irreducible continuous
time Markov chains in the sense of [4].

Section 3 is concerned with proving that every simple irreducible
process is either recurrent or transient. Here a process is called recurrent
if for every initial state and every non-null open set in the value space
the number of events in that set is infinite with probability one. A process
is called transient if for every initial state and every open relatively com-
pact set the number of occurences of events in that set has finite expec-
tation. A process with an equilibrium state must be recurrent. Every
finite-dimensional process is recurrent and it is possible to establish
convergence in time from any initial state to a unique equilibrium state.

In Section 4 we consider the class of transition processes, behind
which there is a rather simple physical model. This consists of an atom
emitting photons in various directions at random times under external
excitation. The Hubert space used is that describing a finite number of
electrons moving in a central potential. The irreducibility hypothesis
means that an electron can jump from any energy level to any other
energy level eventually, perhaps via intermediate levels. The hypothesis
on the order ideals means that each of the energy levels of the atom must
be finite-dimensional. For a spherically symmetrical atom the group
SU(2) has a unitary representation on the Hubert space, and this can
be used to restrict greatly the possible variety of structures.

As far as the interpreation of this model is concerned two attitudes
are possible. One can argue that an exact treatment of the radiation of
the atom requires a quantisation of the electromagnetic field to be in-
cluded and that the one-parameter semigroup we obtain on the space
of self-adjoint trace class operators on the small Hubert space is just the
"best approximation" to a one-parameter unitary group on the larger
Hubert space. While partially justified this overlooks the fact that any
theory which describes the actual arrival of individual photons at counters
at random times must incorporate something like a stochastic process.
Indeed we have described in the earlier paper how to construct a quantum
stochastic process on Fock space in order to describe the action of photon
counters. Therefore the choice of Hubert space depends on the level of
accuracy desired, but in neither case can the evolution be properly
represented by a one-parameter unitary group. If the photon density in
the electromagnetic field is low and the counter is effectively decoupled
from the radiating atom then either approach will give essentially the
same probabilistic predictions.

In the final section we exhibit a class of processes which we call
reversible, and hence find a simple and rather surprising condition on
the infinitesimal generators of an infinite dimensional irreducible process
for there to exist no equilibrium state. We illustrate this by an example
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of an elementary particle moving through a bubble chamber with periodic
boundary conditions imposed.

Since the main techniques of the paper are adaptations of very
standard methods in classical probability theory [4], three remarks about
the ways in which quantum processes differ from classical processes
are in order. Firstly quantum processes with discrete time turn out to
be very difficult to analyse because very complicated multiple periodi-
cities can occur. Secondly simple quantum stochastic processes can
have non-trivial connected groups of symmetries, and hence these pro-
cesses actually have a richer structure than the continuous time Markov
chains. We include such a symmetry group systematically in our treat-
ment, and without loss of generality since it can always be taken to be
trivial. Thirdly irreducible quantum processes need not have equilibrium
states even when they are very strongly recurrent, as we show by an
example in Section 5.

§ 2. Irreducible and Simple Processes

We recall some of the notation of [3], which will be followed system-
atically here, and at the same time construct the family of processes
with which we shall be concerned for the rest of the paper. Let Jtf* be
a separable Hubert space and V=^S(J^) the real ordered Banach space
of self-adjoint trace class operators on ffl with the trace norm. The trace
tr defines a strictly positive linear functional on V, which is called the
state space. Let U be a unitary representation of a separable locally
compact group G on J f and define a representation α of G as a strongly
continuous group of positive, trace-preserving automorphisms of V by

*g(ρ)=UgρU* (2.1)

where ρ e V. Let X be a separable locally compact Hausdorff space,
called the value space, and let there be a jointly continuous action
X x G^X of G on X. Suppose that a G-invariant measure dx on X
with support equal to X is specified and that A : Jf-»J^pf) is a strongly
continuous map such that for all x e X and g e G there is a number
λ(x, g) of absolute value one such that

Axg = λ(x,g)U*AxUg. (2.2)

Also suppose that there exists a constant K such that for all ξ e ffl

$\\Axξ\\2dx^K\\ξ\\2. (2.3)
x

Then it is easy to verify that the formula

tr [/(E, ρ)J3] = f \x[_AxQA*B] dx (2.4)
E
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where E Q X is a Borel set, ρ e V and B E 3? pf ) defines a bounded
stochastic kernel on X in the sense of [3]. Moreover if 0 e G then

tr[/(£β-1>β)B]= ί

= I tr[|A(x, g)\2 UgAxV*gρUgA*x 17* fl] dx

E

= tr[/(£,αβ-1(ρ))t7*Bl7fl]

= tr[α,{/(£,α<rl(ρ))}β]
so

(2.5)

and /" is co variant with respect to G in the sense of [2].If JR is the operator
on 3? defined by

)] (2.6)

then O ^ R ^ K l and ί/gR = R 17, for a!10eG.
Now let H0 be a self-adjoint operator on 2tf such that H0Ug = UgH0

for all g e G. As in [3] we define Z = iH0 — ^R and let #, be the semi-
group on 2tf with infinitesmal generator Z. St is the semigroup on V
given by S^ρ) = BtρB*. By Theorem 4.7 of [3] / and Z are the infinitesmal
generators of a unique quantum stochastic process δ on X, V. Moreover
$ is covariant with respect to G in the following sense. G has an action
on each of the sample spaces Xt induced from its action on X and for all
t ̂  0, ρ e V and E g Xt, £ satisfies

t , - , , t , , - . (2.7)

This equation implies that the semigroups S and T on F defined in [3]
satisfy

Ttag = agTt; Stag = agSt (2.8)

for all t ̂  0 and g G G. For the rest of the paper the term process will mean
a quantum stochastic process constructed from given HQ,A:X-^^(^f\
U:G-^^(^f)as described above.

In order to formulate further conditions on processes we define an
order ideal on a state space V as a subset / £ V+ such that

(i) if x, y e I and α, β ̂  0 then ax + /ty e /;
(ii) iϊO^x^yel then x e /.
In an abstract state space order ideals do not have very good proper-

ties, but for the case V = ^~s(34f) the following results are well known
and easy to prove. The closure of an order ideal is an order ideal and
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every finite-dimensional order ideal / is closed, the set {ρ e /: tr [ρ] = 1}
forming a compact base for / in the sense of [5]. There is a one-one
correspondence between closed order ideals / £ V+ and closed subspaces
3f £ 2tf given by

/ = {ρ e &~s(j#y : supp(ρ) g tf}. (2.9)

If / is a closed order ideal then W = I — I is a closed subspace of V and
even a state space. If S £ V+ is any set then

/ = <ρeV+ : ρ ̂  £ αrsr for some ocr g; 0, sr E S, n
[ r = l

is the smallest order ideal containing 5 and is called the order ideal
generated by S.

Now suppose $ is a process on X, V and 7J(ρ) e / for all ρ e / and
r g: 0, where / is a certain closed order ideal. Then for all t > 0 and all
Borel sets E £ Xt and all ρ e /

so $t(E, ρ) e /. Therefore it is possible to define a restriction of the process
to the state space W=I — L The process is called irreducible if dim V > 1
and $ has no proper restriction. We comment that our notion of restric-
tion does not agree with that introduced in [6]. Indeed in the sense of
[6] the state space Fhas no proper restrictions because the von Neumann
algebra jS?(Jf ) has no proper central projections.

Proposition 1. // dimJf?> 1 the process $ is irreducible if and only
if there is no proper closed subspace 3C of ffl such that Ax Jf" £ Jf* for
all xe X and

JT (2.10)

where 2(Z) is the domain of the inβnitesmal generator Z.

Proof. Suppose / £ V+ is a closed invariant ideal corresponding to
the subspace Jf £ J f . Suppose ξ e Jf and /„ is a sequence of positive
continuous functions on X with ] fn(x) dx=ί and such that the support

x
of /„ decrease to {x}. For every ί > 0 we define /t on X, 7 as in [3] and
obtain

so

«-»• oo w—>• oo
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lies in /. Therefore Axξ e tf. Also for all t ̂  0

so the one-parameter semigroup of contractions B leaves JΓ invariant.
The equivalence of the last statement with Eq. (2.10) is a straightforward
consequence of the general theory of one-parameter semigroups [7].

The converse proposition is obtained in a similar manner by ex-
amining the construction of $ from / ', Z in Theorem 4.7 of [3].

If $ is any process on X, V and ρ e V+ we define a positive measure
Pρ with total mass tr[ρ] on Xt for t < ooby

Pρ(£) = tr[^(£,ρ)] (2.11)

for all Borel sets EQXt. There measures are compatible under the natural
maps π:Xt-+Xs defined for oo ̂  t ̂  s, and therefore there is a measure,
which we also denote by Pρ, on X^ compatible with all of them. For
each set EQX^ the map ρ-+Pρ(E) is positive, linear and bounded with
norm not greater than one. Instead of regarding $t as defined on Xt

we regard it as defined on the σ-field J^ of Borel sets in X^ which are
inverse images under π: X^-*Xt of Borel sets in Xt. The ̂  form an
increasing family of cr-fields in X^ and the union generates the σ-field
3F of all Borel sets in X^. If ω e X^ is a sample point containing at least
n events we denote by xn(ω) and tn(ω) the place and time of the nth
event. If a sample point ω does not contain n events we adopt the con-
vention ίπ(ω)=-hoo. It will be convenient to introduce the following
notation for certain Borel subsets of X^, where U is any Borel subset
o f X .

A>;={tn(ω)^t,tn + 1(ω)>t}. (2.12)

B">u = {x. (ω)e U on at least n occasions with
(2.13)

except for t = oo we demand all ίf(ω) < oo.

Lu

t = U Mω) g ί, *i(ω) e 17, ίί + 1(ω) > ί} . (2.14)

If t is an integral multiple of 1/n we define

{ r — 1 r
if - < ίf(ω) ̂  — for any r ̂  wί and i then ίί+1 (ω) > —

(2.15)
From [3] we have the estimate

(2.16)
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for all ρ e F + , where K is a bound on the total interaction rate of the
process. The following lemma allows us to use the sets C" to construct
approximate discrete skeletons to the continuous time process S.

Lemma 2. // t > 0 is an integer, ρeV.Ee^ and n^K then

?, ρ) - βt(E9 ρ)|| ̂  - - ||ρ|| . (2.17)

Define ^(ρ)-^1/M(^1/n-^,ρ) so that <ft(C?,ρ) = W"(ρ).
Suppose first that ρ e F+. If n ̂  X then Eq. (2.16) yields

(CΓ, ρ)] ̂  l - - tr [ρ] £ l - - - tr[ρ] .

Therefore
Γ, ρ) - *,(£, ρ)|| = tr[ί,(£ - EnC?, ρ)]

ί

For a general element ρ e F we can solve ρ = ρί — ρ2 where ρ1; ρ2 e
and ||ρ|| = ||βl|| + ||ρ2||. Therefore

We call a Borel set £ ς X null if PJB^} - 0 for all ρ e V + .

Lemma 3. An open set U QX is null if and only if Ax = 0 for all xeU.
If $ is irreducible then either U is null or Pρ{B^u} >0 for all non-zero
ρ E V+ moreover the set X cannot be null.

Proof. Suppose Axξ Φ 0 for some x e L^and hence for x in a subset of
positive measure in U. Then for ρ = ξ (x) ξ

xeU

In the notation of [3]

) = lim/t(l7,ρ)

- lim ί" ̂  ί({0<ί1(ω) g ί, xx(ω) e (7, ί2(ω) > ί}, ρ)

and so by choosing t suitably small
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Conversely suppose ρe V+ and

= ΣPρ{Xi(ω)φU for i<n and xn(ω)eU}
n = l

CO 00

= Σ Σ PQ {χί(ω) Φ U f°r l < π, xn(ω) E (7, m — 1 < ίn(ω) rg m}

00 00

Z-ί Z-Λ r->rr. ^^ m' ί V ^ ^ '

xπ(ω) 6 L7, m -

by Lemma 2. Therefore for suitable m, n, r and ρ' e F +

0 < tr δljr xΛω) e C7, ^(ω) ̂  , ί2(ω) > ρ'

by Eq. (4.5) of [3]. Putting Q" = Ssρ' for some 0 < s < — we obtain

It follows that Ax φ 0 for some x e [/.
Now suppose that <? is irreducible and U is an open set which is not

null. The set J of ρ e V+ such that PQ{Bl^v} = 0 is a norm closed order
ideal which is invariant because if ρ e J

PτtQ{Bi

0ί
u}=PQ{xi(ω)EU some ί with f <ί f(ω)<oo}

Since J φ F+ we must have J = 0.
Finally suppose X is a null set. Then Ax = 0 for all x e X so / = 0

and R = 0. Therefore Z = ίH0 and T^) = e i t H°ge~ i i H o. Since we have
dim^f> 1 there exists a proper projection P commuting with H0 and
then J = {ρ e V+ : Pρ = ρP = ρ} is a proper closed invariant order ideal,
which contradicts irreducibility.

Returning to the general situation we say that a process $ on X, V
is simple if it satisfies the condition

(S) for every open U £ X with compact closure the order ideal V^ generated
by the set of ^t(fft, ρ) where ρ e F+ and t > 0 is finite-dimensional
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Proposition 4. A process $ is simple if and only if for every open
relatively compact set U QX there exists a finite dimensional subspace
JίTgJ^ such that Ax.& g Jf for all x e [/, JΓ g 9t(Z) and Z JΓ g Jf .

Proof, This is just a slight modification of Proposition 1 and Lemma 3.
Before develooing the implications of our hypotheses we interpret

them for the case of classical Markov processes, slightly generalising
the situation of [3]. The notation used for the remainder of this section
will not be referred to elsewhere. We start with the space X as before
but now define the state space V as the space of all bounded signed
measures on X. If J* is the σ-field of Borel sets in X a Markov process
can be constructed from a bounded stochastic kernel K:Xx J^->R
The total interaction rate is the bounded Borel function R(x) = K(x, X)
and the semigroup 5 is given by

(Stμ) (E) = ί e-*<x>'μ(dx) £ e~«^(E)
E

for all μ e F + , where α is any bound on R. As we have formulated them
the definitions of simplicity and irreducibility apply to processes defined
on completely general state spaces, and therefore to this situation. We
observe that the order ideal generated by a set S £ V+ can be finite dimen-
sional only when there exists a finite set YQ X such that μ(X — Y) = 0
for all μ e S.

Proposition 5. // $ is an irreducible simple Markov process on X then
X is discrete and $ is an irreducible Markov chain in the classical sense.
$ cannot have any connected group of symmetries.

Proof. Let U be any open set in X with compact closure, let x e X
and let μ be the measure E-+K(x,EπU). Then

Therefore there exists a finite set XvgU such that for all x E X the
measure E-^K(x,Er^U) has support in Xv. We take Xv to be the
smallest such set and observe that the union X' of the Xυ as U runs
through all open sets with compact closure, is discrete and therefore
countable. Also for all xeX, K(x9X-X') = Q. lϊI = {μeV+ :μ(X-X') = Q}
then / is a closed invariant order ideal in V+ , so / = V+ by irreducibility,
and X = X'. The closed ideals of V+ correspond one-one with the subsets
of X and the process is irreducible if and only if there is no subspace of X
invariant under K. The last statement of the proposition is obvious.

§ 3. Recurrence and Transience

Throughout this section we suppose <? is a simple irreducible process
on X, V and that £7, W are two given open subsets of X with compact
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closures. If E £ X is a Borel set we say the process is m times recurrent
at E for the state ρe V+ if

(3.1)

Lemma 6. // ̂  is smg/y recurrent at Ufor all ρ e Vy then it is infinitely
recurrent at U for all ρ e K unless U is null

Proof. Suppose that for some integer m and all ρ e Vfj we have
established that PQ{ff%Ό} =tr[ρ]. If ε>0 then by the compactness of
{Q E Vv

+ : tr[ρ] = 1} and Lemma 2 there exist integers t and n such that
for all ρ e VΌ

+

Therefore

^ V^ ^ ί / Λ T T Γ 1 1 , <?— I , x <?
= L^ρ i xi(ω)e U tor the rath time where < ίf(ω) ̂ — ^ί,

Xy(ω) e (7 for the 2m th time where < tj(ω)

<^^~<2tωeCn\ (12)

- n ~ 'ω e 2ί}

If we define

= <f g/π ω e Cg/n, xf(ω) e U for the nth time where

then 0^ρ^^/π(Z^/M,ρ)e V so ρqeVΌ

+. The right hand side of Eq.
(3.2) now becomes

\ω G Cn

2t-qln, Xj((o) e U for the nth time where
{

n n n

= Σ ̂ {^2ί-g/«Π^2ί-q/«}
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ί
ρ <ω e Cn

q/n
q

g

1 - — 1 y P \ω e C"/M, xz (ω) e 17 for the nth time where

n ~ n

έ^l-yj tr[ρ]£(l-e)tr[ρ].

As ε>0 is arbitrary we obtain PQ{B^tU} = tr[ρ]. Now we know that
Pe{BκV} = tr[ρ] for all ρ e VΌ

+ so inductively we obtain Pe{B£ u} = tr[ρ]
for all ρeVj. The set

is a norm closed invariant order ideal containing Vv

+, which is non-zero
if U is not null. By irreducibility J = V+ and the lemma is proved.

Lemma 7. // the process $ is singly recurrent at U for all ρeVv

+

then it is singly recurrent at W for all ρ e V^ .

Proof. By Lemma 3 and the compactness of {ρ e Vv

+ : tr[ρ] = 1} there
is a constant /c>0 such that Pe{B^w} ^k tr[ρ] for all ρeVj. Let k
be the largest such constant and let ρ0 e Vv

+ be a state such that Pρ {B^w}
= /ctr[ρ0] = /c. Let ε>0 and let t be a sufficiently large integer so that
Pρo{Bί

t^}>k — s. Using Lemma 6 let 5 be a sufficiently large integer
that

Pρo{if ί f(ω)^ί then X;(ω)£ Pίζ but x/ωjel/ for some

t < tj(ω) ^t + s}>l-k-ε.

Using Lemma 2 let n be a sufficiently large integer that

Pρo{ωeC;+f, if ί f(ω)^ί then xz.(ω)^FK but x/ωjel/

for some t < tj(ω) gί + s}>l — k — ε.
Then

PCo{Bi^} έP.Jΰ,1-*} + Σ ̂ J^"'} (3.3)
ι m — \

where

m/π, for ί((ω) ̂  ί, x,-(ω) φ U

—
for t < ti(ω) ̂  ̂ —^, χ.(ω) e (7 for

m — 1 m l
some — - — < ίf(ω) ̂  — >, ρ0
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Since ρme Vυ

+ , PeJB^w} ^k tr[ρm] and Eq. (3.3) becomes

= fc - β + fc X Pρo ω e C?+ m/π, x,(ω) £ W for ί((ω) g ί,
m = l I

Xi(ω)φU for ί<ί f(ω)g ^~— ,

X;(ω) e (7 for some - < ί, (ω) ̂  —

^fe-ε + /cPρ o{ωeQ+ s,x ί(ω)^FΓ for ίz-(ω)^ί but

^•(cυ) e I/ for some ί < t^ω) rg ί + 5}

Letting ε->0 gives 0 ̂  fc(l — /c), and as k > 0 we have k = 1, which is the
required result.

Lemma 8. Suppose U and W are not null If $ is singly recurrent at
U for all ρ e Vv

+ then it is infinitely recurrent at W for all ρeV + .

Proof. Let ρe V+ and for ε>0 let ί, n be large enough integers so
that P6{C^B}>U} ^ (1 - ε) tr[ρ]. Then defining

eCn

mln9Xi(ω)φV for ti(ω)^^^ but Xi(ω)eU

m-1 m l
for some - < tf(ω) ̂  — >, ρ

we obtain

m-1

^ Σ

Letting ε-+0 gives the equation PQ{B^w} = tτ[ρ] for all ρ e F + . By
Lemma 6 it follows that Pρ{B™>w} = tr[ρ] for all ρe 7 + .

We now turn to the study of processes which do not satisfy the
hypothesis of Lemma 6. We define an integer-valued function JVf : X^
-> [0, oo] for every Borel set E £ X and every ί < oo by

Nt

E(ω) = {number of i for which x ί(ω)e£ and ίf(ω)^ί} (3.4)
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while for ί = oo we demand ίf(ω) < oo. For each state ρ e V+ the expected
number of occurences Nt

E(ρ) of events within E up to time t is given by

Nt

E(Q)= \N?(ω}PQ(dω] (3.5)
X

so that

Aβ(β)= ΣPρ{x»e£}. (3-6)
w = l

Lemma 9. Suppose $ is not singly recurrent at U for some ρ0 e P^"1".
Then there exist 0 < k < 1 am/ an integer m such that for all QeVv

+ and
all integers n

(3.7)

Proof. Let SmgVj be the set of ρet^+ such that tr[ρ] = l and

Pβ{β£ϋ} - 1. Then Sm ς Sw_1 and if ρι e Q SM we have tr[ρj = 1 and
ρe J where m = 1

But J is a norm closed invariant order ideal and ρ0 φ J so by irreduci-
00

bility J =O. Therefore p) 5m = φ and by compactness Sm = φ for some m.
m = l

For that m there exists a constant 0 < fe < 1 such that for all ρ e Vv

+

Eq. (3.7) holds if n = l .
Suppose now that we have established that Eq. (3.7) holds for some n

and all ρ e Vv

+ . Then for any ε > 0 there exist integers r and t such that

(3.8)

= ΣP

Qs{^-s/r^B^r}s = l

where

Qs= $s/r \\ωG ^s/f x/(ω)e U for the nth time where

5-1 , λ 5
< tΛω) ^ —

r r

The right hand side of Eq. (3.8) is

rt

Going to the limit as ε->0 gives the required result by induction.
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Lemma 10. Suppose $ is not singly recurrent at U for some ρ0 e Vj .
Then there exists a constant av<co such that N^(ρ] ^ % tr [ρ] for all ρ e V + .

Proof. For all ρ e V+ we have

Λ£(ρ)=lim lim J N%(ω) PQ(dω) .
ί^co H-+OO C p n Bj> r,

Also if we define

for ti(ω)^--,

for some - - < ί,(ω) ̂  — , ρ e K/~
n n

and σ= ]Γ ρse Vv

+, then tr[σ] ^tr[ρ] and

nt f ^
J N^(ω) Pρ(dω)= £ str[ρs]+ J N^(ω)Pρs(dω)>

By Lemma 9 there exist constants k and m such that

for all integers r. Therefore

J
r = 0 — A

and

J ]Y^(ω)Pρ(dω)^ (l+ τ\) tr[ρ] .
Xoo \ L ~ K I

We summarise all the results obtained so far.

Theorem 11. Call a process $ on X, V recurrent if every state ρ E V+

is infinitely recurrent at every open set U ξ. X which is not null Call it
transient if every open subset U £ X with compact closure has a finite
expected number of occur ences for every state ρ e V+ . Then every simple
irreducible process is either recurrent or transient.

The problem of determining whether a given process is recurrent or
transient is in general a difficult one, depending on detailed properties
of HQ and /, but some general guide is contained in the following results.

We call a process on X, V substantially finite-dimensional if there
exists a finite-dimensional projection P in ffl and a constant α > 0 such
that

(i) Tt(P)P = PTt(P) for all ί^O;
(ii) tr[Pi;(P)]^α for all ί^O.
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By taking P = 1 it is immediate that every finite-dimensional process
is also substantially finite-dimensional.

Proposition 12. Every substantially finite-dimensional, simple, irre-
ducible process is recurrent.

Proof. If Un is an increasing sequence of open sets with compact
closures whose union is X then N^n(ω) converges monotonely to N^(ω)
for all ω e X^. Therefore by Lemma 3 for all non-zero ρ e F + ,

If P and α are as described above then by the compactness of the set of
ρ with tr[ρ] = 1 in

there exist n and β > 0 such that for all ρ e J

(3.9)

If now $ is transient then application of the dominated convergence
theorem to

j N%(ω)PQ(dω)= J N?»(ω)PQ(dω)+ f Λ#«(ω)PΓιβ(dω)
Xoo Xoo *oo

yields

lim f Λ£"(ω)PTtβ(dω) = 0

for all ρ e F + . Choosing in particular ρ = P and defining ρ' = PTt(P) e J
where ί is large enough gives

J N£»(ω) PQ.(dω) ^ f NS»(ω) PTt(β) (dω) < /J tr [ρ'] .
Xoo Xoo

This contradicts Eq. (3.9), so $ cannot be transient.
An equilibrium state of a process $ on X, V is by definition a state ρ

such that Ttρ = ρ for all t ̂  0.

Theorem 13. An equilibrium state of an irreducible process $ has
support equal to ffl . A simple irreducible process with an equilibrium state
must be recurrent. A finite-dimensional irreducible process possesses an
equilibrium state, unique up to a constant multiple.

Proof. The first statement follows from the fact that if ρ0 is an equi-
librium state

J = {ρeV+ :ρ^ αρ0 some α}

is an invariant order ideal, and so must be dense in V + . For the second
statement we observe as in Proposition 12 that if <ί is transient and U
is an open set in X with compact closure then N^(ρ0) = JV^(Tfρ0)-»0
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as f-»oo. Therefore A^(ρ0) = 0 for all such U and so JV*(ρ0) = 0. But
now N*(ρ) = 0 for all ρ e J and so for all ρ e F + . By Lemma 3 this con-
tradicts irreducibility.

<oo then ~ f T 7+ ^ Γ π ,+

is a compact convex set and 7J is a one-parameter semigroup of affine
endomorphisms, so Ω possesses at least one T-fixed point by the Markov-
Kakutani theorem. If there is more than one fixed point then by the
Krein-Milman theorem there exist two distinct extreme fixed points
say ρί and ρ2. Both ρί and ρ2 have support equal to Jti? so there exists
a non-zero constant α such that aρί ^ ρ2 ̂  α~1ρ1. But by the definition
of extreme points this implies ρ^ = ρ2.

Note. We have not been able to establish whether an infinite dimen-
sional irreducible process may have more than one equilibrium state.

The following theorem gives rather weak sufficient conditions for
irreducibility of finite-dimensional processes and also describes the
limiting behaviour in time of processes satisfying those conditions.

Theorem 14. Let $ be a finite-dimensional process coυariant with
respect to a connected group G. Suppose

(i) there is no proper subspace of ffl invariant under all Ax, x e X
and all Ug,g e G;

(ii) the lowest common multiple of the dimensions of the eigenvalues
of the operators Aχί x e X is one.
Then $ is irreducible. There is a unique equilibrium state ρ0 with tr[ρ0] = 1
and for all ρ e V+ with tr[ρ] = 1, Tt(ρ) converges to ρ0 as ί->oo.

Proof. We refer to [8] for terminology and general theorems concer-
ning finite-dimensional associative algebras. Let ̂  be the multiplicative
semigroup in <£(&) generated by 1 and {Ax:xeX}. Let jtf be the
linear span of 5̂  so that s$ is a linear algebra with identity, and
Ugj/ U~l=^ for all g e G. Let 31 be the radical of d and let Jf - ̂ ^
Then Jf =t= ffl and since ^ is a G-invariant ideal in <$/, Jf is invariant
under all Ax, x e X and all Ug,geG. By condition (i) Jf = 0 so SI = 0
and £0 is semisimple. Let # be the centre of j/. Then \]g^l]~γ =(6 for
all g e G and G is connected. Therefore the action of G on C is trivial
and any central projection P e # must be equal to zero or one, again
by condition (i). Therefore jtf is simple and by Wedderburn's theorem
we can write J^ = ̂ ®J^2

 and «^ = ̂ f(^ι)(8)Cl. By condition (ii) we
now obtain dim Jf^ = 1, so «s/ = <£(3tf\ Therefore for all non-zero ξ e 3tf
there exist B1, ..., BneSf such that B1ξ,...,Bnξ span Jfc In particular
there is no subspace of Jtf invariant under all AX9 x e X so by Lemma 1,
$ is irreducible.

We next show that for all non-zero ξe Jf the mixed state Tt(ξ®ξ)
has support equal to 3C for all sufficiently small ί. Suppose none of the
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operators J3 l 5 ...,£„ above is a product of more than m operators Ax.
Then for ρ = ξ ® ξ

Tto(ρ) ̂

= Sto(ρ}+ Σ ί . ί . ξt,x®ξt,xdtΐ...dtr

dxί ... dxr

where
ξt,x = Bf _ ί r AXrBtr_tr_ {AXr_ t... AxlBtiξ

and ί = (ί1,...,ίr), x = (x1,...,x r), by Eq.(4.13) of [3]. The result now
follows from the joint continuity of f, x-+ζt,x by taking ί0 small enough.

Now let Ω be the compact convex set {ρ e V+ : tr[ρ] = 1} generating
the affine hyperplane H— {ρe K:tr[ρ] = 1}. The interior of Ω in H
consists of all ρ whose support is equal to Jf, so the unique equilibrium
state ρ0 of T is interior. Let m be the Minkowski functional of Ω in H
with respect to the "origin" ρ0 so

m(ρ) = inf [λ e 1R+ : (ρ - ρ0) e λ(Ω - ρ0)} .

It is clear that m(ρ) < 1 if and only if ρ e int Ω, m(ρ0) = 0 and m(Ttρ) ^m(ρ)
for all ρeH and f^O. Also we showed above that m(7Jρ)<l for all
pure states ρ in Ω and all sufficiently small t > 0, depending on ρ. Therefore
m(Ttρ) < 1 for all t > 0 and all ρ e Ω and by compactness for any ί0 > 0
there is a constant k<l such that m(Ttoρ)^k for all ρeίλ Therefore
m(Tntoρ)^kn and Ttρ-^ρ0 as ί->oo.

§ 4. Transition Processes

It seems difficult to say very much more about quantum stochastic
processes without imposing further conditions of a special nature on the
infinitesmal generators. In this section we study the properties of one
special class of processes, which we call transition processes because
of their relevance to the time evolution of simple quantum mechanical
systems emitting photons while undergoing transitions from one energy
level to another. We define transition processes by certain global proper-
ties and then prove certain results about their infinitesmal generators,
though it will become evident that we could just as easily have proceeded
in the other direction.

A quantum stochastic process i on X, V will be called a transition
process if

(i) there is a given separable locally compact Hausdorff space Y and
a continuous map σ of X into Y x Y;

8 Commun. math. Phys., Vol. 19
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(ii) for allρεV +

Fρ{for some i, σxf(ω) = (yl9y2), σx ί + 1(ω) - (y3, y4) and

O.

The first of these conditions was observed to hold for the hydrogen atom,
and this indeed constituted the first major advance in atomic spectroscopy.
The second cannot be observed directly since the emissions of an indi-
vidual atom cannot be distinguished from those of the surrounding
atoms. Explicitly for the hydrogen atom we take G = SU(2) and S2 as
the unit sphere in Euclidean space. Y is the set of energy levels of the
atom and X = Y x Y x S2 so at each event in X one determines the
energy levels before and after the emission as well as the direction of
emission of the photon whose detection is the event. The Hamiltonian
H0 is here known and the transition operators (determining the prob-
ability per unit time of the emission of a photon in a given direction
causing a jump between given energy levels) are calculated by perturba-
tion methods using quantum electrodynamics [9]. It is interesting here
to note that the energy of the electron can only be observed by transitions,
so this observable is not repeatable in the sense of [1]. In spite of this
the following theorem still gives a general proof that the energy observable
is associated with a projection-valued measure.

For any Borel set E g Y we define W£ as the norm closed order ideal
generated by the set of all gt(L?~i(YxE\ ρ) where ρe V+ and f >0. Let
PE be the corresponding orthogonal projection.

Theorem 15. Let Sbeα simple, recurrent, irreducible, transition process
on X, Y, covariant with respect to the connected group G. Then P is a
projection- valued measure with discrete support in Y P commutes with
all Ug,geG and with the Hamiltonian HQ. If XE X and σx = (y, z) then
Ax has support in PyJ4? and range in PzJ4f.

Proof. Let A e Z£(2tf\ 0 ̂  A g 1 be the operator defined by the equation

The set

is a norm-closed order ideal containing all states of the form $t(Π~ί(Y*F\ ρ)
because $ is recurrent. Therefore J 2 W^ and every ρ e WF

+ has support
in the eigenspace of A corresponding to the eigenvalue one. Similarly
if Er\F = φ every ρe W^ has support in the eigenspace of A corre-
sponding to the eigenvalue zero. Therefore PE and PF are orthogonal
projections. It is immediate from their definitions that Pφ = 0, that
PE g PF if E Q F, and from recurrence that Py = 1.
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Let En be a countable disjoint family of Borel sets in Y with union
00

E and let P0 be the projection P0 = PE- ]Γ PEn. We show P0^0. For
all eV+ and ί>0 " = 1

since P0Pn = 0 for a11 n- It: follows that tr[P0ρ] = 0 for all ρeWE

+ so
P0P£ = 0. But PO :g Pjg, so P0 = 0, and P is a projection- valued measure.

We next show that if σx = (y, z) and ^ X ΦO then P(z}Φθ. Let U be
any open neighborhood of z and let £/ '^{x:σxe 7x [/}. If A xξ = 0
and C7" is any open neighborhood of x contained in [/' then %t contains

where ̂  s = Bt-sAyBsξ. By the strong continuity of y, s^ξy^s and taking
limits in the usual way it follows that

(Axξ)®(AxξΓeW(+. (4.2)

If Y1 — {ze Y: W(z} ΦO} then Y' is countable since we are supposing
that £F is separable, and P y_ r = 0 since Ax = 0 for all x with σx e Y
x(Y- Yf). We write X' = {xeX:Ax*Q} and observe that X' is open
and invariant under the action of G.

Suppose x e X'. Then {σ(xg) : g e G} is a connected subset of Y x Y'.
Since F is countable it is totally disconnected so the image is contained
in Y x {z} for some z e F. Therefore for all zeY',{xeX':σxeYx {z}}
is G-invariant, and W{^} is G-invariant. Therefore UgPyU* = Py for all

g E G and y e Y', and P commutes with U.
Eq. (4.2) also establishes that if σx = (y, z) the range of Ax is contained

in Pz ffl. By the transition hypothesis AxρA* = 0 for all ρ e P ί̂ {y}, so the
support of Ax is contained in Pyj^. Therefore

Λ* A — Λ* A p _ΛX Slχ — /iχ SlχΓ —

and in fact each operator A*AX commutes with the projection-valued
measure P. Therefore the total interaction rate R commutes with P.
Similar arguments show that BtPyJ^QPy^ for all ye 7 and ί^O. If
Ut is the one-paramter unitary group generated by the Hamiltonian
H0, where Z = ίH0 — \ jR, then Ut may be constructed from Bt, Z directly
using a sequence of integral equations [7, p. 495]. Therefore UtPyJ^ Q Py3?
for all y e 7 and t g: 0. It follows that P commutes with the spectral
projections of H0.

The study of certain transition processes can be reduced essentially
to a problem about ordinary classical Markov chains. We call a process
semi-classical- if it satisfies the conditions of the following proposition.
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Proposition 16. Suppose $ is an irreducible, simple, recurrent, transition
process on X, V, covaiant with respect to a compact connected group G.
Then the set W+ of states ρ e V+ which commute with Pand U is invariant
under Tt for all ί^O. W+ can be identified with the set of all bounded
positive measures on a countable set I if and only if the restriction of the
representation U to each subspace Py^f is multiplicity free.

Proof. The fact that W+ is invariant follows from Theorem 15 and
Eq. (2.8). As a partially ordered space, W — W+ — W+ can be identified
with the complete direct sum

W=^®{QE^s(PyJtr):[_Ug9ρ] = 0 for all geG}. (4.3)
y e Y

W+ can be identified with the set of bounded measures on a countable
set only if W is a vector lattice, which happens if and only if U is multi-
plicity free on each subspace PyJ^. If this occurs we write Py = ΣPy.n

n

where Py n are projections commuting with U and on which U is ir-
reducible. Then Py>r^f is finite-dimensional since G is compact. If
e y t f l = PyJ\ϊ[Py^ and / is the set of double indices y, n then

(4.4)
ocel J

Now suppose that ρ = Σ φaea and

αe/

The following theorem shows that the restriction of Tt to W+ is a classical
Markov chain.

Theorem 17. Let $ be a semi-classical process. Then there exist
constants rα ̂  0, βy_>Λ ^ 0 and 0 < K < oo such that for all t ̂  0

Xj8 y _ β = r y g X (4.6)
αe/

and ,

-£- φΛ(t) = - raφa(t) + Σ β^Ψy® (4 7)
Ut γ€ /

Proof. The operator R commutes with U and P so there exist constant
0 ̂  rα g K such that Reα - raea for all α e /. If ρ 6 W+ then /(X, ρ) e W+

so we define jS y_>α^O by /(X, ey) = ̂  βγ-+«ea and immediately obtain
α

Eq. (4.6). If Pα is the projection defined above then by Eq. (2.10) of [3]

tr [P.TXβ)] = tr [PΛ(ρ)] + 1 tr [Pβ/(X, ρ)] + 0(t2) . (4.8)

Now if ρ = X φβ(ί0) e. then S,(φ) = Σφα(ί0) e-rt<tea so tr[P.S,(ρ)] is differ-
α α

entiable with derivative - rαφα(ί0) at ί = 0. The right hand side of Eq. (4.8)
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is now seen to be differentiable at ί = 0 giving

)t = 0

which on simplification becomes Eq. (4.7).

§ 5. Reversible Processes

We treat here another special class of processes, which can be extended
from V = 3~S(3F) to J^pf). Closely related work on duals of instruments
was done in [2].

Given X we define Xt and X^ as before. A normal process $ on
X, ^s(^) is then defined as a function <?,(£, A} taking values in £fs(3Jf)
for each Borel set E£Xt, each A e 3?s(ffi} and each ί ̂  0, and satisfying

(i) E-+£t(E,A) is σ-additive in Xt for each Ae^s(^\ the sums
being taken in the weak operator topology;

(ii) A-+$t(E, A) is a positive normal linear mapping for each EQXt;
(hi) for each EQXS9FQXt and Aε.

If £ is any subset of Xt we define Eθ as its image under the time
inversion

( x ί 9 ίj ... (xn, tn)-*>(xn9 1 - g ... (x l 5 ί - ίj) .

Given any process S on X9 F we can define its dual process $* on
by the equation

tr[<ft(£,ρ)A] = tr[ρrf*(£β,A)] (5.1)

valid for all ρ e F, A e JSfs(Jf ) and E g Xt. It is easy to verify that <f * is
a normal process.

Proposition 18. Let $ be a process on X, V constructed from a
Hamiltonian H0 and a Borel map A\X-*$i!(2tf\ If there is a constant K
such that for all ξe^

l\\Axξ\\2dx = l \ \ A * x ξ \ \ 2 d x ^ K \ \ ξ \ \ 2 (5.2)
X X

then $ has a unique extension to a normal process $ on X, <£s(3f] satisfying
δt(X, 1) = 1 for allt^O.

Proof. Uniqueness is clear from the fact that <Γ is normal and V is
dense in JSfs(^f) for the weak operator topology. We construct δ as the
dual of a process /g <?*. / is defined as the kernel

x (5.3)
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so for all ρ, σ e V

tr[/(£,ρ)σ] = tr[ρ/(£,σ)] (5.4)

and in particular R = R. Incorporating a time reversal we define
Z= — iH0—^R, so Bt = B*. / is now constructed from β and Z by
the procedure of [3]. It follows from Eq. (4.6) of [3] that

trK(£,ρ)σ]^tr[ρ^(£θ,σ)] (5.5)

for all ρ, ρ e V and all EQXt. Therefore /* is an extension of S, which
we call <F. For all ρ e V and t ̂  0

1) ρ] - tr^pς, ρ)] = tr[ρ]

so gt(Xt9ϊ)=L
The following theorem is a generalisation of a known result for

Markov processes with doubly stochastic kernels.

Theorem 19. Let $ be an irreducible, infinite- dimensional process on
X, V such that the operator Ax is normal for all xe X. Then $ cannot
have an equilibrium state.

Proof. Eq. (5.2) is satisfied so we have a normal extension $ with
corresponding one-parameter semigroup T. Suppose ρ is an equilibrium
state with largest eigenvalue λ > 0 and corresponding proper eigenspace
Jf\ Then A = λl — ρ is a non-zero positive operator invariant under T
and with support contained in Jf1. If

J = {ρeV+:ρ^aA some α^O}"

then J is a proper, norm closed ideal in V+ invariant under Tt all ί^O.
But this contradicts the irreducibility of <f .

For such processes the operator 1 can be interpreted as an unbounded
equilibrium state.

We can illustrate the application of this and earlier theorems by a
rather interesting example. The physical model is of an elementary
particle moving freely in one-dimensional space with periodic boundary
conditions, and interacting with a position-measuring instrument.

Let X be the circle with the Haar measure dx of total mass one,
let ^ = ̂ 2(X) and let V = Ps(tf\ The group G = 1R has a natural
representation by translations on X, and hence on ffl and V. Let the free

82

Hamiltonian H0= — —-^. In Theorem 4 of [2] we have shown how

to construct a covariant instrument / on X, V from a certain family
of normal bounded operators A : X -> ££ (ffl\ There exist constants K > 0
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and L > 0 such that for all ρ e V +

(5.6)

(5.7)

^ tr[P2ρ] + L tr[ρ] , (5.8)

where P is the unbounded momentum operator — i — — . The interaction
<7C7

rate # = K 1 of the instrument is independent of the state ρ and the
constant L gives the amount the momentum distribution of the state
is perturbed during the act of measurement. We construct the co variant
process H0,/ in the standard manner. Observe that Bt = e~*KteiH°\ so

tr[Stρ] = £Γ*'tr[ρ]. (5.9)

By Lemma 1 and [2] it follows that δ is irreducible, and by Theorem 19,
δ has no equilibrium state. However by Eq. (5.9) the waiting time for
an event is finite and independent of the initial state, so the process is
recurrent in a very strong sense. This feature of the example is explained
by the fact that each time an event occurs the variance of the momentum
increases by a fixed amount. Therefore the variance of the momentum
of any state should diverge linearly to oo as ί-»oo. However one would
expect that the position distribution of the state would converge to the
uniform distribution on X as ί->oo.
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