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Abstract. A class of representations of the canonical commutation relations is in-
vestigated. These representations, which are called exponential representations, are given
by explicit formulas. Exponential representations are thus comparable to tensor product
representations in that one may compute useful criteria concerning various properties. In
particular, they are all locally Fock, and non-trivial exponential representations are globally
disjoint from the Fock representation. Also, a sufficient condition is obtained for two
exponential representations not to be disjoint. An example is furnished by Glimm's model
for the :Φ4: interaction for boson fields in three space-time dimensions.

I. Introduction

In this paper we investigate a certain class of representations of the
canonical commutation relations. Our representations will be called
exponential Weyl systems. A representation of the canonical commuta-
tion relations, or a Weyl system, is a map /-» W(f) from a complex inner
product space J to unitary operators on a complex Hubert space H,
such that

W(f) W(g) = JW MZ W(f + g)

(the Weyl relations), and t-+(φ9 W(tf)ψ) is continuous at t = 0. If {/,-}
is an orthonormal basis of J, then

W(sfj) = eisQ\ W(tfk) = eϊtp* ,

by Stone's theorem, where QJ9 Pk are self-adjoint. The Weyl relations are

which is an exponentiated version of
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A theorem of von Neumann states if dimJ — n < oo, then W is essentially
(up to multiplicity) the Schrodinger Weyl system of quantum mechanics:

Λ

Qj = multiplication by xj9 Pk = Γ1 -r — , H = L2 (Rn) .
oxk

If dimJ = oo, there are uncountably many in equivalent irreducible
Weyl systems. The best known example is the Fock representation.
J = L2(Rά\ d ;> 1, is called the single particle space. Let H = F = ΣFn

be the direct sum of Hubert spaces

Fn = SL2(R*«)9

where S is the symmetrization projection defined on ΣL2(Rdn) by

Sψn(klί...,kJ = nΓ1 £ ψn(kσ(^...,kσ(n)).
σεSn

Here k{ e Rd, Sn is the permutation group on n letters, and F0 is the field
of complex numbers. Thus ψ = Σψn e F if ψn e Fn is symmetric, square
integrable, and Z"||t/;J|2 = ||φ||2 <oo. F is the Fock space for a neutral
scalar boson field. ψn e Fn represents a state of the quantum field in which
there are n particles; if \\ψn\\ = 1, then \ψn(kl9 ..., kn)\2 is the probability
density that their momenta are kl9...9kn. Since \pn is symmetric, the
particles are indistinguishable.

is the Fock vacuum, and it is the unique (normalized) state in which no
particles are present. In general there are an indefinite number of particles
in the state ipeF. If feL2(Rd\ the annihilation operator a(f) maps
Fn->FII_1, annihilating a particle with wave function /, and the creation
operator α*(/) maps FΠ-»FW+1, creating a particle with wave function/:

(<*(f)ψn) fa, -> *»-ι) ̂  ̂ 1/2 J/(U Ψn(^ ..., kn)dkn

The normalization constants are chosen so that α*(/) and a(f) are
adjoints; moreover

is self adjoint. W(f) = eίφ(f} is the Fock representation. The Weyl
relations follow from the commutation relations

a(f) a*(g) - a*(g) a(f) - f /(fc) g(k)dk .

Exponential representations are constructed as follows. If
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the creation operator α*v(w) maps Fn-+Fn+v, creating v particles with
wave function w:

n = [(/i + 1) ... (n + v)]1/2 S(w®ψn) .
Let

D = {ψ = Σψn e F: ιpn = 0, large n\ supp φn compact}

be the set of vectors in F with a finite number of particles and bounded
momentum. Let v — v(ki9 ..., fev) be a symmetric measurable function,
and let ρ, σ be lower and upper cutoffs on the magnitude of the largest
momentum:

vβσ(k) = υ(k\ m \kt\ e [ρ, σ)

= 0 otherwise .

Note that vρσ = 0 for ρ > σ. Let vσ = v0σ. Fix α > 1, and let

α(/) = α>, 7 = 1

= 0 7 = 0.

Thus α denotes both the constant and the corresponding function of 7.

Let ^ σ>^ fc denote t>aOV, t>α (/)«(*) respectively. Suppose ί;σeL2(^v) so
that α*v(fρσ) is defined. Observe that for k< /, α(/) ̂  σ,

expα*v(ι;kσ) - expα*v(ι;fcl + vlσ) = expα*v(ί;k/) expα*v(ί;/σ)

as formal power series.
If v is almost in L2 in a certain technical sense, we construct a family

of cutoff operators Tjσ9 7^0, which are modifications of expα*v(^ σ).
For k ̂  /, α(/) ̂  σ,

where θ e D is a modification of Qxpa*v(vkl)ψ. Let T7 = Tjao. If vφL2,
then Γ7 maps D out of Fock space. However, 7}D is contained in the
algebraic direct sum [11] of Fn, n ̂  0, and has a natural Hubert space
structure after division by an infinite constant. We view TkD C 7]D,
k< I, with the identification Tkψ = Tzθ. Then the limit

Jim (Tkσφ, Tlσψ)e~vlM2 = (Tkφ9 TlΨ)r

exists for φ9 ψ 6 D and defines a positive definite inner product on the
set 2 = (J TjD. The subscript denotes "renormalized". Let H = Fr be

j^o

the completion of 2). Let

J = {/e L2(Kd) : μ(fc)ε/e L2(Rd), some β > 0} ,
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where μ(k) = (μ2, + |k|2)1/2 is the energy of a particle with momentum
k; μ0 > 0 is the rest mass. Then the limit

lim (Tkσφ, W(f)Tlσιp)e-^M2 = (Tkφ, Wr(f)TlΨ\
G~~* 00

defines a Weyl system Wr(f\ /e J. Wr is called an exponential Weyl
system.

We now define Tjσ. In general, the power series for Qxpa*v(vjσ)θ9

θeF, does not converge; see [7]. Indeed,

\\a**(vjσrΩ\\2~K*nΓ9

so that convergence cannot be expected for v > 2. Convergence occurs
when v = 1, or v = 2 and vjσ has Hubert Schmidt norm less than 1/2
[11, Lemma 4; 12, Lemma 2]. Thus we must omit portions of exρα*v(ι;J σ).
Suppose j ^ /, α(/) ̂  σ g α(/ +1). Now

expα*v(ι;jfr) = expα* v( Σ vk,k+ι + ^zσ

- Π
J ^ Λ ^ i

as formal power series, where

= α*v(O k = l.
n

Let expnx = £ xl/l\. Then for any sequence n(k\ k ̂  0,

converges absolutely on D.
Thus Fr and Wr depend on the parameters v9 α, w(fc). Note that as α

decreases and w(k) increases, T7 σ creates more high energy particles. The
choice of n(k) must balance two conflicting objectives. We do not want
Tjσ to create so many high energy particles that ( , )r doesn't exist. On
the other hand, we want Tjσ to create enough high energy particles to
overcome the effect of the factor e~

vlM2 so that || - ||P is definite. Thus,
we require that n(k) be strictly increasing but polynomial bounded in k.

In Ch. II, a basic estimate controlling products of operators of the
form α*v(w) or α*v(w)* is obtained. In the process, quantized bilinear
forms are discussed [6]. Ch. Ill is devoted to the construction of Fr. We
say that an operator B in Fr is the weak limit of an operator A in F
(written B = Iim4) if 9(B) = Q) and

\ = lim (Tkσφ,
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If lim^4 is bounded, then it extends uniquely by continuity to F,; the
σ

extension is also written limA Thus if Ir is the identity in Fr, thenff
Ir = lim/. Ch. Ill is also devoted to obtaining operators in Fr as weak

σ

limits of quantized operators in F.
Ch. IV contains some results concerning unitary operators and

n-parameter unitary groups in Fr which are defined by weak limits. We
then conclude (Theorem 2) that \imW(f) defines a Weyl system

σ

Wr(f) = eίφr(f\ /e/. Moreover, 2 is a dense set of entire vectors for
φr(f), and 0 r(/XDlimφ(/y, j^O. If !!//(/„ -/)||^0, some ε>0, then

Φr(f^Φ,(f) and Wr(tt-*Wr(f) strongly on S».
We also show (Theorem 3) that the local systems Wr(f\ |supp/(/c)| ̂  ρ,

i.e. localized in momentum space, have a non-negative number operator
in the sense of Chaiken, and hence are unitarily equivalent to a direct
sum of Fock representations. In Theorem 3, we also prove that if the
kernel is not in L2, then the global systems Wr(f\ /e J, are disjoint from
the Fock representation because every vector in Fr has an infinite number
of particles. Finally, in Theorem 4, it is shown that the choice of n(k) is
somewhat a matter of technical convenience in the sense that two Weyl
systems W^ and Wr

2 with the same kernel v and same choice of α are not
disjoint. That is, there are invariant subspaces S; C F for Wr

l such that
Wϊ I Si is unitarily equivalent to W2 \ S2 Moreover, if n^k) = n2(k) for
almost all k, then Wf and Wr

2 are unitarily equivalent. If the kernel of Wr

is perturbed by a sufficiently small function, then the new Weyl system
is not disjoint from the old one. A sufficient condition for unitary equiv-
alence is given. It is hoped that a family of inequivalent exponential
representations may be obtained from kernels whose pairwise differences
are sufficiently large.

Remarks. !.</>(/) is related to the Newton- Wigner field φN>w and the
relativistic field φrel by the formulas

ΦN,w(g) = Φ(g), Φnl(s)
where g(k) is the Fourier transform of g(x). Then if we replace φ by φτe]?

the local systems (localized in momentum space) are still unitarily equiv-
alent to a direct sum of Fock representations because |suρp#| ̂  ρ if and
only if

2. Exponential Weyl systems have some of the advantages of tensor
product representations: explicit formulas for them are given, and one
may compute criteria for various properties of the representations. Tensor
product representations have been useful for linear problems in quantum
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field theory. M. Reed [15] has even shown that a certain class of re-
normalized Hamiltonians with nearly diagonal non-linear interactions
acts on infinite tensor product spaces. However, tensor product rep-
resentations cannot be expected to provide solutions to most physical
problems. This point of view has been supported by Powers [14] in the
case of the representations of the canonical anticommutation relations
(CAR) provided by Fermi fields. He proves that a translation invariant
vector state of a tensor product representation of the CAR is a generalized
free state, i.e. the truncated n point functions vanish for n > 2.

Powers' point of view may apply somewhat to exponential representa-
tions. Nevertheless, certain renormalized Hamiltonians, with inter-
actions possessing large momentum singularities different from those of
Reed's model, are defined on exponential representation spaces. Indeed,
exponential representations are suitable for some superrenormalizable
interactions which may be far from diagonal. An example is furnished by
Glimm's model for the :Φ4: interaction for boson fields in three space-
time dimensions [5]. This model has an infinite mass renormalization
caused by the off-diagonal part of the interaction in the sense that there
is fairly strong coupling between low and high energy parts of the inter-
action. Hepp has demonstrated [8] that the renormalized Hamiltonian
for a simplified version of the interaction acts on a closed subspace, the
completion of T0 D, of an exponential representation space. The inter-
action is taken to be

Here v = 4, d = 2, n(k) = fe, α = 2 and

υ(kl9 ..., fc4) = -Πμ(kiΓ
1/2

where ||ϋσ||
2 is logarithmically divergent, υ is almost in L2, but is not

close to diagonal. For example, v is not in L2 on the set

h is the Fourier transform of the space cutoff function, which is any non-
negative smooth function with compact support. It would be of interest
to construct a family of inequivalent representations by choosing different
space cutoff functions. Incidentally, Hepp has independently obtained
[8, 9] a Weyl system whose properties are similar to those of
Wr=Wr(v,2,k). It is conjectured that the two representations are
unitarily equivalent.

Note that "exponential" has been applied to representations in a
different context [10].
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II. Basic Estimates

In this section we obtain an estimate controlling products of the
form α*v(V)*pα*v(ι/)q. Products involving vσ and v'σ are considered
because we want sufficient generality to compare two different exponential
Weyl systems in Ch. IV. First we must discuss quantized operators and
bilinear forms in Fock space [6]. In order to control the proliferation of
constants in the sequel, K>0 will denote possibly different constants
from one line to the next.

Let B' be a bilinear form, with distribution kernel h, densely defined
in Fm x Fn. We associate to B' the quantized bilinear form B defined in
FxF by

(Φ,Bψ)= Σ
ί = 0 V -

• J φm+t(x, z) b(x, y) ψn+t(y, z) dx ay άz .

If b = /ι® ••• ®/m+n? fί^L2(Rd\ then one can easily check that
B = α*(/J...α*(/Jα^
then B = a*m(w). Thus B creates m particles and annihilates n particles.
If δ is the Dirac delta function, then δ is a distribution kernel densely
defined in F0 xF^. Then a(k\ the quantized operator given by δ( -k),
is defined by

(a(k)φn) (fe1? ..., kn-t) = nV2φn(k, fc1? ..., kn_,} . (2.2)

Thus a(k) annihilates a particle with momentum k. The adjoint α*(fc) of
α(fc) is a quantized bilinear form with distribution kernel densely defined
in F! x FO, and it is defined by the improper operator

(a*(k)φn) (kl9 ..., kn+ί) = (rc+ I)1/2 Sδ(k-k,}®φn(k2, ..., kn+1) . (2.3)

That is,

= (n+lγl2(ψn+ι(k,k29...9^

Thus α*(fc) creates a particle with momentum k. Let ά*(k) denote α*
or a(k). One may verify that

B = \b(k^ ..., fcm,/ci ... fc>*(/q) ... a*(kja(k() ... a(kn)dkdk

[a(k\ fl*(Q] ̂  Λ(fc) α*(0 - β*(0 Λ(Λ) = δ(k - /) (2.4)

[Λ(fc),α(/)] = 0=[α*(fc),fl*(/)].

That is,

(φ9 Bψ) = J (Πa(kjφ9 b(k9 k) Πa(k^ιp)dkdk ,
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and

J (φ, b(k) Πcf(k^ψ)dk = J (ψ, 6(fc) Π'c?(kύ\p)dk

= ίlφ,b(k) Π fl W^-Vi
\ i * Λ j + l

+ $(φ,b(k)Π"a*(kl)ιp)dk

where 77' denotes a transposition of two factors a(ki)9a(ki+ί) or α*(fcj),
0*(/c/+1), and " denotes a transposition of two factors a(kj),a*(kj+1).

Note that if £' is a bounded operator from Fn to Fm (for example, if
bEL2(Rd(m+n)))9 then £ is a densely defined unbounded operator in F.
Indeed, if / is the identity operator on Fί9 with distribution kernel
δ(k — k')9 let N be the quantization of /. Then, by (2.1), Nψn = nψn9 and
N is called the number of particles operator. By (2.1),

where B' acts on the first n variables of ψi_m+n, so that B'\pi_m+n is an
unsymmetrized function of ί variables. Hence

\\Bip\\2 ^ X ίl(ί-m + n)!(ί-m)Γ2 \\S\\2 \\B'\\2 \\Ψί-m+n\\2

Thus

\\By\\ ^K\\B'\\ ||(N + l)(m+")/2φ||. (2.5)

Hence D C @(B\ so that B is densely defined.
By (2.4), we may write N = § a*(k)a(k)dk. Similar operators to be

considered in the sequel are:

N(BQ)= j a*(k)a(k)dk,
\k\*Q

τ < 0 ,

H0(Bρ)= j μ(k)a*(k)a(k)dk,

where Bρ is the ball of radius ρ>0 in Rd. N(Be)9 Nτ, and H0(BQ) are
quantizations of operators on Ft given by multiplication by χρ, μ(fc)τ,
and μ(k)χg respectively, where χρ is the characteristic function of Bρ. By

n n

(2.1), they act on Fn by multiplication by X χρ(fcf), X μ(kt)
τ

9 and
i=l i=l

n

X μ(fcf) χρ(fcf) respectively. N(Bρ) is the number of particles operator
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Fig. 2: j=1.

over L2(Bρ) for the Fock representation and measures the number of
particles with momenta bounded by ρ. H0(Bρ) measures the free energy
of these particles.

Suppose B is a quantized bilinear form

B = \b(k, k') Π «*(*,) Π a

To B we associate a graph with m (creating) legs pointing to the left, n
(annihilating) legs pointing to the right; all legs issue from a common
vertex [4, 5]. (See Fig. 1.) B is also called a Wick ordered bilinear form
because the a*(kt) all appear to the left of the α(/cj). It is determined by its
graph and its kernel b. The product of two Wick ordered bilinear forms
Bl9 B2 is not Wick ordered, but it is a sum of Wick ordered bilinear forms,
by repeated application of the commutation relations (2.4). The term
with no δ functions has a kernel b±®b2 and is denoted :B1B2\, the Wick
product of BI and B2. If a term contains a δ function δ(k—l), we say that
the variables fc, / have been contracted. The term with jδ functions,
denoted Bί-Q-B2, has a kernel obtained from b±®b2 by equating con-

tracted variables and summing over all possible contractions with jδ
functions. To Bί-o-B2 is associated a graph obtained by connecting j

of the annihilating legs of Bi withj of the creating legs of B2. (See Fig. 2.)
B1~o-B2 is determined by its graph and its kernel. Similarly, B± ... Bt is

a sum of Wick ordered bilinear forms B, each of which is determined by
its graph and its kernel. Its graph has t ordered vertices and is obtained
by specifying the number of annihilating legs of the graph of Bt which
are connected to creating legs of BJ9 i <j. Its kernel b is obtained from
b1 (x) (x) bt by equating variables and then summing over all possible
contractions which produce the same graph. Then B = J 6(ίc) JTα*(fcf)ίίk,
where the product extends over the legs of the graph which do not connect
two vertices (external legs). Legs which do connect vertices are called
internal. Note that there is one variable in b for each leg in the graph, so
that one speaks of external and internal variables.
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If M is a measurable subset of all variables of b, then

M

is called a truncation. A truncation of a product f^ . . . Bt is given by a
truncation of each of its Wick ordered terms. A truncated power series
is given by a truncation of each of its terms.

A subgraph of a graph is a subset of the vertices of the graph, together
with all legs issuing from these vertices. Two subgraphs are disjoint if
they have no common vertices. (They may have common legs.) Note
that a leg may be internal in the full graph but external in a subgraph. In
the sequel, let μt = μ(kt)9 let Πe denote the product over external variables,
Π the product over all variables, / = I(G) the internal variables with
respect to the graph G, and j the integral over internal variables [5, p. 8].

I

Let v, v' be symmetric, measurable functions, and V=a*v(v\
V' = a*v(vf) the corresponding bilinear forms. We shall be concerned
with v, v' which satisfy the following property:

Let b be the kernel of B= V*-o-V, 1 ̂ r^v-1; for α>0 and

1 ̂  t ̂  v, there exists ε > 0 such that

vΠμ'μ-", v'Πμ*μ-° e L2(K») , (2.6)

Suppose that (2.6) is satisfied for v = v'. Then we say that v is almost in L2.
In particular, an L2 function is almost in L2, and

is at worst logarithmically divergent. Choose α > 1, n(k) strictly increasing
but polynomially bounded, and construct

7}σ=

as described in Ch. I. 7} = Tj(v9 α, n(k)) is called an exponential dressing
transformation. Note that Tjσ is the truncation of expα*v(ί;jσ) in which
Vkσ appears to at most the power n(k)9 k^.j9 and does not appear for

k<j.
Now V*p(V')q is a sum of Wick ordered bilinear forms; a bilinear

form in this sum is called reduced if its graph contains no
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components. Each graph is a union of its connected components. If the
number of vertices of a connected component is greater than one, then
the kernel is in L2. The improvement of the kernels, as the order of the
graph increases, demonstrates the sort of behavior to be expected of
superrenormalizable quantum field theories [5, p. 10]. Such estimates
have been studied systematically by Eckmann [3]. The following lemma
establishes geometric growth of L2 norms.

Lemma 2.1. Suppose v, υ' satisfy (2.6). Let B be a reduced term from
V*pVfq, b its kernel, and n = p + q. Then for α>0, there exists K>Q
such that for ε > 0 sufficiently small,

\\Πeμ-a $Πμε\b\\\^Kn. (2.7)

Here α, ε do not depend on p, q or the reduced term.

Proof. We may suppose that the graph G of B is connected because
both sides of (2.7) are products of similar expressions involving the
connected components. The cases n = 1,2 follow from (2.6). Let n ̂  3. G
may be written as a disjoint union of subgraphs of v types: a central
vertex contracted with 1 ̂  s ̂  v vertices [5, p. 8]. This decomposition
is obtained by induction on n ̂  3. For n = 3, use inspection. Suppose
we have the decomposition for 3^n^N. Let n = N + l. Since G is
connected, we may choose a subgraph H C G of type s = 1. Then G — H
is a disjoint union of connected components Hj. Let H' be the union of
H with all those Hj which consist of a single vertex. Clearly H' is connected.
If H' ή= G, then apply induction to H' and the components of G - H'.
lϊH' = G, then one can show directly that G is decomposable into either
one or two subgraphs of the proper type.

Thus, for n ̂  3, we may write G = (JHJ9 a disjoint union of subgraphs
of the proper type. Let y = πyj9 where j^ is the kernel of Hj. Then the
Cauchy-Schwarz inequality in the variables keI(G)—\Jl(Hj) implies

that

||77βμ~α j 77με|j;| If ̂  £" Π J TI^I^lL

where K compensates in the region of small \k\ for the factors μ(/c)ε,
which appear twice in the right hand side. Since these are a finite number
of graphs of the proper type, it suffices to show that J Πμ?\y\ eL2,

KH)
where H is a subgraph of type s with kernel y. By assumption, there are
no X components, so the case s = 1 follows from (2.6). For s ̂  2, choose
a subgraph H0 C H of type 1. Let Hj be the graphs of the other vertices,
and let yθ9 yj be the corresponding kernels. Multiply j;0 by J"J μa



12 J. D. Fabrey:

and yj by J"] μ~a. Then for a > 0 sufficiently small, we may apply

the Cauchy-Schwarz inequality in the variables I(H)-I(H0) and use
the first part of (2.6) for the first factor and the second part of (2.6) for
the remaining s — 1 factors. This completes the proof.

III. Renormalized Hubert Space

In this chapter we construct Fr9 and, in the process, obtain operators
in Fr as weak limits of products of Wick ordered operators in F. We first
establish a combinatorial lemma which is sufficiently general for the
needs of this paper. Suppose Yt, 1 ̂  i rg m, is a Wick ordered operator
in F of the form

«i

J yt(kl9..., ks) Y[ a*(kj)dk or J y(k) a*(k) a(k)dk,

where yt is a measurable kernel and y is measurable. Let

Tk = Tk(v, α, n(j)\ T{ = Ttf, α, ri(j)},

Note that we require α' = α, so that Vj*-o-Vjσ = 0, 14=7. Let φ9

We consider

ί=l
, Π yt?i> e-χ(σ> = {Φ, T& Π YiTίσψ e-™. (3.1)

(For m = 0, 77 Y^/.) Now T^ΠΎ^ is a truncated power series in
Fσ*, 7;, F^ and is an infinite sum of Wick ordered terms with distribution
kernels. A term will be called reduced if it contains no X components [4].
Let #0σ be a reduced term, and let Rjσ be the sum of all terms whose
graphs differ from the graph G of R0σ byjX components. (G is called the
reduced graph of Rjσ.) Let ex(σ)RGσ be the bilinear form with graph G
and kernel equal to the kernel of £ Rjσ, after integration over the

~ v-
variables in the X components. Thus, (3.1) equals Σ (φ, RGσψ), where the

G
summation extends over all reduced graphs G. RGσ does not necessarily
have a measurable kernel because of the δ function in §y(k)δ(k — l)
• a*(k) a(l)dkdl However, by (2.1) and the form of Yh (φ, RGσψ) is a sum
of integrals of the form
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over the variables (some coinciding) of φp9 rGσ, and ψq. Here rGσ is a
measurable function, φp and ψq are the p and q particle components of
φ, ψ, and the choices of p, q depend on G.

Let E be the direct sum over all reduced graphs G, and over per-
missible p, q for each G, of the measure spaces associated with

cpq ί ΦPrGσΨq' Thus (3.1) equals

R,
E

where hσ is a measurable function; we sometimes use the notation
hσ = φrGσιp. Similarly, Σ(φ,R0σψ)= $ φr0 w, where r0σ is a measur-

G £ σ

able function depending on G. Let |ROG| = |R0| be the bilinear form
associated with |r0| = |r0oo|.

Lemma 3.1. Let Xj(σ) = Vj*-o-Vjσ. Suppose ΰv' is non-negative. Let
m(j) = min(n(/), ri(j)\ Let ξ denote a fixed value of the variables of rGσ,
r0σ. Then

rGσ(ξ) = Π e-χ^expmf(j}Xj(σ) r0σ(ξ) (3.2)
3

where ra'(/) ̂  m(j) depends on G and ξ, m'(j) is independent of σ, m'(j) = m(j)
for almost all j, and m'(j) = 0 for j < max(fe, /).

Proof. Suppose G has pFσ* and q V'σ vertices. It is convenient to regard
Tfσ Π Y{ T/σ as a power series in Vj*9 Yh V σ. Let υj = υjao. A Wick ordered
term will be called reduced if it has no Xj = Xj(oo) = v ! (vj9 v'j) components.
Then G is a reduced graph from

and r0σ(ξ) is the value at ξ of the measurable function associated to G.
Here p(j\ q(j) are determined by G and ξ. Note that

Then eX(σ)RGσ is the sum of all terms (after integration over the
variables in the Xj components) whose reduced graph is G. Consider
all such terms with x(j)Xj components, j^max(k, /), and hence

and g(/) + *(/)V/ vertices. By the truncations in Tfcσ, T/σ,

0 ̂  x(j) ^ mm(n(j) - p(j\ ri(j) - q(j)) = m'(/), j ^ max(fc,

X(J) = Q = m'(j)9 j < max (k, /) .

There are
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ways to contract 2x(j) vertices into x(j)Xj components. The remaining
legs are contracted according to G. Summing over all such sequences

k, ί)

Λ *ω 0.2)
Σ Π -

x 0') ̂  m' 0') j ̂  max (k, I)

Clearly, m'(j) has the desired properties.

Lemma 3.2. Let

c(/Ό, σ) - φ, t;', JO, σ) - Π ^~^(σ)expm0.)Z7.(σ) . (3.3)
j^jo

Then for all j0 ^ 0,

0< lim c(/Ό, σ) ̂  1 (3.4)
σ-»oo

ex/5ίs. Moreover

limGC(v,v'J0,σ) = l (3.5)

uniformly in σ, f, t/, swc/i ί/zαί Jί7 = v!(t?J , t j) ̂  X.

Proo/. Let

uniformly in σ. Thus ^/(oo) and α^oo) exist and 0^α7 (σ),
Thus, by [1, p. 190], it suffices to show that

where K is independent of σ.
Observe that, for x > 0,

— P X PYΓ> V "̂  VW /ίVϊ -4- 1 Vt? CΛpπΛ .̂  Λ l\ΐl-ΓL)..
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Therefore, since m(/) is strictly increasing,

Σ (1 - α») ̂  Σ

j

The lemma is proved.
Let \φ\eF be the vector with rc-particle component \φn\.

Corollary. (3.1) is equal to J hσ, where {hσ} is a family of measurable
E

functions which converge poίntwise as σ->oo. Moreover, \hσ\ ^ h, where
h is a measurable function on E, and

Proof. By (3.4), j0 = 0, rGσ(ξ)-^cr0(ξ\ where c is some constant.
Hence hσ = φrGσψ converges pointwise as σ— »oo. Let

h=\φ\\r0\\ψ\.

Then, by (3.2), |rGσ| ̂  |r0|, and \hσ\ £ h. Q.E.D.
Thus, in order to remove the momentum cutoff in (3.1), it suffices to

show that h is integrable, i.e. (3.6) is bounded. Then (3.1) possesses a limit
as σ-κx) by the bounded convergence theorem. In order to bound (3.6),
we strengthen the hypothesis. Let

Jm = {y E L2(Rdm) : Πμεy e L2(Rdm\ some β > 0} .

We consider two cases :
Si

a) v-v'eJv, Yi = $yiY[a*(kj)dk9 ^eJSι, l ^ f ^ m ,

b) v = v'9 Yt=Y=S y(k) a*(k) a(k)dk, l^i^m,
where y is a bounded non-negative measurable function such that

(υ,ΠμεYjv)=lυΠμ£ (3.7)

Lemma 3.3. Let n=\G\ be the number of F* or V vertices in G, and
m

let s = Σ s f. Then the following estimates are valid:
i = l

m

a) (|0|, \R0\ Ivl) ̂  -^s+" Π

b)(|0|, |Λ0 |M)^X"+"α-
where c,δ>0.
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Proof, a) First, v,v' satisfy (2.6) as follows. Let v" = v — v'eJv9 and
1 g r ̂  v -1. Let w, w', and w" be the kernels of F*-o-F, F*-o-F', and

7*-0-7" respectively. Then j/7μ ε |w|eL2 by (2.6). Moreover, by the
/

Cauchy-Schwarz inequality,

Πμ*\w"\

for ε sufficiently small. Thus,

||ί7μ2V||<oo

Observe that in case (a), |r0| is the kernel of |JR0|. Let B be the bilinear
form given by the graph of \R0\ and the kernel 77eμ~α|r0|, where α>0.
We may suppose that φj9 ψj vanish off a sphere of radius ρ in Rdj

9 j ^ 0,
and φ, ψ have n0 or fewer particles. Then, by (2.5)

(\φ\,\R0\\ιp\)£ Σ

(3.8)

Since n(j\ ri(j) are polynomially bounded,

for some integer γ. Then there are fewer than jγ = ί vertices from T^σ or
T/σ with the magnitude of the largest momentum less than αj = αfό, for
<5 = y-ι<l. Thus

(3.9)Π

because G contains at least [(n +1)/2], the greatest integer less than or
equal (n +1)/2, vertices from one of Tfc* or T/. K compensates in the region
of small \k\ for factors μ(fc)ε, and αεί<5 ̂  μ(/c)ε for some of the factors.

The first factor in (3.9) is bounded by Ks+n Π ||#με/||, by Lemma 2.1
i

and the Cauchy-Schwarz inequality in the contracted variables between
TfT{ and ΠY^ The exponent of the second factor is bounded by

[(n + l)/2] n/2

- Σ εiδ^-ε J
i = ί 0



Exponential Representations of CCR 17

where c = (1 + δ)2~(1+δ\ The lemma follows, in this case, from (3.8)
and (3.9).

b) Here \R0\ does not have a measurable kernel since it contains δ
functions. Observe that Y conserves the number of particles. Thus, every
reduced graph from case (b) is the disjoint union of three subgraphs.
The first is the union of all components without any F*, V vertices; the
second is the union of all components which have exactly one F* and
one V vertex, at least one Y vertex, and no external legs, for example

The third subgraph is a reduced graph from case (a), 5 = 0; of course,
the corresponding kernel does not arise from case (a) because of the 7's.
Some of the legs from a case (a) reduced graph are replaced by legs
contracted with one or more Y vertices.

Therefore \R0\ is a product of three factors, corresponding to the three
subgraphs. The first factor is estimated by Yj\φ\ g Kj\φ\, Yj\ψ\ ^ Kj\ψ\.
The second factor is estimated by (3.7). The third factor has a measurable
kernel \r'0\ which can be estimated by Yj\vσ\ ^ Kj\vσ\, uniformly in σ.
Thus, by (3.8) and (3.9)

(\φ\9\R0\\Ψ\)^Km+»\\Πeμ-*S\r0\\\
H l " (3.10)

< Ίζm + n... — εcnί + σ

The lemma is proved.

Lemma 3.4. There are at most
a) Ks+n(s/2)l(vn)l2

or b) Km+nml(vn)\2

reduced graphs G such that \G\-n.

Proof. We overestimate by bounding the number of contraction
schemes, so that schemes which produce the same graph are counted
separately. We use the fact that, for α, b positive integers,

G can have p F* vertices, 0 ̂  p ̂  n. For fixed p, there are at most

min(vp, vn - vp)l κvp+vn~vp ^ (vn)\Kn

possible contraction schemes between the F* and V vertices.
In case (a) there are at most

min(s, vn)! Ks+vn ^ (vn)\Ks+n

2 Commun. math. Phys., Vol. 19
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possible contraction schemes between Π Yt and the V*, V vertices. In
case (b), the corresponding bound is (vή)\Km+n.

Suppose Π 7; has q creating legs in case (a). Then there are at most

min(<2, s-q)l Kq+s~q ^ (s/2)\Ks

possible contraction schemes among the Yt. In case (b) the corresponding
bound is mlKm.

There are n +1 choices for p. The lemma follows from these estimates.

Lemma 3.5. Let Tk = Tfc(t?,α, n(j)\ Ύ{ = Tz(t/,α, n'(/')), Yt be as in
Lemma 3.2. Then for φ, ψ E D

~X(σ}= K (3.11)
V f=l / E

and both limits

lim $hσ= J l imft σ (3.12)
σ^co£ E σ->oo

exist, where E is a measure space, {hσ} is a family of measurable functions
dominated by an integrable function h. Moreover

(a) $h^Ks(s/2)lf[ \\Πιfyi\\
E i = l

or (b) J / z ^ Kmm\.
E

Proof. Let E, {hσ}, h be given by the Corollary to Lemmas 3.1, 3.2.
The lemma then follows from the bounded convergence theorem and a
bound on (3.6). By Lemmas 3.3 and 3.4, (3.6) is bounded by

(a) Ks(s/2)\U

or (b) Kmm!lΣKn(vn)!2κ-εcnί+δ

\n

But

Y Kn(vn)\2a~εcnl+ό -^

^K+ α - ε c " , somen0

«=«0

< K < o o .
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Theorem 1. Let 7J = 7}(t>, α, n(fc)), Tferc /or </>, φ e A ίfte ίi/wf

Jim (Γkσφ, rIσV)*^(σ) = (Γkψ, ΓlV), (3.13)

exists. If k^l σ^ α(fe), tften T ίσtp = Tfeσθ, w/zere

Θ^Π'exp^φeD. (3.14)
j=ι

( , )r provides a positive definite inner product for 3) = (J TJ D, whose
j'^o

completion is denoted Fr.

Proof. (3.13) is the special case of (3.11) in which v = υ'9 n(k) = ri(k)9

and s = 0. (3.14) follows from the definition of Tjσ. ( , )r is clearly an inner
product for ®. It remains to show that it is positive definite, i.e. if 0 Φ ψ e D,

Let m be the smallest integer such that ψm φ 0. Let τ be a lower cutoff
on the magnitude of the smallest momentum:

vτ(k) = v(k\ min \kt\ ^ τ
1 ̂  i^ v

= 0, otherwise .

Then 7Jτ= 7}(fτ,α, n(k)) is an exponential dressing transformation.
Suppose that ψn vanishes off a sphere of radius τ0 in Rdn, n ̂  0. Let
σ ^ α(/c) ̂  τ0 and let ^ rcPn(£α(fc)) be the spectral decomposition of
N(Ba(k). Then ^°

because 7}σ does not annihilate any particles. Let

*̂(σ) =

Now

(3.15)

is a sum of terms given by graphs from T&k)*T&k\ By (3.2), the sum over
all graphs with the empty set for reduced graph is given explicitly by

Πexpn ( ί )/tf(σ)|
I^ fc

which is equal to

m | |2,

by (3.5), where δ(k, σ)->0 as fc->oo uniformly in σ.
2*
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We may bound the other contributions to (3.15) as follows. Since
G Φ 0 for these terms,

\Πeμ~a f
I I /

Thus, by (3.8), (3.9), Lemmas 3.1, 3.3, and 3.4, these contributions are
bounded by Ka(k)~ε exp/tfe(σ). Hence

||7}σt/;||2e-̂ σ)^̂

J M

= ΦΓK ( I I vU2 -δ(k,σ)-κ*(krε)
>0

for k sufficiently large. Therefore ||7}φ||r>0. The theorem is proved.
m

Lemma 3.6. Let Yt be as in Lemma 3.5. Then lim Y[ Yt exists and

a) limfUi;

σ

Proof. By Lemma 3.5, the limits

lim
σ-> oo Π ϊ ί -

ί = l

(3.16)

(3.17)

exist. Hence (3.16) is bounded by

Π e-Λ(σ)/2

and a bound on (3.17) is obtained in Lemma 3.5. The lemma follows from
the Riesz representation theorem.

Corollary. Let fa e J. T/zβw lim f] φ(fi) exists, and

m m

lim Π Φ(fί)Tkψ ^ KmmW Π l l / Λ / i l l (3-18)
ί = l i / = !
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Let Y be N(Bβ)9 Nτ, τ < 0, or H0(Bρ). Then lim Ym exists, and

| |lim7mT fcτp|i ^Kmml. (3.19)
II σ \\r

m m

Proof. Π φ(ft) is the sum of 2m terms of the form f] Yi9 where
ι = l _ ί = ί

γ. = a^(fi), and αtf(/) denotes α*(/) or α(/). Thus, the existence of
m

lim Y[ φ(fi) and (3.18) follow from Lemma 3.6. The existence of lim Ym

i = l

and (3.19) also follow from Lemma 3.6, provided that (3.7) is established
for Y = N(Bρ)9 Nτ, or HQ(Bρ). This is verified as follows:

(v9 ΠμεN(Bρyv) ^ Kvjμ(ρ)2a \\Πμεμ^av\\2 ^ Kj ,

0 ρ

 2a

for ^l, by (2.6).
Let/6 J, 11/11 - 1, and let N(f) = a*(f)a(f) be the number operator

over {/} for W [2]. N(f) measures the number of particles with wave
function/ Let Tkl = Tfcα(/). We need the following estimates for Theorem 2.

Lemma 3.7. Let Fr = Fr(υ, α, n(k)). Let A be φ(f\ N(f\ N(BQ\ H0(Bρ),
or Nτ. Let ε > 0. Then for pj^k sufficiently large and \t\ rg ί0, some t0:

f \\(ίtAΓ/m\Tkσιp\\e-A^2 (3.20)
m = p + l

l, Tlσ] Tklψ\\ e~Λ^'2 (3.21)

Proof. By (3.18) or (3.19), (3.20) is bounded by

for p sufficiently large and ί0 sufficiently small. To estimate (3.21), observe
that

is the sum of all Wick ordered terms from

in which there is at least one contraction between A and Vt* or Vlσ. Thus,
by Lemma 2.1, the Cauchy-Schwarz inequality in one of the above
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contracted variables, (3.8)-(3.10), and Lemmas 3.1-3,4, (3.21) is bounded
either by

K||μβ +YIMI/ιΓWt> ίJI (3.22)
or

K\\AυlΛ\\. (3.23)

(3.22) holds in case A is φ(f) or N(f), and (3.23) holds in case A is N(BQ)9

H0(Bρ\ or Nτ. By (2.6) or (3.7), (3.22) and (3.23) are less than ε/2 for / ̂  k
sufficiently large.

IV. Exponential Weyl Systems

In this chapter we prove some general results concerning unitary
operators and ^-parameter unitary groups in Fr which are defined by
weak limits. Particular examples are lίmW(tf), /e J, limeitN(Be\ and

<τ σ

limeita*(f}a(f\ feJ. Properties of these one-parameter groups and

exponential Weyl systems are studied in Theorems 2 and 3. Sufficient con-
ditions for two exponential Weyl systems not to be disjoint (or to be
unitarily equivalent) are given in Theorem 4.

For later purposes, we generalize the notion of weak limit. We say
that an operator 5, which maps a subspace of F'r into Fr, is the weak
limit of an operator A in F written B = LimA if Q)(B) = $)' = (J T D

j
and

^. (4.1)

If Lim^l is bounded, then it extends uniquely by continuity to F'r\ the
<7

extension is also written LimA If Fr = F' then Lim^4 = lim A
σ σ σ

Lemma 4.1. Suppose that υ — vfeJvand ϋυ' is non-negative. Suppose
that 17, V are unitary operators on F such that LimU is an operator

σ

mapping F'r into Fr9 and such that lim V, lim' V are unitary operators on
<T G

Fr, Fr' respectively. Then

Lim U lim' V = Lim U V, lim V Lim U = Lim V U . (4.2)
σ σ σ σ σ σ

Proof. Choose T/(ll)θn such that

>0. (4.3)

Let w = υ — v'. By (2.6), (w, v') and (w, v) exist since weJ v . Note that

lim expi(A(σ) - Λ(σ)) = exp v!(- ||w||2/2 - Re(w, v'))
-> (44}

{ }
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Then

and

limsup|(Tkφ, Lim U lim' FT/φ), - (Tkσφ, UVT^ιp)e
(T~~* 00 I ff G

~Λ(σ)

^ lim li
n->oo cr-» oo

^φ,ι/) IIT^LJim Jim \\T{Mσθn- VT;σψ\\e-
Λ'(σ)l2

ί K lim (||Γ/(π)θj;2 + ||T/tp||;2-2Re(T/(B)θn,lim'FΓ/ψ )

= K(||Γ,>||;2-||lim'FT/φ||;2) = 0.

Thus Lim U V exists and Lim U lim' F = Lim U V.
σ σ σ σ

Taking adjoints, we observe that

Lim F* U* = (Lim U lim' F)* = (lim' F)* (Lim I/)*

- lim' F* Lim U* .
σ σ

Replacing F*, 17* by F, U respectively, and interchanging F'r and Fr,
we conclude that the second equality in (4.2) follows from the first. The
lemma is proved.

Corollary. Suppose that Ui9 1 ̂  i rg m, are unitary operators on F and
Uir = lim Ui are unitary operators on Fr. Then

σ

m m

Proof. The general case follows immediately from the case m = 29

which in turn follows from the lemma (with Fr = F'r). Q.E.D.
It is natural to ask for a sufficient condition that Lim U be a unitary

σ

mapping from F/ onto Fr.

Lemma 4.2. Suppose U is a unitary operator on F and Lim U is an
<7

operator mapping Fr' into Fr. Suppose that for each k, /^O, there exist
Θn9 θ'neD and k(n\ l(n) ^ 0 such that

lim Jim sup ||E/η> - ΓIWσ0J e^(σ)/2 - 0

and

lim limsup || [7*T,σv> - ϊϊ(Λ)σ0;|| ̂ '(σ)/2 = 0 . (4.6)

Lim U is a unitary operator mapping F'r onto Fr.
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Proof. By (4.1), (LimlΛ* = Lim (7* is an operator mapping Fr into
\ σ / σ

F'r. It suffices to show that Lim U is isometric. Then, replacing U by (7*
σ

and interchanging F/ and Fr, we conclude that [Lim IΛ* is isometric, so

that Lim U is unitary.

lim \(Tkφ, LimUT{ψ - Tl(n)θnn^ oo i (7

= lim lim \(Ttβφ, UT;σψ-Tl(n}σΘJ\e-Λ^
W~* OO (T~> 00

£ \\Tkφ\\r lim ]imsυp\\vrlσψ-TlWσθΛ\\e
n~~* oo £7~~* oo

= 0.

Thus T/(B)0,,-> Lim UT/φ in Fr, so that

= lim \\\Tmθnfr - \Wv\\f

m Jim \(

lim Jim |

^ 2K lim sup || 17 Γ,> - TIM. θn\\

The lemma is proved.

Lemma 4.3. Suppose that U(x) is an n-parameter unitary group on F
and \imU(x)= Ur(x) is an n-parameter unitary group on Fr. Let

σ

J eί(x>y)dPy, J eί(x>y)dPry be spectral decompositions of U(x) and Ur(x)
Rn Rn

respectively. If g is a bounded continuous function on Rn, then

$g(y)dPry = \imlg(y)dPy. (4.7)
Rn σ

 Rn

Suppose n = \ and A, Ar are the infinitesimal generators for 17, Ur

respectively. If limAj exists for j ^ 0, then AJ

r^limAj, j ^ 0, so that &
σ σ

is a dense set of C°° vectors for Ar.

Proof. By definition,

Rn

? = (TlΨ, Ur(x)TlΨ\

== lim I ei(x *d(\\PyTlσψ\\2e-ΛM).
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By the Levy continuity theorem for distributions [13, p. 191, p. 205] and
the Helly-Bray Theorem [13, p. 182],

J#(y)rf||P^ηt/;|^

(4.7) is then obtained by polarization.
Suppose n = 1 and j λdPλ, J λdPrλ are the spectral decompositions

R R
of A, Ar respectively. Then, by the moment convergence theorem for
distributions [13, p. 184],

\λ*d\\PrλTlΨ\\ΐ = Jim J λίd(\\PλTlσψ\\2e-Λ^),

so that 9){A§ D 2 for all j ^ 0. Again by polarization,

This completes the proof.

Theorem 2. Let Fr = Fr(v, α, n(k)). Let A be φ(f\ N(f\ N(BQ\ HQ(BQ\
or Nτ. Let V(t) = eitA. Then Vr (t) = lim V(t) exists and defines a one-

G

parameter unitary group eίtAr on Fr. AJ

r3limAj, j ^ 0, and 3) is a dense
σ

set of entire vectors for φr(f) and analytic vectors for the remaining self
adjoint generators.

Corollary. Wr(f) = HmW(f) = eiφr(f\fej9 is a Weyl system on Fr.

If llμε(/n-/)ll-0, some ε>0, then φr(f^φr(f) and Wr(f^Wr(f)
strongly on 3).

Definition. Wr(f\ feJ, is called an exponential Weyl system.
Let

be the creation and annihilation operators for the representation. Then
α*(/) ar(f) is the self adjoint number operator over {/} for Wr [2].

Lemma 4.4. Nr(f) = a*(f) ar(f\ The spectra of Nr(f) and Nr(Bρ)
are the non-negative integers, and, for /e L2(Bρ),

eitNr(Be)Wr^e-itNr(Be) = wr(eltf) . (4.8)

Theorem 3. Wr is locally Fock: Wr(f\fε L2(Bρ), is unitarily equivalent
to a direct sum of Fock representations. If vφ L2(Rdv\ then every vector in
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Fr has an infinite number of particles for the global system Wr(f), /e J.
Wr(f\ /e J, is disjoint from the Fock representation.

Proof of Theorem 2. By (3.18) or (3.19), and the bounded convergence
theorem,

Vr(t) = lim £ (itA)m/ml= £ lim(zM)m/m! (4.9)
σ m=0 m=0 G

exists for \t\ ^ £0, some ί0. Since V(t) is unitary, Vr(t) is bounded in norm
by one and extends uniquely to Fr. Now V(i)* = V( — t) so that Vr(t)*
= Vr(-t). We first prove that Vr(t) is unitary. Let ψ e D and let

θ= £ (itAΓ/m\Tklψ€D.
m = 0

Then by Lemma 4.2, it suffices to show that, given ε > 0,

\\V(t)Tkσψ-Tlσθ\\e-Λ^2^8 (4.10)

for p,l^k sufficiently large, \t\ 5Ξ ί0. Now (4.10) is bounded by

By Lemma 3.7, this is bounded by ε for p, / ̂  fc sufficiently large, \t\ ̂  ί0

Thus Vr(t\ \t\ ̂  ί0, is unitary. By (4.5), we may define Vr(t\ for all ί, by

F, (ί) = Fr (ί/mf - lim F(ί/m)m - lim V(t) , (4. 1 1)
σ σ

where m is chosen such that |ί/m| g ί0. Thus, by (4.5),

Vr(t) Vr(t') = lim F(ί) F(ί') = lim F(t + ί') = Vr(t + ί') .
σ σ

Moreover, by (3.18) or (3.19), and (4.9), Vr(t) is weakly continuous
at ί = 0:

\(τkφ,(vr(t)-ιr)τlψ)r\ί f; (κ\t\r

as t->0.
Thus F,.(ί) is a one-parameter unitary group. Let Ar(t) be its self

adjoint generator. By Lemma 4.3, (3.18), and (3.19), A^\\mA\ j^ 0,
σ

and ̂  is a dense set of entire vectors for </>r(/) and analytic vectors for
the remaining self adjoint generators.
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Proof of Corollary. By (4.5), Wr satisfies the Weyl relations:

Wr(f) Wr(g) = lim W(f) W(g) = timef^-M2 W(f+g)
G (T

= eίlm(f>d}/2Wr(f + g).

We now prove the regularity properties. By the real linearity of and the
Weyl relations for Wr, it suffices to show that ||με/J-»0 implies that
</v(/«)->0 and Wr(fn)-+Ir strongly on 0. This follows directly from (3.18)
and (4.9):

and

\\(Wr(fn)-Ir)Tkψ\\r^

as n-»oo.

Proof of Lemma 4.4. For the first conclusion, it suffices to prove
that for /, greJ,

φr(f)φr(g)ltimφ(f)φ(g). (4.12)

Then by Theorem 2,

iφ(if) ] 2-

C 2-1'2 [&(/) + iφr(if) \ 2-1/2 lφr(f) - ί φ r ( - i f j ]

= af(f)ar(f).

Thus -NX/) and αf (/) αr(/) are self adjoint operators which agree on a
dense set of analytic vectors. Hence they are equal.

(4.12) is established as follows.

φ,(f) φr(g) Tkψ= 1im(Wr(sf) - /,) (is)'1 (Wt (tg) - Ir] (it)'1 Tkψ

= lim lim (W(sf) - 1) (is)~l (W(tg) - 1) (iί)'1 Ttψ-

= Um lim (is)!-1

 φ(fy (ff

= lim hmo (isy

by (3.18) and the bounded convergence theorem.
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By Lemma 4.3, the spectra of N(f) and N(BQ)9 both of which are the
non-negative integers, coincide with the spectra of Nr(f) and Nr(Bρ)
respectively.

By(4.5)and[2],for/eL2(βρ),

eίtNr(Bβ) γy / f\e~itNr(Be) = HmeitN(Be) γys f\e~itN(Bβ)

(4.8)

= ]ΐmW(eitf)=Wr(eitf).
σ

Proof of Theorem 3. By (4.8), Nr(Bρ) is a number operator for Wr(f\
feL2(Bρ), which is therefore unitarily equivalent to a direct sum of
Fock representations [2, Theorem 2].

Suppose vφL2(Rdv). Let [fi}fLl9 //e J, be an orthonormal basis of
J, and let £ wPrm(/λ £ mPm(fί) be the spectral decompositions of

m ^ O m^O

Nr(/λ N(/i) respectively. Let

Γ = {y= {yj : y f non-negative integers, yf = 0 almost always} ,

and let Γ be assigned the measure for which each point has measure one.
For y E Γ, let

Then [2, p. 31 and Prop. 3.1] implies that {Pry}y6Γ, {Py}yeΓ are both
mutually orthogonal families of projections. Fix fe, p ̂  0. Let #σ, ^ be
functions mapping Γ into .R and defined by

= 0 Σyί>p

g(y)=\\PrγTkψ\\ΐ Σy^p

-0, Σγt>p.

By Lemma 4.3, with U(x) — e

ίΣxjN(fj\ gσ^g pointwise as σ-»oo.
J, dim^<oo, let J] mPrm(Jί) J] mPm(^) be the spectral

decompositions of Nr(J(\ N(Jf) respectively. Let

Qrp = Urn Qr

Here convergence of finite dimensional subspaces is net convergence, and
Qp is the projection onto Σ ^m [2]

m= P
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We assert that Qrp ̂  limgp = 0. Hence the projection

onto the finite particle subspace is zero. Thus every vector in Fr has an
infinite number of particles, so that no subrepresentation is unitarily
equivalent to the Fock representation [2, Theorem 2].

Let <Mn— {/i}"=ι Noting that Qrp(Jf) decreases as M increases, we
prove that Qrp ^ lim Qp = 0 :

\\QrpTkψ\\ϊ = lmι\\Q
Jvl ~*J

= J g(y) ^ liminf f gσ(y) (Fatou's Lemma)
jr σ-»oo p

= liminf lim f qa(i)
-* -

= liminf lim \\Qp(JljTkβv\\ 2 ~

^ liminf KexppΛ(σ)e-A(σ) = 0
σ^^oo ^

because Λ(σ)-»oo. The theorem is proved.

We now compare two exponential Weyl systems.

Theorem 4. Wr= Wr(v, α, n(k)\ W^ = Wr(υ',^n'(k)} are not disjoint
if v — v ' e Jv and ϋv' is non-negative. If, moreover, (4.6) holds, for U = /,
then Wr and W'r are unitarily equivalent.

Corollary. If v = v' and n(k) = n'(k) for almost all fe, then Wr and WJ
are unitarily equivalent.

Proof of Corollary. Let ψeD and let θ= T k\peD. Then for k^j
sufficiently large,

The same statement holds with T and T' interchanged. Thus (4.6) holds
trivially.

Proof of Theorem. By Theorem 2, lim W(f) and lim' W(f) are unitary
σ σ

operators on Fr9 F, respectively. By Lemma 3.6 and (4.4), F=Lim/ff
is an operator mapping Fr' into Fr and bounded in norm by c(v9 v'). U is
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non-zero because

(T0fl, VΓ0 Ω\ = lim Π e-W exp^X/σ)^-^ > 0
J

by (3.2), (3.4), and lim (X(σ)-Λ(σ))= -v!(v, w). Finally, by (4.2),
σ->oo

VW (f) = LimΙW(f) = Lim W(f)I = Wr(f) V.
σ σ

Thus V intertwines Wr(f) and W^(f\ which are therefore not disjoint.
If (4.6) holds for U = I, then, by Lemma 4.2, Fis unitary. The theorem

is proved.
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