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Abstract. A necessary and sufficient condition is given in order that a quasi-free state
on the Clifford algebra stf(H, s) build on a real separable Hubert space (H, s) be a factor
state.

I. Introduction

Let (//, s) be a real Hubert space which is separable (i.e. H is a real
vector space and s a real scalar product on H). Let ^(H, s) be the CAR-
algebra constructed on (H, s) i.e. it is the C*-algebra generated by the
elements B(ψ) where ψ-+B(ψ) is a real linear map of H into jtf(H, s)
satisfying the anticommutation relations

for all ψ and φ of H / is the unit element in
The quasi-free states ωA on ^(H, s) are those states which are com-

pletely determined by an operator A on H such that for all ψ,φeH

ωA(B(ιp) B(φ)) = s(ψ, φ) + i s(Aψ, φ) , (1)

s(Aψ9φ)=—s(ψ,Aφ) or A+ = — A , (2)

M l l ^ i - (3)
For more details see (1).

A state on a C*-algebra is called factor state if it induces a factor
G.N.S. representation. In this note we prove that ωA is not a factor state
if and only if the dimension of the kernel of A is odd and

II. The Theorem

Among the set of quasi-free states ωA we distinguish two cases:
let ΏIA be the kernel of the operator A, then:

1. dimension of $RA is even or infinite,
2. dimension of WA is odd.

* On leave of absence of Universite d'Aix-Marseille, Fac. Sc. St. Charles, Marseille 3e

(France).
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a) First case: dimension 9Jl^ is even or infinite.
Let A— U\A\ be the polar decomposition of A on (H,s\ then on

50ΐi- Hθ WIA: U2 = -1, U+ = - U. Since A is a normal operator, U and
\A\ commute, and since dimSFl^ is even or infinite we can extend U to H
such that its extension J satisfies:

j+j = jj+=l 9 J+ = -J; Λ = J\A\.

The operator J is a complex structure on (H, s) such that [̂ 4, J] _ = 0.
Hence the quasi-free state ωA determined by the operator A is J-gauge
invariant [1]. It has been proved by several authors [2,3] that gauge
invariant quasi-free states are factor states. We summarize:

Proposition 1. Every quasi-free state ωA on the CAR-algebra j/(#, s)
such that dimSOΪ^ is even or infinite, is a factor state.

b) Second case: dinι9Jl^ is odd.
From the work on product states (see e.g. [4]) it follows that without

loss of generality we can restrict ourselves to the case that dim JtA = 1.
The operator A leaves invariant $JIA and 9Jϊi, therefore [4] ωA is a product
state

ωA = ωO ® ωC

where ω0 = ωA\s/(^ΰlA, s) (it is the central quasi-free state of j/(9Ji^, s))
andωc = ωA|j^(9Mi,s)(whereC = A\2»i). Let(π0, Ω0, ̂ and(πc, ί2c,Jfc)
be the G.N.S. representations, cyclic vectors and representation spaces
of ω0, respectively ωc. Let (πA9 ΩA, j^A) be the G.N.S. representation,
cyclic vector and representation space induced by the state ωA, then
one verifies that _

J^=^o®^c (4)

((x) is the completed tensor product of Hubert spaces),

, (5)

fθΓ V " - -?> (6)
for tp e 9ΪQ J

where IQ is the unit operator on J^0;θ is the unique unitary involutive
operator on jfc anticommuting with every element of the form πc(B(ψ))9

ψ e SOϊi such that θ Ωc = Ωc (the existence of the operator θ is a conse-
quence of the fact that the state ωc is invariant under the *-automorphism
y defined by y(B(ψ)) = - B(ψ)9 ιp e 9Jli).

It is proved in (2) and (3. Rideau) that each gauge invariant quasi-
free state ωA induces a G.N.S. representation which is quasi-equivalent
to the representation induced by a quasi-free state ωβ, where |D| has a
pure point spectrum. The generalisation of this result to all quasi-free
states is immediate. Because two quasi-equivalent representations are
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factor representations if and only if one of them is a factor (5; prop. 5.3.4),
from now on we can suppose that|^4| has a pure point spectrum. Hence
there exists an orthonormal basis { i p i } i = i i 2 , . . . of 9Wi such that

if C = J\C\
then

and
0<α ί =:i; z = l ,

Using (4) the state ωc is a product state

where ωt is the restriction of ωc to j/(Hf, s); ίξ is the subspace generated

by {ψ2ί-ι,Ψi}'
The states ωί induce a G.N.S. representation determined by the

triplet (πf, Ω f, Jff).
Let

then

1(S)' (7)

for all ψ e Ht; /, is the unit operator on ̂  and

j#>c = (x) ̂  associated to (X) flf . (9)
ι = l \ ι = l /

Proposition 2. L^ί dimSOϊ^ = 1 and Tr(l — |^4|) < oo, then ωA is not a
factor state.

Proof1. It is proved in [4; 2.3.5] that if ωA is not a factor state, its
center is generated by a hermitian, odd element Z, such that Z2 = 1.
Now we construct explicitly this element.

The operator \A\ has a pure point spectrum, hence we can use the
infinite product form of the representation induced by ωc given by (7),
(8), and (9). Define the operator

1 For a shorter proof, see appendix.



322 J. Manuceau and A. Verbeure:

on 2 t f . Now

/=!

Because Tr(J — |^4|) < oo, we have that Tr(J — |C|) < oo.Hence the operator
ζ is a bounded operator on fflc [7].

We prove further that ζ e πc(^/(9Ki, s))". We prove that ζ is the weak
limit of the sequence {£«}« = 1,2,...

ί=l

The sequence {£„}„ = 1,2... is a uniformly bounded sequence, hence it is
sufficient to prove the convergence on the set of vectors

ί k }
<ΩC, Y\nc(B(ψi))Ωc\iίeJί^ and fceNf.
I ;=ι J \

Let

then we have to prove that

|(?P ( i l f..., i l );(C-CΠ)ίP(r1...r l e))Hθ (10)

as w tends to infinity, for all finite (i l 5 . . ., i/) and (r! ... rk). We take n>ίt

and rk.
Because t

ΠM*W
7=1

commutes or anticommutes with both ζ and ζn depending on whether /
is even or odd, (10) is equivalent with

|(Ω0(C-ϋf(rι...jHO as n-»oo. (11)

The state ωc is even, hence if k is odd, (11) is trivially satisfied, otherwise
put k = 2m. It is easily verified that the only non trivial case happens when

m
ψ(2iί-1.2ll....)=Uπc(B(ψ2l]-1)B(ψ2l))Ωc.

j=ί
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In this case

n I / m

*.-ΓH ΓKi=ι I \ / = ιv=ι

1
\ / m \ - 1

(i- Π «, Π%
; = n+l / \ j = l /

^1- Π «7
j = n + l

which vanishes when n tends to infinity [7].
Hence

Now we have two operators ζ and θ both anticommuting with the gener-
ators

of

and 4® C e π^(j/5 /ί, s))". One easily verifies that

Z = πx(B(v>0))(/o®0 = π0(B(Vo)® 0 C e π^(tf, s)''nπA(s/(H, s))'.

Hence ω^ is not a factor state. Q.E.D.

Proposition 3. Suppose that dimSK^ = 1 and that l — \A\ is not a trace
class operator, then the quasi-free state ωA is a factor state.

Proof. Let E2n be the subspace of H generated by {ψ0, τ / ? 1 ? . . . , ψ2n-ι}
The algebra ^(H, s) is a UHF algebra and

is an incrasing sequence of (2" x 2")-matrix algebras which generates jtf.
A state ω on J3/ induces a factor representation of jtf if and only if for
each x e J3/ there is an integer n > 0 depending only on x such that

\ω(xy)-ω(x)ω(y)\£ \\y\\ (12)

for all y eJί£ [6] (̂ Π

c consists of all elements of j/ commuting with JKn).
Let

X = Xe + XQ

be an arbitrary element of j/ such that

*o=έ (*-



324 J. Manuceau and A. Verbeure:

We prove that there exists an integer n such that for all y e Jt%\

\ωA(xey)-ωA(xe)ωA(y)\^± \\y\\ (13)

and

\coA(x0y)-ωA(x0)ωA(y)\^ \\y\\. (14)

1) Because the set [B(ψi)\i eN = the non-negative integers} generates
the algebra j/(H, s), there exists an integer pe such that

and

We note by &0e and jtf0, the even, respectively the odd part of jtf. Further
for all q jg pe and all

y G Λ/(£β, sf = s/e(E^ s) 0 θβΛ/0(^

([4], a) 2.3.1) where θq =

and we get

\^A^ey} - ωA(xe) ωA(y)\ ^ \ωA(sιy) - co^sj ωA(y)\

+ \ωA(s2y)-ωA(s2)ωA(y)\

because firstly ωA is an even state implying ωA(s1θqyo) = 0 and secondly
ωA is a product state implying ω^^ ye) = ω^(sι) ω^(j;e) (for more details
see [4], a) 2.1). This proves (13).

2) By the same remark as in 1), there exists an integer p0elN such
that

and

Let r be an integer such that p0 <
 r and

ye
then
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Hence

ίι) ωA(y)\ + i \\

HωΛίΛttOI + ίW

Now £i e j/0(Epo, 5) and ω^ being a product state

K(ίΛy0)l = κ . V M
where

K = \ωA(t1B(Vo)...B(ψ2q))\,

L, = \ωΛ(B(ψ29+1)...B(ψ2r-2))\,

Only the value of K depends on x; by explicit computation

r- 1

L,= Π «.
/ = g + 1

and by increasing the value of r, the value of Lr can be made as small as
/ 00 \

we like remember that Tr(l— |4|) = oo implying J~]αz = 0 . Hence we
\ / = ! /

can take r such that

finally ωA being an even state

M = \ωA(B(φ2r_ί)yQ)\

= \ωA(B(ωQ)...B(ψ2r_2)y)\£\\y\\.

Hence

\coA(x0y)-ωA(x0)ωA(y)\^\\y\\ +$\\y\\ =$\\y\\ .

This proves (14).
By taking

e, r)

pe as defined in 1) and r as in 2) it is satisfied to (12). Q.E.D.
As an immediate consequence of Propositions 1, 2, and 3 we may

now formulate the main result.

Theorem. In order that α quasi-free state ωA on ^(H, s) is not a factor
state, it is necessary and sufficient that the operator A en H satisfies

(i) dim (kernel A) is odd,
(ii)
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Appendix

D. Testard informed us about a simpler proof of proposition 2.
With the same notations as above it goes as follows the state ω = ω0 (x) ω3

is not a factor state because the operator θ belongs to the von Neumann
algebra 7ij(j/(9Jljj[,s))" (πj being irreducible), hence

Z = πω(B(Vo)) (/<8> θ) = π0(B(v>o))® /

belongs to the center of πω.
Because Tr(J — |C|) < oo we have that ωc is quasi-equivalent to ω7 [8],

hence ωA is quasi-equivalent to ω, implying that ω^ is not factorial.
We reproduced this proof because of its elegance. However we prefer

to keep the proof given above, because it contains the explicit construc-
tion of the generator of the center.
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