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Abstract. Ward identities for matrix elements of covariant two-point time-ordered
operators in the presence of an arbitrary number of subtractions are investigated. Neither
the existence of naive T-products nor the existence of equal-time commutators between
current densities will be assumed. It is shown by means of the Jost-Lehmann-Dyson
representation that T*-products can always be defined such that normal Ward identities
with respect to one current are valid. The simultaneous validity of normal Ward identities
with respect to two currents requires a relation between equal-time charge-current commuta-
tors.

Our results show that the usual realization of current algebra in the form of Ward
identities is possible even if subtractions are necessary. Some examples are discussed in
detail.

1. Introduction

Ward identities (WΓs) are of great importance for the derivation of
low energy theorems [1]. In particular they are the basis for the applica-
tion of current algebra in the form of the hard-pion methods [2] . Therefore,
it is of great interest to investigate in detail the validity of such WΓs.

In this paper we attack the problem of the validity of normal WΓs
for matrix elements of time-ordered products in the framework of
general quantum field theory.

We exclusively consider the case of T-products of two field operators
where at least one will be a current. Then we speak about a normal WI
if a relation of the following kind is valid

Aγ(y))\ Ψ,y = <<F2 1 T(d"jμ(x) y

+ O4(x -y)<Ψ2

with
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for any local field AΊ and arbitrary quasilocal states ψ± and Ψ2. Histori-
cally, (I) has been derived first by using the naive definition of the
T-product1 and canonical equal-time commutators (ETC) between j'0
and Ay [3].

This derivation has several shortcomings:

a) The naive Γ-product may not exist. This happens in perturbation
theory, e.g. if a Feynman amplitude diverges and, therefore, needs
subtractions.

b) Even if the naive Γ-product exists it might be non covariant [1].

c) In case of non-conserved currents the ETC between a "charge"
and the local field Ay may not exist. A perturbation theoretical example
for such a situation has been given recently by the present author [5].

d) Even if the ETC between βω and Ay exists the ETC between j0

and Ay might deviate from its canonical value (appearance of gradient
terms - so-called "Schwinger terms" - which also may be infinite [5,6]).

Let us now briefly discuss what people have been done in the last
couple of years in order to overcome these difficulties.

First one trivial remark: As we ask for the validity of a normal WI
we must require that the ETC between a charge and the field Ay exists.
In most of the recent nonperturbation theoretic work on WΓs it has been
assumed that

α) the naive T-product exists,

β) ETC's between the local operators jμ and Ay exist.

Then the question may be asked whether the divergence of the
seagull term - which has to be added to the naive T-product in order to
get a covariant T-product - and the Schwinger term in the ETC cancel
each other. First this problem has been examined in the framework of
canonical Lagrangian field theories resulting in a positive answer [7].
But the derivations given by these authors can be considered as formal
only because the difficulties met for the definition of products of field
operators at the same space-time point have been ignored completely.

More recent work did not refer to Lagrangian field theory but only
assumptions α) and β) have been made with the restriction that at most
first order Schwinger terms appear in current-current ETC's. Gross and
Jackiw [8] assumed in addition that for the case of two-currents (Ay = gv)
the naive T-product T(dμjμ(x) gv(y)} is covariant. Their result is [8]:

1 We speak about naive T- or K-products if the multiplication of a distribution f ( x )
with the step function Θ(x0) is defined by means of an unsubtracted Hubert transform in

momentum space, i.e. Θf(q)= - J dq'0 -2πi q'0 ~q0~ ίε
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1) The WI with respect to one current (called "single WI" in the
following) can always be satisfied by means of a suitable choice of the
seagull.

2) Simultaneous WΓs for both currents (called "double WI" in the
following) require a special form of the Schwinger term in the [0o?7o]~
ETC.

Similar work restricted to conserved currents but allowing for an
arbitrary number of currents in the Γ-product has been done by Dashen
and Lee [9]. As in their work no Schwinger term in the [0o>7o]~ETC
has been allowed2 it is not surprising that all multiple WΓs are satisfied
after a suitable choice of the seagulls [9].

But very recently it has been recognized by Adler and Boulware [10]
and other authors [11] that one may have irreparable deviations from
normal WΓs in perturbation theory if the corresponding Feyman ampli-
tude is divergent, i.e. if the naive Γ-product does not exist.

It is, therefore, necessary to examine WΓs in a general framework
without assuming the existence of the naive T-product. Some work along
that line has been done by Wilson [12] restricted to three-point func-
tions and allowing for at most two subtractions.

It is the aim of the present paper to generalize the work of Wilson [12].
Therefore, we neither do assume the existence of naive Γ-products nor
the existence of ETC's of current densities and also allow for an arbitrary
number of subtractions in the definition of the Γ*-product. For technical
reasons (use of the Jost-Lehmann-Dyson representation) we don't work
with the T*-product but with the closely related retarded (^)-product
defined covariantly3.

Unfortunately, due to the use of the Jost-Lehmann-Dyson representa-
tion we are restricted to the consideration of matrix-elements of two-
point retarded operators.

Single WΓs and double WΓs will be examined in Chapters 2 and 3
respectively. Chapter 4 is devoted to some applications of our general
results to two-, three-, and four-point functions.

2. Single Ward Identities

In this chapter we examine the question whether the usual form of the
Ward identity with respect to a single current jμ(x) can be obtained by
means of a suitable redefinition of the covariant ^-product R(jμ(x)Aγ(y)).

2 Exactly this happens in the Lagrangian framework [7].
3 It is immediately clear that WΓs for T*-products and covariant .R-products respec-

tively have the same form.
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2.1. General Form of d$R(jμ(x) Ay(y)). We start with some defini-
tions and notations.

Commutator Matrix Elements.

FjμAγ(x) EE <<F2 1 [jμ(x/2)9 Aγ(-x/2) ] I ψ,y (1)

where Aγ is an arbitrary local field operator (y describes the tensor
character of A) and where the states \Ψty are arbitrary particle states with
sharp momentum pt.

FjAγ(x) = <<F2 1 [3%(x/2), Ay(- x/2)] | Ψ,> . (2)

Retarded Commutator Matrix Elements.

F*Aγ(x) = Θ(x0)FjμAγ(x) etc. (3)

This is a formal definition of the retarded commutator. A precise defini-
tion in momentum space will be given below.

Fourier Transforms.

FJμAv(<l) = ld*xe?9'F]μAy(x) etc. (4)

According to (1), (2), and (4) we have then

(q) = FJΛ(q) (5)
with Δ=p2—Pι.

Since jμ and A are supposed to be local fields, our commutator
matrix elements satisfy the Jost-Lehmann-Dyson (JLD)-representation
[13, 14]. In particular we have for FjA (q)

FjAy(q] = $d4u$ds ε(q0 - u0) δ((q - u)2 - s) φ(u, s) (6)

with the usual support of φ [14].
Now we need the JLD-representation for FjμAγ(q) in such a form that

(5) and (6) are satisfied explicitly. This problem has been solved by the
Volkels [15]:

FjnAM) = i$d4u$ds ε(qQ - UQ) δ((q - u)2 - s)

((q - Aβ\ W*(u, s) + φ(u, s)) (7)
S \U

2
+ (q + A/2 - 2ύ)μ δ(s -(u- Δ/2)2) E(u, s) - Wμ(u, s) .
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We may define covariant retarded commutator matrix elements by
means of TV-fold subtracted JLD-representations

A/2 2 w ) κ / / - "™Wv(u,s) + φ(u,s))
s-(u-Δ/2)2 ^

(8)

~
2π J J (q-u + is)2 - s

T J / / ϊ— Wu(u,s)μV '

where we denote by P(κ)(q) a polynomial in q of order K. The number AT
in (8) should be understood to be the smallest positive integer such that
each term exists separately. From this follows that FfA obeys an JLD-
representation with at most N + 1 subtractions.

By means of an elementary calculation we may now compute

-i(q-Δ/2γFlAγ(q)
and obtain

- i(q - Δ/2)» FfμAy(q) = FfAγ(q) + ~ f d*u | ds δ(s - (u -

E(u,s) +

with

((, - u)2 + ay ̂ (., 5) ] i

(s + a2f(s _(u_ Δ/2}2) \ + 2π

 J J dS
- H)2 + a

(s + a2f(s _(u_ Δ/2}2) 2π (s + α2f

(u-Δ/2)2 + a2

• s-(u-A/2? ^a>

The sum of the last two terms in (10)7 can be developed into a power series
in q — A/2. Therefore, we have due to (9)

( }
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where the upper index P in the last term means that in (9) the principal
value integral has to be taken.

The normal Ward identity requires the ^-independence of P(

(fj^+1)(g)
in (10). According to (1 1) this is the case if we choose e.g.

^2Ve) + ̂ V«) = 0- (12)

In order to decide whether (12) is sufficient for getting a normal WI
we have to distinguish several cases. This will be done in the following
sections.

2.2. Conserved Current. The conservation law Sμjμ = 0 is equivalent
to FjA(q) = Q. This does not imply φ(u, S)ΞΞ() since due to the non-
uniqueness of the Dyson representation there exist non-trivial distribu-
tions φ such that

J d*u J ds ε(q0 - UQ) δ((q - u)2 - s) φ(u, s) EΞ 0 (13)

holds.
The requirement F f A γ ( q ) = Q we, therefore, fulfill by means of a

suitable choice of the polynomial P$}

N)(q) in (9). In any case, the redefini-
tion of our retarded product due to (12) means in the conserved case that
φ has been eliminated in (8). We obtain for our redefined Ff A (q) (9)
according to Eqs. (10)'-(12)

We note that

a) the only arbitrariness in (14) is due to the choice of the subtraction
point α2,

b) instead of N subtractions we only need N — 1.

The following statement shows that our redefined retarded commutator
satisfies the normal WI.

Statement. In the case of a conserved current we have

i>- (15)



On the Validity of Ward Identities 28 1

Proof. By means of translational invariance and the definition of
the Fourier transform we get

<Ψ2 1 [βc/)(*o), A(°)] I »Ί> = -ίdq0FJoAy(qθ9 A/2) . (16)

On the other hand we obtain by means of (7) and (13)

ί dq0FjoAy(q0, A/2) = i J d*u J ds δ(s -(u- A/2)2) E(u, s) (17)

because

a) the W-part of (7) does not contribute to FjoAy(q0, A/2),

b) the φ-contribution to FjoAy(q0, A/2) may be rewritten as

IP - TΎϊ\ά*u ί ds δ(^ ~ u^2 ~ 5)«=Λ/2Φo-^o) φ(u, s)

which vanishes due to (13).

2.3. Non-Conserved PCAC-Current. We define PCAG by means of
the requirement that FfA (q) defined by (9) does not need any subtrac-
tion4.

Then our redefined retarded commutator satisfies the normal WI,
because according to (9) and (7) we see immediately that

-̂  J d*u J ds δ(s -(u- A/2)2) E(u, s) - FjAy(Δ/2)

2.4. Non-PC AC Current. A non-conserved current will be called a non-
PC AC current if the representation for FfA(q} in (9) requires at least one
subtraction. Then we have in any case a free constant in the definition of
FfAy(q\ i.e. FjAγ(Δ/2) is arbitrary and, therefore,

can take any desired value. In general, the ETC between Q(j} and Ay

will not exist in this case, but we can always choose our free constant such
that we have a "naive-normal" WI where the r.h.s. is given by means of the
"naive-canonical" ETC.

3. Double Ward Identities

In this chapter we put the field Ay(y) equal to another current gv(y)
and ask whether the WΓs with respect to both currents jμ and gv can be
satisfied simultaneously.

4 This definition has to be changed if Ay is a current too. Compare for this case Sec-

tion 3.2 below.

20 Commun. math. Phys., Vol. 18
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In order to simplify the notation we use the following abbreviations :

F^ = FSβv9 Fj = Fjg etc.,

3.1. Conserved Currents. According to Chapter 2 we may always
choose Fμv(q) in such a way that the WI with respect tojμ is satisfied, i.e.
we have

. (19)

Furthermore, the WI with respect to gv has the form

iq\ FfM =-<ψ2\ &μ(θ), ρ

Now our problem may be stated as follows :

Find a polynomial Sμv(q) such that

4μ-Sμv(q) = 0
and

iqv

+Sμv(q) = qv

+Pμv(l) (21)

Then the redefined retarded commutator matrix element

F*(q) = F*(q) + Sμv (22)

will satisfy both WΓs simultaneously.

Statement 1. A polynomial Sμv(q) satisfying (21) exists if and only
if the condition

qμ-q\Pμv(q) = 0 (23)
is fulfilled.

Proof, a) From (21) we see immediately that (23) is a necessary
condition for the existence of Sμv.

b) The most general polynomial solution of (23) for q\ Pμv is given by

q\ Pμv = £μ,QΛvΔQA° + C^M q<L q\ (24)

because

α) first we have from (23)

ίv

+Pμv = C[μfβ]te)^_ (25)

where, due to the l.h.s. of (25)

< = 0, (26)
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β) define C[μ?ρ]v(g) by means of

C[μ,ρ](q) = C[μ>ρ](-A/2) + q\ C^Q]v(q] , (27)

γ) the solution of (26) has the form

C[μ^(-A/2) = εμvρσ^Aσ. (28)

δ) insertion of (27) with (28) into (25) leads to (24).

c) with (24) we find the following particular solution of (21) for Sμv

SμM= -zμ,QΛQ-A° + q*C[μ^(q} (29)

According to statement 2 the condition (23) may be reformulated in
terms of physical quantities.

Statement 2. Condition (23) is equivalent to

Proof, a) Due to (19) and (20) Eq. (23) is equivalent to

qμ

+ <Ψ2\[.Qu» M°)]l ^ι> = «- <^IQμ(0), β(,)]| !Pι> . (31)

b) From translational invariance and current conservation we have

c) Insertion of (32) into (31) together with the ^-independence of the
equal-time charge-current commutator matrix elements leads immediately
to (30).

3.2. PCAC-Currents. In this section we examine the case where one
current (jμ) is of the PCAC type and the other (gv) is either conserved or
of the PCAC-type too.

Despite of the fact that jμ is supposed to be a PCAC-current Ffv(q)
can not obey an unsubtracted JLD-representation

- (9v™ 2π J J (q-u + iε)2-s

because this corresponds to

lim φ (u,s) = Q
s^oo y

leading to

!dq0Fgo(q09-A/2) = 0
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which is equivalent to

But in most cases of physical interest this ETC is different from zero
(e.g. gv = isospin current, jμ — axial vector current). One subtraction in
the sense of Eq. (9) is taken into account automatically if we assume for
Ffv(q) a representation of the form (8) with N = 0

J J (q-u + iε)2-s [ s-(u + A/2)2

• A/2)μ Wf(u, s) + φ(u,s)) + (-q + A/2 - 2u)v (33)

• δ(s - (u + A/2)2) Ej(u, s) - WJv(u, s)] + P<0

2>;£,v.

Now we redefine F*v(q) such that

- ifa - A/2)μF*v(q) - F*(q) (33 a)

becomes q independent i.e., due to Eqs. (10) and (11), equal to

-^ J d4u j" dsδ(s-(u- A/2)2) Egv(u, s) - Fl(Δβ) *= κ^. (33 b)

This corresponds to the situation discussed in section 2.4. But the
arbitrariness of expression (33 b) can be lifted if we require that Ffv(q)
satisfies a normal WI.

Statements. Suppose (Ψ2\R(dμjμ,d
vgv)\Ψιy obeys an unsubtracted

JLD-representation (PC AC-situation). Then Fμv(q) satisfies a normal WI
with respect tojμ if and only if Ffv(q) satisfies a normal WI.

Proof, a) With the representation (33) for Ffv and the assumed
unsubtracted JLD-representation for

we get according to the results of Chapter 2 a normal WI for Ffv, i.e.

i(q + A/2YF«(q) = FR(q) - <f 21 [̂ (O), Qto)(0)] | Ψ,> (34)

if we put
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b) With (33) and (35) we find by means of an explicit calculation that
Fgl(q) is given by the naive retarded commutator matrix element

c) We have

(^ I [Qo >(0),00(0)] !•?:> = 4-1^00(90^/2). (37)

As we have already shown in Section 2.2 F00(g0, A/2) receives contribu-
tions from the E- and φ-parts of the representation Eq. (7) only.

We obtain

= δ(q0-A0/2)ί$d*u$dsδ(s-(u-A/2)2)

9Q(u, s) + ίP - — - Fβo(qQ9 A/2) . (38)
—

a) By combining Eqs. (36)— (38) we finally get

. (39)

We note that the Eq. (36) between Ffv(q) and the naive retarded commu-
tator only holds for v = 0, i.e. we have

«flv4=<y2l[Qu)(°)^v(0)]|yi> for V Φ O (40)

which is due to the non-covariance of <^2l[βo )(°)>0v(0)]ll?'ι> (40)
becomes an equality only if P/o/,^ as given by (35) vanishes, i.e. if the ETC
L9o>dμjμ~] contains no Schwinger-term.

We are now prepared to attack the problem of the double WI.
According to our results given above we have the following WΓs :

gv, (41)

iq\ FfM = Ffμ(q) - κjμ - q\ Pμv(q) (42)

where we have defined Ffv and Ff such that they satisfy normal WΓs,
i.e. the zeroth components of κ^ and κgv respectively are the usual
charge-current ETC matrix elements due to Statement 3. Therefore, the
same situation as in Section 3.1 holds: The additional seagull term is
defined by (21) and the solution is given by the content of Statement 1.
We are left with the physical interpretation of the consistency condition
(23) in the PCAC-case.
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Statement 4. Condition (23) is equivalent to

Proof, a) By multiplying (41) with iq\ , (42) with — iqμ_ and using the
WΓs for F*v and F* we obtain by equating the resulting r.h.s.

+ iq\ κgv

= <Ψ2\ [βω(0), 3V0V(0)] I <?!> + *V- κjv (44)

+ ^_4v

+Pμv(4).

Now we put q = — A/2 in (44) and obtain

ψ (45)

Inserting now (45) in (44) we have

iq\ κgv = iq\ κjμ + iqt_ q\ Pμv(q) . (46)

Therefore, due to the ^-independence of κgv and κjμ, condition (23)
is equivalent to ,Λn.

κ9v = κjv ' (47)

b) Due to the fact that κgv and κjv transform like four vectors, (47)
is already satisfied if we have it for the time component i.e., with (39), if
we have (43).

4. Applications

4.1. Two-Point Functions. In the case of two-point functions the
double WΓs are a consequence of the single WI due to the symmetry

which arises from the fact that we have only one four vector q on hand.
Furthermore, the ETC-term on the r.h.s. of the WΓs for F*v vanishes

due to TCP-in variance supposed the currents gμ and jμ behave equal
under TCP [6]. Hence we have

(q) = F«(q)> (49a)

iqvFΪv(q)==Ffμ(q). (49 b)

This leads in the conserved case to the form

F^(q)-(9μvq
2-qμq,)F(q2) (50)

and, therefore,
ί*,(0) = 0. (51)
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We now concentrate on the case of two PCAC-currents. By applying the
results of Section 3.2 we obtain :

a) An unsubtr acted spectral representation for FR(q) (remember that
this is just our definition of PCAC)

<52>
b) The normal WΓs for Ffv and Ff respectively are a consequence of

the PCAC-assumption already. This follows from the vanishing of WJ
and P(ol9v in (33) (due to the fact that only one four vector q is on hand).
Furthermore, Ej in (33) vanishes too, as the vacuum intermediate state
in the commutator does not contribute (due to Lorentz covariance).
Therefore, we have

ler^ (53)
and the WI

- iqμFR

μ(q) = FR(q) + <0| [βω(0), dv#v(0)] |0>
with

<0|[Q(7 )(0), dv0v(0)]|0> — J ds—-—. (54)

In case of two equal currents (e.g. axial vector currents belonging to the
same isospin multiplet) the σ-term (54) is different from zero due to the
positivity property φ(s) ^ 0. The most general N-fold subtracted spectral
representation for FR

v(q) solving (49) with (53) is given by

- (βf,ΐ - - ί d*

φ(s)

With regard to one-particle approximations for two-point functions,
we note that for subtracted spectral integrals only the low-energy part
may be saturated by one-particle intermediate states. The high-energy
part has to be treated by different methods.

4. 2. Three-Point Functions. Anomalous WΓs have been just discovered
for the VAV-vertex in perturbation theory [10]. In the following we show
how this phenomenon will be rediscovered within our general scheme.
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We consider the case that jμ is the isospin current, gv the axial vector
current and the states Ψ2 and Ψ1 are the vacuum and a one-particle
1~ -state respectively, where the 1~ -particle is coupled to the isospin
current. If we describe the 1~ -particle state by means of its four momen-
tum p and polarisation vector ε, then the coupling to a conserved current
means that Fμv(q) has to be gauge invariant, i.e.

^Γv(4)U = 0. (56)

Suppose we start our game with a Fμv which is gauge invariant and
satisfies a normal WI with respect to jμ (according to Chapter 2 and
Chapter 3 this is always possible). Then the polynomial q\ Pμv(q) = iq\ Sμv

is gauge invariant and we must require that the seagull Sμv has to be
gauge invariant too. In accordance with the requirement <?-Sμv(#) = 0
its most general form is given by

- PI & P) + P V(e ' *) P2fe Pi]

where the P/s are polynomials in q and p. Without any loss of generality
we may put P2 equal to zero as the 2nd term in (57) does not contribute
to qv+Pμv. The gauge in variance of q\ Sμv is automatically satisfied due to
(57). But Sμv itself will be gauge invariant only if P! = 0, i.e. if Sμv = 0. But
this is not generally true.

It is interesting to investigate the AAV- vertex in the same framework.
Then both currents are axial vector currents, and the states Ψ1}2 are the
same as above. In this case the double WΓs are a consequence of the single
WI due to crossing symmetry.

WΓs for the three-point function <Q\T*(jμ(x)gv(y) FA(z))|0> in the
presence of subtractions have been recently discussed by K. Wilson [12].
He considered exclusively the case that the singular behaviour of the
three-point function has its origin in the bad behaviour for x -> z, y -» z.
In contrast to that our scheme takes the behaviour for x-^y with Fλ

on the mass shell into account. It is interesting to note that our results
agree with the ones obtained by Wilson [12].

4.3. Four Point Functions. We will only consider the one case which
is important for the application to πN scattering [16] :jμ and gv are both
axialvector currents and Ψί 2 are one-nucleon states. Supposed the
currents are PCAC currents then the results of Section 3.2 show that we
may obtain normal double WΓs if normal ETC's between axial charges
and axialvector currents hold.
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5. Conclusions

It has been shown that the assumption of the existence of naive
T-products and of ETC's between current densities is unnecessary for the
validity of normal WΓs. By means of a suitable definition of PCAC-
currents we have reached conclusions which are in agreement with
those obtained by Gross and Jackiw [8] :

1. T*-products can always be defined such that WΓs with respect
to one current are valid.

2. The simultaneous validity of WΓs with respect to two currents
requires the following relation between ETC's of charges and currents

3ίι> = <Ψ2\[Jo(0), δ

We have obtained our results by means of subtracted JLD-representa-
tions for matrix elements of two-point retarded operators. Within the
same framework the validity of WΓs has been examined recently by
Volkel [17]. But in contrast to our work he restricted the number of
subtractions such that current-current ETC's are valid. Furthermore
a technical assumption on the form of the JLD-representation for Fμv(q)
has been made. VolkeΓs results are in agreement with ours.

Our results show that the usual realization of current algebra in the
form of WΓs [2] is possible even if subtractions are necessary.

We conclude from the validity of normal WΓs in the subtracted case:

a) The low energy theorems (soft pion results) [1] will not be altered,
as they are an immediate consequence of normal WΓs only.

b) A saturation of two-point functions by means of one-particle
intermediate states [18] makes sense for unsubtracted spectral integrals
only.

c) There is no correlation between the validity of normal WΓs and
the validity of the Bjorken- Johnson-Low (BJL) limit. In the subtracted
case the BJL limit will not hold generally [19], as we may read off, e.g.,
from Eq. (14).
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