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Abstract. For infinitesimal changes of vertex functions under infinitesimal variation
of all renormalized parameters, linear combinations are found such that the net infinitesimal
changes of all vertex functions are negligible relative to those functions themselves at
large momenta in all orders of renormalized perturbation theory. The resulting linear first
order partial differential equations for the asymptotic forms of the vertex functions are,
in quantum electrodynamics, solved in terms of one universal function of one variable and

one function of one variable for each vertex function whereby, in contrast to the renormali-

zation group treatment of this problem, the universal function is obtained from nonasympto-
tic considerations. A relation to the breaking of scale invariance in renormalizable theories
is described.

Introduction

The small distance behaviour of Green’s and vertex functions in
renormalizable quantum field theories has been extensively studied in
a formal way via the renormalization group [1, 2] and, with equivalent
results, some other approaches [8,9]. Here we offer an alternative ap-
proach to the same problem, which appears to be rather more direct.
It leads to formulas that are exact and become the usual asymptotic
ones upon a, in principle controllable, neglect.

We study the effect of inserting one extra mass vertex, or a generalized
mass vertex in the sense of Wilson [3], into all Feynman diagrams for
all vertex functions. (Such vertices are defined as those for which the
sum of the mass dimensions of the composing fields, a scalar and the
electromagnetic field having dimension one, a spinor field dimension
three half, a derivative dimension one, is less than four, e.g. two for a
scalar mass vertex and three for a spinor mass vertex.) By such insertion,
the superficial divergence D of the corresponding Feynman integral is
reduced! (e.g. by two and by one, respectively, for a scalar and a spinor
mass vertex). Reduction of the superficial divergence, however, results
in decrease of the large-momentum behaviour by the corresponding
power of an overall scale factor®. This relation between dimension of

1 See, e.g., Ref. [2] p. 321; the index w(G) we call D. Also ibid., p. 341.
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the vertices (i.e., of the terms in the interaction Lagrangian density in
the Dyson formula) and large-momentum behaviour is basic in renormali-
zation theory [2] and in many applications (Weinberg sum rules?, re-
normalization of theories with broken symmetry [4-7]).

We now consider, however, the insertion of one such vertex as the
infinitesimal operation to the insertion of such interaction term into the
Lagrangian density. If this type of vertex is already in the Lagrangian,
this change of the theory is expressible as a change of the renormalized
masses and coupling constants that completely specify the theory.

Thus, the insertion of one such vertex into all diagrams for a vertex
function is equivalent to forming some linear combination of the partial
derivatives of that vertex function with respect to all renormalized para-
meters. The coefficients in this linear combination are independent of
momenta or of the vertex function selected, and therefore can be deter-
mined by calculating the effect of the insertion operation upon the vertex
functions of nonnegative superficial divergence degree, which themselves
define, at particular momenta, the renormalized parameters of the theory.
Once these coefficients have been determined, we have obtained for
every vertex functions at all (in this process, fixed) momenta a linear
partial differential equation, the inhomogeneous term being the vertex
function with that extra vertex inserted into all diagrams, which is
expressible in standard fashion by certain integral operations.

If in such partial differential equation the inhomogeneous term is
neglected, we obtain a partial differential equation for the asymptotic
form of that vertex function. To see this, we recall from the usual discussion
of small distance behaviour [1, 2] that asymptotically, all momenta be-
coming large in the sense p,— Ap;, A— o0, the vertex function behaves,
in renormalized perturbation theory, like® AP multiplied by, e.g., in
quantum electrodynamics, a double power series in the fine structure
constant o and in « InJ, whereby all neglected terms have relative to
these one or more factor 4~ . In the partial differential equation described,
by power counting, the inhomogeneous term does have ! one or more
factor A~ ! relative to all the homogeneous terms, such that the asymptotic
form does obey the homogeneous linear partial differential equation.

The solution of this equation is trivial and involves an unknown
function, e.g., the value the asymptotic form takes for A =1 as a function
of the coupling constant. The further discussion of this solution, identical
with the one from renormalization group arguments [1, 2], is familiar.
What has been achieved, for asymptotic formulas, is only that the uni-

2 See, €.g., the discussion in Ref. [3].

3 The present statements hold in general only if no nontrivial partial sum of momenta
vanishes, and conform with Weinberg’s results [28], as far as these are applicable, cp. Refs.
[20, 29].
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versal function (p(z) in (IL1.25) below) of the coupling constant needed
in the usual approach [1, 2] is here obtained implicitly from the coefficient
functions, which were determined without asymptotic considerations.
However, in principle, the differential equations are more informative
than merely to lead to the usual and, as is well known, essentially useless
asymptotic formulas. We elaborate on this point in the discussion. On
the other hand, our technique yields, at least directly, only formulas
relating to overall scaling, such that other results on asymptotic be-
haviour, obtained either by more involved uses of the renormalization
group [2], by direct asymptotic estimates [8], or by summation of
leading logarithmic terms in the perturbation theoretical expansions [9],
are so far not covered.

The inhomogeneous partial differential equations allow an amusing
application to the problem of the breaking of scale invariance*, since
they yield, except in theories with scalar or pseudoscalar fields, a new
expression for the divergence of the local current associated with scale
transformations. The Wilson dimension [3] of this operator is, mani-
festly, four, such that, as one should anticipate in view of the logarithmic
factors in asymptotic formulas, the breaking of scale invariance in
renormalizable quantum field theories is not a simple one.

For transparency, we present the method first in Section I applied
to the model of a hermitean scalar field in quartic self interaction, and
also, because the application, given in the appendix, to the breaking of
scale invariance is more interesting in such a model. In Section II, we
apply the method to quantum electrodynamics, derive the consequences
of current conservation, and obtain familiar [1, 2] asymptotic formulas.
In the discussion we make remarks on the possible usefulness of our
results.

I. The ¢*-Theory
1.1 Derivation of Partial Differential Equations
We consider the theory described by the Lagrangian density

This expression, containing unrenormalized quantities, is formal and
so are the manipulations at the beginning of this section, but the final,
renormalized, formulas are correct. A rigorous derivation in the frame-
work of renormalized perturbation theory can be given by first regu-
larizing [10, 11] the theory (I.1) and letting the regulator masses go to
infinity in the final formulas. For brevity, we omit showing this.

4 See, e.g., Ref. [3] and references given there.
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The generating functional

GaiselJ} = i )71 e fdxg . dx, T(Xh) <o T (%) Gaige(X1 .. %) (12)

n=0

of the renormalized Green’s functions

Gaise(X1 - X,) = (D(x1) -+ () 4+
is for the theory (I.1) (see, e.g., Ref. [27])

G4, {J} = const exp[ifdx AL(—iZ§5/6J(x))] Gaeeld}  (13)

where Gy, {J} is the generating functional for the theory (I. 1) with AL
set zero, and const is such that G4L, {0} = 1. We now choose®

AL(p)=—34Am2:p?2:. (1.4)
Then, clearly,

dlsc{J} (m g) Gdlsc{(1+Az)J} (m +Am rg+Ag) (15)

where m and g are the renormalized mass and coupling constant that
specify the theory, and we have taken into account that renormalization
also implies an amplitude renormalization convention that will in general
not be observed by the Green’s functions defined by (I.3).

The infinitesimal form of (I.3), with the choice (1.4), is

AGy (I} =3iZ34 m;
. j. dx[Gdisc xx {J} - Gdisc {J} Gdisc xx{O}]

(I.6a)

while (1.5) gives

4Gyo{J} = (4m*[8/0m*] + 4g[0/0g]

+4z[dxJ(x) [6/6J(X)]) Gise{J} - (160

(In (I.6a), subscripts denote functional derivatives, such that, in view
of (1.2),

Gdiscxi...x,.{o} = inGdisc(xl xn)')

5 The concepts and notation used here and later on are described in Ref. [5].

6 A trilinear term could be dealt with in an analogous manner, but would break the
symmetrie ¢ — — ¢ of the undisturbed part in (I.1) such that more renormalization para-
meters would have to be introduced. Since also the combinatorics with a trilinear term [12]
is more complicated and such terms appear also to be of less practical interest, we consider
only ordinary mass terms in this paper.
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For connected Green’s functions, with generating functional G{J}
=InGy;.{J}, (1.6) gives
AG{I}=%iZsAm?
Jdx[G {J} + G {J} G {J} — G {0}]
= (Am*[8/om*] + Ag[0/0g]
+A4zfdx J(x)[6/6J(x)]) G{J}.

The transition to vertex functions®, with generating functional I'{.s/}
such that )

(L7)

F(xy...x) =T, {0}
is described by

~iG (T} = A (x), (1.82)

J(x) =il {s/}, (L8b)

ot} =G} —ifdx J(x) L (x), (L8¢)
GoylJ} =I5 ot} . (L.8d)

In view of (1.8¢),
AT {ﬂ}dﬁxed =4 G{J}inxed
such that (1.7) gives
AT{l} =3iZ Am?
Jdx[To oA} — A () A (%) + G(xx)]
= (Am*[6/om*] + Ag[6/dg]
—Az[fdx A (x)[6/6 L (x)]) {} .

In particular, from (1.9),

(1.9)

AT (y1y,)=—iZ3Amd(y, — y,)
—LiZAm? fdxdzduG(xz) G(xu)T'(zuy,y,) (1.10)
p =(4m*[0/om*]+ 4g[0/0g] —24z) [(y1y,)
an

AT (y1y2V3Y4) = — iZ3Am,f
Jdxdzdu G(xz) G(xu) {3 I'(zu y,y,Y3y4)

+ § dvdw G(ow) [I'(zv y,y,) T(Wu y3v,)
+T'(zv y,y3) T(Wu p,94) +T'(20 p1y4) T(wu y,y3)1} -

(L.11)
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1.2 Determination of Coefficient Functions

Determination of Am?, Ag, Az in (1.9) requires to fix Am? by some
normalization. We introduce Fourier transforms by

fdyy...dy,L(yy ... y,) exp(Epiyy+ - +ip,y,)
=Q2n)* s+ +p) TPy - )

and similarly for the AT'(...), as this notation will not lead to confusion.
AT (p(— p)) has, by power counting, superficial divergence degree D=0
and, by (1.10), satisfies an inhomogeneous Bethe-Salpeter (BS) equation,
with the inhomogeneous term eliminated by one subtraction imposing,
as convenient choice,

AL (P(=P)lp2=m = —im?. (1.12)
Thereupon, 4 I'(p(— p)) for all p, and all other AI'(...), can be calculated

to all orders in renormalized perturbation theory. E.g., the renormalized
form of (I.11) is

AT (Y, ...y4)=fdzdudz du AT (zu)
- G(z2) Guw') {5 [yt y1Y2Y34)
+ [dvdw G(vw) [asin(I.11)]}

where I',;(z'V', y,V,¥3Y4) is the vertex function two-particle irreducible’
between the first and the second group of arguments and definable by
a BS-type integral equation.

For the normalization (I.12), we rewrite (1.9) as

AL(py ... p2a)=(a(g) m*[6/0m]

(1.13)
+B(9) [0/0g]1—2ny(g@) I'(Py--- P2w) -
From the renormalization conditions
I'(p(=p)lp2=m2=0, (I14a)
[0/0pP*1 T (p(= P)lp2=me =1, (L14b)
Iy ... Pa)lsymmetry point =~ 19 > (L.14c)

where the symmetry point is defined by p;p;=3m?*(4 6;;—1), (1.13), and
(I.12) we have

—im? = —im*u(g),
[a/apz:l 4 F(p(—p))lp2=m2
= —a(g)m*[0/0p*1* T (p(— P))lp2=m2—2i7(9) ,

7 For the concepts and equations used here, see e.g. Refs. [12—14].
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and
AT (py ... p4)|symmetry point
= % “(g)i_ilpiu[a/apiu] I'(pyp2p3(—p1—p; _pS))lsymmetry point

—ipB(g) +4igy(9),

whereby we have used

m*[0/om*]1 T (p(— p)=(—p*[0/0p*1+ 1) [(p(~p)  (L15a)

and
2n—1
{m*[0/om*1+% Y. p;,[0/0p;,]
i=1 (I.15b)
+n—=2}T(py ... Pap—i1(=P1— " —P2,-1)) =0
for n=2. We find
alg)=1, (I.16a)
B(g) =bog* +byg>+ -, (I.16b)
PG =cog’+ci1g°+ -, (I.16¢)

with
bo=3(327%)"!

co=(2M"3n%) 1.

1.3 Asymptotic Forms of Vertex Functions

As explained in the introduction, (I.13) yields® for the asymptotic
forms of the vertex functions, with (I.16a),

(m*[0/0m*]1+ B(9) [9/04]

(1.17)
—2n9(9) [Py -+ Pan-1(=P1— = P2a-1)) =0,
whose general solution is
Fas(p <o Don- (_p -t n—
1 2n—1 1 Pan-1)) (1.18)

=a(g)'®,,.. p,...(—Inm?+0(g))
where

alg) = exp 2ff)dg' B@) 1(q) (119a)
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and 4
0(9)= [dg Blg)*. (1.19b)

Thus, for dimensional reasons,

L (Apy - AP2y— 1 (= APy = - = AP2,—1))
=2*"2"a(gy'®, —Inm?+1n A% +0(g)) .

As to scattering amplitudes, (1.20) gives a result only for amplitudes?
extrapolated to all p? =0, i.e. for “massless external particles”.

The function @ in (I.20) expresses the deviation of the asymptotic
form of the vertex function from scale invariant form, that is, @ = const.
Our method, like the, in this respect, equivalent one of the renormali-
zation group [2], gives no information concerning the In A2-dependence
of this function. The only conclusion that can be drawn with some con-
fidence (the flaw being that I',; may not be asymptotic to I', and may
even not exist) from (1.20) is the analog of a famous result of Gell-Mann
and Low [1]

lim 22" 4a(g) ™" [y (Apy -+ AP2n—1(=AP1— -+ =AP2-1))

=&, ._,(0) independent of g.

(1.20)

1~~~p2n—1(

(1.21)

There are relations between the @-functions in (I1.20), which stem from
the renormalized coupled nonlinear integral equations [12—14] among
vertex functions. We will not study these relations here. Otherwise, only
perturbation theory is available to complement (I1.17). One has to cal-
culate I',; along a noncharacteristic curve in the m?, g plane, the charac-
teristics being the curves g(g) — In m? = const. Here, we give the simplest
expansion formulas only for the convenience of the reader as their
derivation follows familiar patterns. One sets

I'(p(—p) =ip d([p*/m*],9)""
and has, from (I.18) with (I.19),

00

dy([p*/m*], 9)* ' = Y. (n1)™'(In [p*/m*])"
n=0 (1.22)
-(B(9) [0/09] +29(9))" [dos(1, 9)T*!

with the same sign at all three places. Some power series in g In(p?/m?)
in these formulas are summed by ([p%/m?] = x)

a(g) dys(x, g) =1+ 2bg " cog [1— g bolnx
+gb,bg 'In(1—g bolnx)+gr]™* +0(g%) (1.23)
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where we have used (1.16) and
r=—cobg ' —%cicot =3 bopoco ' +3bibg !

with p, from
dys(1,9)=1+pog® +0(g°),
and in (1.23) it is understood that

1—gbylnx>0, |g71=bylnx|"t=0(g).
Under similat conditions 3

I (Apy ... Ap3(—Apy— -+ —Ap3)) = —ig(1—2g boInd)~* +0(g?)

and

APy APay—1(—=Apy— -+ —ipzn—l))
=—id*72"C(py ... p3n-1) 9" (1=2g boInJ) "+ 0(g"*") (n>2)

by which formulas the leading logarithms are summed. Final remarks
on (I.13) in comparison with the usual approach are made in the dis-
cussion.

II. Quantum Electrodynamics
11.1 Derivation of Partial Differential Equations

In analogy to Section 1.1, we consider the change of the Lagrangian
density by a Fermion mass term. Such a term, if sufficiently carefully
defined, observes all invariances of quantum electrodynamics (QED)
and, in particular, is invariant® under gauge transformations of the
second kind, such that current conservation is not affected. In explicit
terms, this means that Ward identities obtain no contribution from such
an extra vertex (at zero momentum as needed here, but also at finite
momentum) in the Feynman diagrams, a condition that will in turn
lead us to the complete definition of that vertex in terms of subtraction
prescriptions.

We introduce, for conciseness, the usual anticommuting spinor
sources [15,16] #(x) and #(x) along with J(x), whereby we suppress
spinor and vector indices wherever expendable. Anticommutators of
spinor sources and functional derivatives with respect to them, among
themselves and with the spinor fields, all vanish except

{6/6m(x), n(»)} = {6/67(x), 1Y)} = 6(x — ).

8 This is related to the fact that the self mass of the electron is gauge invariant.
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We understand all derivatives as left ones, such that e.g.
[1(x) 6/6n(x), B(y) n(¥)] = P n(x) 6(x —y).

We use the notation
m n 1
l_—[1 L6/07(x;)] [11 L[6/0n(y;)] kll [6/6J(z)] Gaisc {1, 1, J}

= Gdiscxl.,.xm,yl...yn,zl...zx{ﬁﬁ '1’ J}
=" < (P 0x) - W) B - BO) Alzy) .. Al2)
~exp [i | dx(f7(x) w(x) + P(x) 1(x) + I (x) A))])+ > -
(1.3) becomes, with, instead of (I1.4),

4 L(‘ww Yus Au) =—4 mu‘wuwu » (IIl)
replaced by

Ggi?c{ﬁa 1, J}
= const exp(—iZ,4m, { dx[6*/5n(x) 67(x)]) Gasse 7T, 1, T}
and (1.5) by
Ggigc{ﬁ’ n, J} (ma e)
= Gaisc{(1+42,) 7, (1+ A25) 1, (14 423) J} (m+Am, e+ de)  (IL3)

+ gauge correction terms,

(IL.2)

whereof the “gauge correction terms” will be discussed later. Infinitesi-
mally, in analogy to (1.6),

4 Gdisc{ﬁ’ 1, J} = '—iZZAmu

— _ (IL.4a)
: .f dx[Gdiscx,x, {’1? f, J} - Gdisc {’17 1, J} Gdiscx,x, {0’ Oa 0}]
and
A Gdisc{ﬁ9 f, ‘I} = (Am[a/am] + Ae[a/ae]
+ § dx(4z,7(x) [6/67(x)] + 42,1 (x) [6/6n(x)] (IL4b)

+AZ3J(X) [5/5 J(x)])) Gdisc {ﬁa ’1: J}
+ gauge correction terms.
For connected functions, in analogy to (1.7),
AG{g,n,J}y=—iZ,4m,

Jax(G,, . {mn, J} + G, {in,n,J} G . {#n,n,J} — G, .. {0,0,0}]
=(as in (IL4b)) G{#,n,J} + gauge correction terms. (IL.5)
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We now set, in analogy to (1.8),

—iG,, {n,n,J} = ¢(x), (IL62a)

iG, {mnJ} =), (IL6b)

—iG {nn,J} = (x), (IL.6c¢)

nx)=il, {®, 0,4}, (I1.6d)

nx)=—il {®,¢, s}, (IL.6¢)

J(x)=il {®, 0,5}, (I .61)

I'{o, ¢, o} =G{i,n, J} (L6a)

—ifdx[7(x) p(x) + @(x) n(x) + J (x) Z(x)],

whereby in (I.6d—f) a notation analogous to the one described before
(I1.1) is used, with

Fx1...xm,y1...yn,zl...z1{05 O’ 0} =F(x1 xms yl ym Zl Zl) .
In analogy to (I.8d), (see Note added in proof)

Gy, {1, J} = —i[6/67(x)] §(»)
and I'(x,y,)=— G (x,y,) is the negative inverse electron propagator,

while I'(,, zz')= — G~ 1(,, zZ’) is the negative inverse photon propagator.
The analog of (1.9) is

(IL6h)

AT{®, ¢, o/}
o _ (IL72)
= ZZAmu dX[Fx’i’{(p, ®, M} - ¢(X) (p(X) + G(x9 X,)]
and
AT{®@, ¢, A} =(Am[0/om] + Ae[d/0e]
— [dx(4z,3(x) [6/0p(x)] + 42, ¢(x) [6/6¢(x)] (I17b)

+ Az3.9 (x) [6/0 o (x)]) T'{P, ¢, o/}
+ gauge correction term.

To save space, we do not write down the analoga of (I.10) and (I.11).

I1.2 Current Conservation and Determination of Coefficient Functions

Proceeding as in section 1.2, we next discuss the superficial divergence
degrees D of the Fourier transforms AT'(p; ... P> 44 --- dn» K1 --- ;). They
are all negative except for m=n=1, =0, and for m=n=0, [ =2, other
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combinations being excluded by gauge invariance of the first kind and/or
charge conjugation invariance. Power counting gives D = 0 for 4I'(p, — p,)
and also? for AI'(,, k(— k)). Thus it suffices to specify each function at
one momentum, to calculate them for all momenta using coupled once-
subtracted BS-equations. Since AI'(p, — p,) is infrared divergent on the
mass shell, we set

AT,4(0,0,) = —imd,, (IL.8)
which yields the overall normalization for the mass vertex, since
4r,,(;,00)=0 (IL.9)
from current conservation similarly as
I,,(,0000)=0. (IL.10)

Similarly as in the latter case [17], however, to have (I1.9) hold requires
to complement the mass vertex by an 4 A4-vertex with finite, but inte-
gration-convention dependent coefficient. We think that term, which
is, besides attention to other invariances, part of the “sufficiently careful
definition” mentioned at the beginning of Section II1, tacitly implied
in all previous formulas that indicate the formal definition of the mass
vertex. In Gupta-Bleuler gauge and symmetric integration convention
[18], the finite term to be subtracted from the unadjusted 4T,,(,,k(—k))
is im?*(4n*)~'e?g,,. (See Note added in proof)

Once (I1.9) has been secured, however, AT,,(,, k(—k)) is transverse
at all momenta, while I',,(,, k(—k)) it is added to has also a gauge-
dependent longitudinal part. This mismatch is the reason for the occur-
rence of the gauge correction term in (II.1) and, going backwards, all
previous equations. We shall find that term by studying the consequences
of current conservation generally.

For definiteness, we choose Gupta-Bleuler gauge. We have the familiar
Ward-Takahashi identities [19] in the form

D au[é/é']u(z)] Gdisc{ﬁa f, J}
= (—ien(z) [6/07(z)] +ien(z) [6/6n(2)] —i0,J"(2)) Gaise {1, 1, T}

wherefrom, for vertex functions, using (I1.6),

i00,"(2)=(—ieq(2) [6/65(2)]
+ie@(2) [6/6¢(2)1+0,[6/6 4, (2)]) I'{®, ¢, o} .

° Because of Furry’s theorem, there will be precisely one closed loop with an odd
number of corners, namely the one containing the mass vertex. Since this vertex has unit
Dirac matrix, the highest loop momentum power drops out in the Dirac trace.

(IL.11)
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In particular,

Fﬂv(’ s Zzl)long = iauava(z - ZI) (1112)

from the inhomogeneous term in (II.11).
Upon the convention-dependent correction that ensures (IL9), all AT°(..)
satisfy homogeneous Ward-Takahashi identities, i.e.

(—iep(2) [6/69(2)] +iep(2) [6/09(2)]
+0,[6/6 #,(2)]) AT {p; 0, 4} =0,

(IL13)

as obtained by applying formally the defining operation (II.7a) on
(IL.11). A simple calculation shows that (I1.7b) and (II.13) are consistent

if and only if de=edz, (I1.14)
and (see Note added in proof)

gauge correction term in (IL.7b)=—1i [ dz[d,2/*(2)]* - Az5. (IL15)

The gauge correction terms in (II.3) that follow from (II.15) are more
complicated and need not be given here. It is not possible to modify
the defining linear operation for 4 Gy, (I.4a), by terms of Wilson [3]
dimension = 3 in a way that would correspond to a simple renormalized
linear operation on Gy, as in (IL.4Db), since the candidate for the un-
renormalized operation is of dimension four. However, all gauge correc-
tion terms vanish if one uses the transverse (Landau) gauge where both
(II.12) and (II.15) are consistently replaceable by zero.

The intermediate renormalization [20] we adopt ! is described by

I, —ply=m=0, (IL.162)

[0/0p 1T (P, — p)lp=0=17", (IL.16b)
I,,(,00)=0, (IL.16¢)

[0/0k,] Ty k(= K))l=o=0, (I1.16d)
[0%/0k,0kg] [y k(= K=o = —2i9,,9"" (IL16¢)

corresponding to

Fuv(’ ’ k(_k)) = ikzguv+ i(kzguv - kukv) O(kz) .

10 This formulation of the renormalization used in Ref. [20] has been proposed by
K. Hepp (private communication).
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The identities (II.11) supply (I1.10) and
r,0,0,0)=—iey,. (IL.17)

For the normalization (IL.8), we rewrite (I.7b) explicitly in Fourier
space as (see Note added in proof)

AT (Dy .. Pus Gy --- Qs Ky ... k) = (a(€) m[3/dm]
+73(e) [e(0/0e) — ] —2ny,(e)) T'(Py .- Pps Gy - Gus Ky ... ky)  (11.18)
+7ys(e) ikykay+ky ks ,) 6,002 -

Using also
m[0/om] T (py ... Py s - Gus Ky o Ky—y (—py— =+ —ky 1))
- (— ;1 Piu[0/0p;,] _,:21 4:,[0/04;,] —lg ki, [0/0k;,]+4—3n— z)
TPy oo Pus Q1o Qs oy oo by (= Py — - — k) (IL.19)

we have from (I1.16—18) (see Note added in proof)
AT(0,0,)=(x(e) +75(e) e[0/0€]—27,(e)) I'(0,0,),  (I1.20a)

[0/0p, 1 AT (p, — P)lp=0= —2iy,(€) ¥*, (IL.20b)

AT, (,,00)=0, (I1.20¢)

[0/0k, 1 AT, \(,, k(= K))lk=0=0, (I1.20d)

[0%/0k,0ks] AT, , k(= K))l=o (I1.20¢)
=2iy3(€) (29,,9" — 9394 — 929%) »

AT,(0,0,0) = 2iy,(e) ey, (11.20f)

AT,,;(,,0000)=0. (11.20g)

While (I1.20c¢) is (IL.9) and has been discussed before, (I1.20d) is trivial,
and (I1.20g) is satisfied and yields no further information. The identities
(IL.13) secure consistency of (I1.20b) with (I1.20f). From the remaining
equations we find

ae) =1+0(e?, (I1.21a)
2(e) = (@7%)~e® + 0(e*), (I1.21b)
ya(€) =(127%)""e* + 0(e*). (I1.21¢)

While these functions are gauge dependent, it follows e.g. from its
relation to the asymptotic forms of the (gauge independent) pure photon
vertex functions that the ratio y,(e)/x(e) is gauge independent, and also
the identity (II.14) holds in all gauges.
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11.3 Asymptotic Form of Vertex Functions

For the two-photon vertex function, we set
TG, k(= k) =i(—g, k> +k, k) d([k?*/m?], €*)~ ! —ik k, .

As in Section 1.3, the step justified in the introduction gives from (I1.18)
(m*[0/om*]+a(e) "*e?y3(e) [e ™2 +(9/0¢?)]) do([k*/m], €%) =0
or, with e2y,(e)/a(e) = a(e?),
(—k*[0/0k*1+a(e?) [0/0€”]) [e? d,(([k*/m*], e*)]=0. (11.22)

With e? =« and k?/m? = x, the general solution of (I1.22) is

ad,(x, ) = B(Inx + () (I1.23)
where
0(0) = | doto(ol)". (I1.24)

Writing (11.23) as
Inx = — () + D~ (and,((x, 0))

we compare it with the formula'! of Gell-Mann and Low

Inx =aduf(x,a)dz Y(z)" =P (ad,(x, 2) — Plad,(1,0).  (I1.25)

adas (1,a)

Thus, the present method supplies implicitly the function v or ¥ if
d,(1,2) is known since g(x) was determined by relatively rigorous
nonasymptotic considerations.

In practical terms, the difference is that in the series

o (x, 0) =1+ (@0 + @y In X) +* (@50 + Az Inx + a5, [In x]?) + -+

(or in the analogous series for d, (x,)™") in the present method only
the a,, need be calculated, while in the usual procedure [2, 21, 22] one
needs more coefficients to construct, implicitly, also the power series
for y(z). Since, apparently, calculation of the a,, requires calculation
also of all a,,, k>0, there is no practical gain. However, in principle our

1 Formula (5.9) of Ref. [1]
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method appears to be superior, as we will argue in the discussion. We
refrain from deriving from (I1.18) further asymptotic formulas as these
are identical with known [2] renormalization group results.

Discussion

The present method to derive asymptotic formulas for vertex func-
tions from power counting arguments alone appears to be more direct
than the usual one [2] based on the renormalization group, where the
correctness of certain statements on qualitative subtraction parameter
dependence is not easily [21] established. Moreover, due to the well-
defined left hand sides in (I.13) and (II.18), in principle, corrections to
the asymptotic forms could be calculated.

More important is the fact that (I.13) and (IL.18) involve the vertex
functions themselves rather than their relatively artificial asymptotic
forms, such that information on e.g. initial data, for the asymptotic
forms most difficult to obtain, to supplement the partial differential
equations, could be sought from nonperturbation theoretical sources.
No analysis of (I.13) or (IL.18) along such lines has been attempted in
this paper.

In fact, the asymptotic forms (I.18), and similarly for QED, of the

vertex functions are explicitly expressible by a simple modification,
which is justified on the basis of the large-momentum behaviour of AT’
discussed in the Introduction, of the elementary solution formulas for
the inhomogeneous equations (I.13) and (I1.18).
_ Our formula (I.18) and its QED analog relate only to overall scaling,
while already known techniques [2, 8, 9] allow more detailed statements.
However, the relations, mentioned after (I1.21), between the @-functions
have not been exploited here and do supply more information in those
cases where the dominant contributions to asymptotic behaviour come
from the integration region of large momenta '? in the nonlinear integral
equations of Refs. [12—14]. (See Note added in proof.)

Finally, we remark that formulas (I.13) and (IL.18), and their analoga
in other renormalizable theories, could be used to complement the
renormalization rules of Ward [23], whereupon this scheme would give
results identical with those obtained on the basis of Bogoliubov-Parasiuk-
Hepp [2, 24] renormalization theory.

Formulas analogous to (A.5), (A.7) and (A.8) in more realistic theories
could be useful in phenomenological discussions of the breaking of
scale invariance.

Acknowledgement. The presentation in the appendix was strongly influenced by the

author’s earlier discussions with and an important private communication from S. Coleman.
The author is much indebted to S. Coleman for these discussions and the communication.

12 Cp. the technique of Ref. [8] and the discussion of integration regions in Ref. [9].
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Appendix
The Breaking of Scale Invariance

The current S*(x) associated with scale transformations !3 is defined
such that its Green’s functions? satisfy the Ward identities

0”<(S"(x) A®yy) .. A(yn))+>
= (S A - A )
=i %80 3) @i 3101) (A . AOD).>

where d; is the mass dimension of the i field operator, with argument
y; (d =1 for scalar and vector fields, d = 3/2 for spinor fields). Integration
of (A.1) gives, if there are no massless particles in the theory that could
give rise to nonvanishing boundary terms,

ax<([0,5 T A - AG).>
=1 3 @312 (A1) - 4G

For dimensional reasons,

(5510 ~mo/om) + ¥4 (A0 . 40> =0
provided all masses are kept in fixed pfoportion to m. Thus,
Fax<([0,8"(x)]1 A(yy) ... AWw)+>
=2im*[0/0m*] (A(yy) .- AWa)+ -

If we regularize [10, 117 the theory such that the Lagrangian expression
is meaningful, and keep also the regulator masses in fixed proportion to
m such that (A.2) remains valid, we can evaluate the right hand side of
(A.2) using the Schwinger action principle [15,27], with the result

§dx{([0,8"(x)]1 A1) .- AWW)+>
= —2m* [ dx<{T([OL(x)/om?) — QO L(x)/om*)>] A1) ... AB,)> - (A3)

(A2)

For definiteness, we now consider the theory (I.1) (with 4 L=0), but
will, for brevity, omit to indicate the regularization explicitly. Then,
in (A.3),
m?(9 L(x)/0m?) = m} (0 L(x)/0m}) = — 5 m; §,(x)>. (A4)
13 See, e.g., Ref. [3, 25, 26] and earlier references given there.

17 Commun. math. Phys., Vol. 18
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However, that ¢,(x)? is only logarithmically but m? quadratically di-
vergent indicates that the regularized form of (A.4) will involve compli-
cated cancellations of (in the regularization limit) quadratically divergent
expressions. While it is clear from (A.2) and (A.3) that, at least in the
space-time integration, all divergences will be removed, (A.4) yields an
inconvenient form for the rigth hand side of (A.3).

Therefore, it is suggestive to use (1.6b) in (A.2). With the normali-
zation (1.12) of Am2, we obtain for the right hand side of (A.2), in the
theory (I.1), using again the action principle,

§dx{T({Zs4m}$(x)* +2B(g) [0 L(x)/0g]

—2iny(g)+inp(g) [0 nZ;/0g] — vac. exp. val.} ¢(y,) ... d(v,))) - (A.5)
Here we use

indT (@) ... o)) =ifdx _; O(x—y)<T(¢W1) --- )

=2 dx KT([O ¢,)*1601) .- 60> (A6)
— O{T(@ux 1) ... 6O}

where in the curly bracket the second term may be omitted,

% D ¢u(x)2 = au¢u(x) aud)u(x) + d)u(x) [— mf ¢u(-x) - %gu(bu(x):,’] 5
and
0L(x)/0g = — % $u(x)*(0m3/0g) — 75 u(x)*(09./09) -
Altogether, (A.S) becomes

Jdx<{([0,8"(x)] p(yy) --- (W) +>
= [dx<T{Z34m; $(x)* — % Bg) [0(Z3m2)/0g] b (x)?
—22B(9) [0(Z39.)/09] p(x)* +[B(9) (0Z3/09)—2Z37(9)] (A7)
- 0,¢(x) 0" (x)+27(g) [Z3m] $(x)* +§ Z39,9(x)*]
—vac. exp. val.} ¢(yy) ... d(3,))) .

We examine the terms in the curly bracket. The first term is finite by
construction since by finiteness we understand the one of the Green’s
functions. The second term is to order g2 (cp. (I.16)) simply proportional
to a quadratic divergence that is, however, to this order precisely (i.e.,
also in its-regularized form) cancelled by the divergent term separated
from the third term by converting it into a Wick product. The fourth
and fifth term are finite to order g2. Thus, while in (A.3) with (A.4) the
problem of correct cancellation of divergences arises already in order g,
with (A.7) it appears not before order g°.
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The right hand side of (A.7) makes it evident that scale invariance is
broken by terms of Wilson [3] dimension four!#, since, with (1.16),

{ } of (A.7) = finite term proportional: ¢(x)?*:
—23bog® 1 d(X)*: —2¢0g°:0,4(x) 3 P(x): + 0(g°) .

However, (A.8) cannot be identified with 0,5"(x). The reason is that
the steps that led to (A.7) are meaningful only in the regularized theory,
and for that theory, if on the right hand side of (A.6) the square of the
regularized field is used, that side is zero, such that the identification
contemplated is possible only up to a term proportional to :[J¢(x)?*:
that cannot be specified by an analysis based only on the integrated form
(A.2) of (A.1). Moreover, S*(x) and the energy-momentum tensor @**(x)
it is related to [26] by $*(x) = x,@"*(x) do have a corresponding ambi-
quity, formally expressible by

0"(x)—> 0 (x) + A(g"* O — 0"9") p(x)?,

because (A.1) specifies S#(x) incompletely without independent charac-
terization of J,8%(x).

This ambiguity can be exploited to make ©®*”(x) and S$*(x) renorma-
lizable operators'>. However, the terms of dimension four in (A.8)
cannot, of course, thereby be removed.

In QED, where no such ambiguity arises [26], the electron self mass
is only logarithmically divergent, but a (non-gauge-invariant counter)
term in the Lagrangian density of the form “square of the vector potential
multiplied by a quadratically divergent coefficient” similar to (A.4) leads
also here, as in all renormalizable theories, to a breaking of scale in-
variance by terms of dimension four, as one should anticipate in view
of the logarithmic terms that multiply scale invariant expressions for
vertex functions (cp. Sections 1.3 and I1.3) at large momenta.

(A.8)

Note added in proof. Formula (IL.6h) is oversimplified, the matrix inversion involved
being extensive. — The adjustment term discussed after (I1.10) is nonzero also in higher
orders, and in these logarithmically divergent. (The author thanks R. A. Brandt for a
discussion.) — Insertion of a mass vertex into all vertex functions in QED results in such
infinitesimal change of gauge that the change of the longitudinal part of the photon propaga-
tor due to change of the amplitude renormalization factor is precisely compensated. (I11.15)
and consequently (I1.18) and (I1.20) are incomplete, and the coefficient functions (I1.21)
need be calculated for varying gauge. The transverse (Landau) gauge, the only one stable
under mass vertex insertion, has in (I1.21b) y,(e)=0(e*). The correct gauge terms in
(I1.15) and (IL.18) for arbitrary gauges will be given elsewhere. — The integral relations be-
tween @ functions mentioned in the Discussion are the usual ones for vertex functions
[12—14] but for the (non-scale invariant) theory with massless particles.

14 The observation that the dimension of the divergence of the scaling current in the
scalar model is four was privately communicated to the author by S. Coleman.
15 Cp,, in this connection, Ref. [26].

17*
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