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Abstract. Some inequalities and relations among entropies of reduced quantum
mechanical density matrices are discussed and proved. While these are not as strong as
those available for classical systems they are nonetheless powerful enough to establish the
existence of the limiting mean entropy for translationally invariant states of quantum
continuous systems.

I. Introduction

In this note we shall be concerned with inequalities satisfied by the
entropies of reduced density matrices. We begin with some definitions
and a statement of our main Theorem 1. Section II contains the proof of
the main theorem when the dimension is finite. Section III contains
some other inequalities that can be derived from Theorem 1 by applica-
tion of certain transformations. Section IV contains the proof of the main
theorem when the dimension is infinite. Section V deals with the applica-
tion of our theorem to the existence of the mean entropy for transla-
tionally invariant states of a quantum continuous system.

Definition 1. A density matrix, ρ, on a Hilbert space, H, is a self
adjoint non-negative trace class operator on H whose trace is unity.

Definition 2. // ρ is a density matrix,

S(ρ)=-Ύvρlnρ (1.1)

is the entropy associated with ρ.

Since O ^ ρ ^ l , we have — e ' ^ ρ l n ρ f ^ O and (ψj9(ρlnρ)ψj)^0
for any ψj. Hence

Σ J ) (1.2)
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exists for any orthonormal basis {ψj} and 0 ^ S ^ + oo. If S < oo for one
basis {ψj}, then the nonnegative operator — ρlnρ is in the trace class
and hence S is independent of the basis {ψj} and is finite for all {ψj}.
Otherwise S must be + oo. Therefore (1.2) does not depend on the
orthonormal basis {ψj} and defines the right hand side of (1.1).

Definition 3. If ρ12 is a density matrix onH1®!!2 then ρ1, the reduced
density matrix, is a density matrix on H1 defined by

ρ^TrV2- (1-3)

Here Tr2 means the partial trace defined by

where {et} is any complete orthonormal basis in H2 and

Notation. If ρ 1 2 is a density matrix on Hγ®H2 then we will denote

ίS(ρ 1 2)by ίS
1 2and ίS(ρ 1)byS 1.

A theorem that is true classically [1] (meaning that all relevant
density matrices commute) is the following:

. (1.4)

We believe that (1.4) is true quantum mechanically as has been
conjectured by Lanford and Robinson [2], but have been unable to
prove it. We can, however, prove the following which is as good for some
applications.

Theorem 1. Let ρ 1 2 3 be a density matrix on H1 ®H2 ®H3. Then

S123^S12 + S23 + l n T r 2 ( ρ 2 ) 2 ^ S 1 2 + S23 . (1.5)

Furthermore, if ρ2®I3 commutes with ρ 2 3 then

2 . (1.6)

II. Proof of Theorem 1 for the Finite Dimensional Case

In this section we prove Theorem 1 when the dimension of
Hγ®H2®H3 is finite. We need two lemmas.

Lemma 1 (Peierls-Bogolyubov inequality). If R and F are hermίtian,
ΊreR = 1 and f = ΊrFeR, then TreR+F^ef.

Proof The statement of Peierls' theorem given in Ruelle [3] is
not quite the same as the above. To prove Lemma 1 we use Klein's
inequality [4]

Tr {f(A) - f(B) ~(A-B) f(B)} ^ 0
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which holds for convex / and hermitian A and B. Take f(x) =

«
Lemma 2 (Golden- Thompson inequality [5]J. Let A and B be hermitian.

Then

Proof of Theorem 1. We first assume that ρ 1 2 3 is positive definite.
Let ρ 1 2 3 = expJ? 1 2 3, ρ 1 2 = expi?1 2, etc. We will also denote R12®I3 by
R12, etc. Then

Using Lemma 1, eΔ ^ T r 1 2 3 exp[J? 1 2 3 -Ri23 + R12 + Λ 2 3 ] .
Using Lemma 2, eΔ S T r 1 2 3 exp(Λ12) exp(/?23) = T r 1 2 3 ρ 1 2 ρ 2 3

= Tr 2 (ρ 2 ) 2 .
Since the eigenvalues of ρ2 are in [0,1], and ^ A f ^ Q Γ ^ ) 2 for

O^λ^ 1, we have T r 2 ( ρ 2 ) 2 ^ 1.
If R2 commutes with R23, then consider

By Lemma 1, e ^ T r 1 2 3 exp[_R12 + R23 - R2l
By Lemma 2,

eΔ ^ T r 1 2 3 exp(R12) exp(R23 - R2) = T r 1 2 3 ρ 1 2 ρ 2 3 ( ρ 2 ) " x = 1.

The case of semidefinite ρ 1 2 3 follows by the continuity of ρ->S(ρ)
for the finite dimensional case. (Note that the statement —S2^ lnTr 2(ρ 2) 2

follows trivially from Lemma 1.)
As a corollary we have a well known theorem [6]:

Corollary. If ρ12 is a density matrix onH1®!!2 then

Proof. Interchange 2 and 3 in Theorem 1 and take H3 to be one
dimensional.

III. More Inequalities

The following definition and two lemmas are well known and are
repeated here only for the sake of completeness. Matrices here need not
be finite dimensional.

Definition 4. A density matrix ρ is said to be a pure state if ρ is a
projection operator onto a one-dimensional subspace, i.e. ρx = y{y,x)
for some fixed y with \y\ = l.
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Lemma 3. Let ρ12 be a pure state density matrix on i / 1 ®// 2 . Let
/(•) be a real valued function whose domain contains the spectra of ρ1

andρ2 and /(0) = 0. Then

In particular S1 = S2.

Proof Let ρ 1 2x = fox)y,)> = Σ4Vi/®J>2i> ^>°> w h e r e {j>i/} and
{y2ί} can be taken to be orthonormal [7]. Let P(yvi) be the projection on
the one dimensional subspace of Hv containing yvi. Then ρv = ΣΛf P(j>vi).
Hence ρ1 and ρ2 have the same eigenvalues and multiplicities except
possibly for the eigenvalue 0. The lemma follows immediately.

Lemma 4. Let ρ1 be a density matrix on H1. Then there exists a
Hubert space H2 and a pure state density matrix ρ 1 2 on H1 (g)H2 such that

Proof. Let ρ1 = ΣλjPj9 λj > 0, PjX = (yj9 x) yj and {y3) be orthonormal
(the spectral decomposition). Let dim/f2 ^ d i m ί ί 1 and let {z7} be an
arbitrary orthonormal system in H2. Let ρ 1 2 be the projection operator
on the one dimensional subspace of i f 1 ®// 2 containing the vector

An application of lemmas 3 and 4 is the following:

Theorem 2. Let ρ 1 2 3 be a density matrix on H1 ®H2 (g)H3. Then

(a) S2 S S23 + S 1 2 -I- lnTr 1 2 3 (ρ 1 2 3 ) 2 ̂  S23 + S12 .

(b) S 2 ^ S 2 3 + S 1 3 + l n T r V ) 2 ^ S 2 3 + S 1 3 .

(c) S2^S1+S12.

Proof. We regard ρ 1 2 3 as a reduction of a pure ρ 1 2 3 4 , whence
S 1 2 3 = 5 4

? S
12 = S34, S23 = 5 1 4 . Theorem 1 has the alternative forms:

(a') S 4 ^ S 3 4 + S 1 4 1 4 1 3 4 2

(b') , S 4 ^ 5 3 4 + ίS
2 3

(a') and (b') are general. In (a') substitute 2 for 4. In (b') substitute 2
for 4 and 1 for 2. To derive (c), let H 1 be one dimensional in (b) and then
substitute 1 for 3.

Remarks. (1) Any other proof of any one of Theorems 1, 2a and 2b
will give an alternative proof of Theorems 1,2a, 2b and 2c.

(2) If we combine Theorem 2 c with the corollary of Theorem 1,
we obtain the triangle inequality

I S ^ - S ^ S ^ ^ + S 2 . (3.1)

[The left hand side should be taken to be 0 if S1 = S2 = + oo.]
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(3) Another application of Lemmas 3 and 4 is that the conjecture (1.4)
is equivalent to

. (3.2)

(4) We had to appeal to Lemmas 3 and 4 to prove Theorem 2 a. A
direct proof of Theorem 2a might indicate how to prove (3.2).

IV. Proof of Theorem 1 for the Infinite Dimensional Case

Definition 5. Let {ψf}, {λf} and {ψ*j}, {λf} be complete orthonormal
sets of eigenvectors and corresponding eigenvalues of selfadjoint operators A
and B. Assume that λf ^ 0, λf ^ 0 for all ί and}. Then we define

(The value + oo is allowed.)

Remark. There exist cases where ΎrAB< oo and AB is not in the
trace class (i.e. Tr|,4£| = oo). If AB is in the trace class, then Definition 5
coincides with the ordinary definition of the trace.

Remark. TrAB = ΎrBA.

Lemma 5. The definition of ΎrAB is independent of the choice of the
complete orthonormal sets of eigenvectors.

Proof, (a) First we consider the case where A and B are projections.
Then TrAB = Σλfiψf, Aψf) = TrBAB where the trace of a nonnegative
operator BAB is defined as in Definition 2 and is independent of the
complete orthonormal sets {ψf} and {ψf}.

(b) For general A and B, let A = £ xPA(x) and B = £ yPB{y) be the
x y

spectral decompositions of A and B. Then ΎrAB = £ xy Ύr(PA(x)PB(y))
x,y

which is again independent of the complete orthonormal sets. Q.E.D.
In the above, we have used the fact that a sum of positive numbers is

independent of the order of the summation irrespective of whether the
sum is finite or infinite.

Lemma 6. Let A12 be a bounded nonnegative selfadjoint operator on
f ί 1 ® / / 2 and B2 be a selfadjoint operator on H2 with purely discrete
nonnegative spectrum. Then TrA12(I1®B2)= Tr 2 A2B2.

Proof. From Definition 5,

2 . (4.2)
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Hence

Here {φά and {λf} are a complete orthonormal set of eigenvectors and
corresponding eigenvalues of B and {χk} is any complete orthonormal
set ini ϊ 1 .

Corollary 6.1. Let A = A12®I3,B=I1(g)B23 where A12 and B23 are
trace class nonnegatίve operators. Then ΎΐAB= Tr2A2B2.

Corollary 6.2. Ύrρab{Ia<g>lnρb) = Ίrbρb \nρb.

Let A^O, B = Bί+B2, B1B2 = B2B1 = 0, B^O, B2^0. Then

\\B1/2ψ\\2 = \\B{ί2ψ\\2 + | | ^ / 2 ^ | | 2 and hence we have, from (4.2),

T r ^ β ^ T r ^ . (4.3)

If ψ is not in the domain of C, we define ||Cφ|| = oo. If B = ^xi^W

is a spectral decomposition of l ^ B ^ O , then we define (— ln£)1 / 2 by
£ (— lnx)1/2P(x) on those vectors ψ which satisfy P(0)ψ = 0 and

Lemma 7. Z-eί {ip;} fee an orthonormal set of vectors, A and B be non-
negative operators with purely discrete spectrum majorized by 1. Then

- | | ( - \nA)l'2Vt\\2 - | | ( - l n ΰ ) 1 / 2 ^ 2 ^ TrΛB . (4.4)

Proof, (a) First, assume that 4̂ and B are of finite rank. Then only a
finite number of ψt can be in the domain of (— ln^4)1/2 and the sum over
i reduces to a finite sum. Hence we can discuss the inequality on a finite
dimensional space for this case. We may assume that all ψt are in the
domain of (- lnβ)1 / 2 and (- ln^) 1 / 2 . If A = XxP^(x) and B = XxPβ(x),
we first prove the inequality for Aε = A + εPΛ(0) and Bε = B + εPB(0)
where ε>0. From Ref. [3] and the Golden-Thompson inequality,
we have

Σ e x P i(ψi> (ln^ε) Ψi) + (ψi, (

By taking the limit ε->0, we obtain (4.4) for this case.
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(b) Consider the case of a finite number of ψt. Let A = Yjλ^P^ and
^^ΣΛ-mPm be spectral decompositions of A and B. (λ£ and λ^ are
distinct.) Let P*o and P*o be finite subprojections of P* and P%, whose

<iV

ranges are spanned by {PnΨi} and {P^φJ, respectively. Let AN = Y λ^P^
<M

A' = Σ W o , BM=Σ « o , B' = Σ « o - From (a), we have (4.4) for
AN and BM. We also have

\\(-\nANγi2

Ψi\\2 T ||(

\\(-lnBM^2

Ψi\\2 T \\(

From BM^B, AN^Λ, we have T r ^ β ^ T r ^ β ^ T r y l J S because of
(4.3). Hence, by taking the limit JV->oo and M->oo, we have (4.4) for
A and B.

(c) For the general case, we have (4.4) for any finite subset of ψt from
(b). Since the sum over i is the supremum of finite sums, we have (4.4)
also for the general case. Q.E.D.

Proof of (1.5). Let {φj, {λt} be a complete orthonormal set of eigen-
vectors and corresponding eigenvalues of ρ 1 2 3. Let

From Lemma 7 and Corollary 6.1, we have

ΣΛU
where the sum is over any subset, /, of indices i. Choose / so that XJA^ > 0
whence, from the concavity of the logarithm, we have

where λ\ = λJiΣjλi). For a finite /, we have

Λ) MΣA) - sΐ2 - s23,
where

Sΐ = Σjλi IK" lnρΌ1/2v>ill2 , μ = 123, 12, 23 .
Hence

s,123 + (ΣΛ) MΣΛ) S sj2 + sp + (ΣA) inTr2(ρ

2)2.

From Corollary 6.2, we have S7" T Sμ for μ= 12, 23. We also have
Sj23 T S 1 2 3 and ΣA T l H e n c e we have

of (1.6). I f5 2 = + oo, then 5 1 2 + S23 = + oo due to Theorem 2a
and hence (1.6) holds. [Theorem 2a is a consequence of (1.5), which has
been proved above, and Lemma 4.] We now assume that S2 < + oo.
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Let {ψi} and {λt} be a complete othonormal set of eigenvectors and
corresponding eigenvalues of ρ 1 2 3 . From Corollary 6.2, it follows that
ψι is in the domain of (— Inρ2)1 / 2 if S2 < oo and λt φ 0. For a finite set, /,
of indices, we have

Σ r e x p O K - l n ρ ^ V ί P - I K - l n β ' Y ^ V ί P - I K - l n β 2 3 ) ^ ! 2 ]
-_ τ'i\ / τ 1 y^\ ( Γ~ 9 \ 1 y—^ T ^ T 9"^"»\ ΓT-I 9 9 -< \ * /

The proof is exactly the same as Lemma 7 except that Lemma 6 should
be used instead of Corollary 6.1.

From (4.5), we have

SΪ23 + Sj-

and hence we have (1.6) by taking the supremum over 7.

V. Application to Statistical Mechanics

In this section we prove the existence of the limiting mean entropy for
translationally invariant states of quantum continuous systems [8, 9].

We shall restrict our attention to finite closed boxes with a fixed
orientation in Rv and their finite union (J L~Λ. If A ίnA2 has a lower

j

dimension (or is empty), we say that Ax and A2 are disjoint. For a finite

number of mutually disjoint Λj9 we denote uAj by V ^ j

Let H(A) be a Hubert space for each box A such that H{\/ Aj)

= (χ)H(Aj). Let Ua(A) be a unitary mapping from H(A) onto H(A + a)
j

such that Ua(A + b) Ub{A) = Ua+b(A) and Ua(\/ A) =(χ) Ua(A).
j J

A state of a quantum continuous system for our present purpose is a
set of density matrices ρ(A) for each A such that

TτAιρ(Λ1VΛ2) = ρ(Λ2). (5.1)

It is translationally invariant if ρ(A -f α) = Ua(Λ) ρ{A) Ua(A)* for each A.
The entropy S(A) for each A is

S(A)=-TrΛρ(A)lnρ(A). (5.2)

If ρ is translationally invariant, S(A + a) = S(A). Let V(Λ) be the volume
of A Let Ca denote a cube of side length a.

Theorem 3. // ρ is a translationally invariant state, then the following
limit exists:

S(ρ)= limS(Cα)/F(Cα). (5.3)
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Proof. Let Lx ~ NL2 (resp. L1 oc NL2) denote the situation where Lί

is equal to (resp. contained in) a disjoint union of N translates of a
box L2.

(a) If Lί~NL2, we have, from the subadditivity (Corollary of
Theorem 1),

SiL^NSi^). (5.4)

(b) lϊ L1ccL2 (two boxes are assumed to have the same orientation),
then there exists α and β such that Lι = (L2-\-a)n(L2 +β). By Theo-
rem 2 (a), we have

. (5.5)

(c) S(L) = oo for one box L if and only if S(L') = oo for all boxes ZΛ
This is because, there exists N for any L and L such that L oc NL' and
hence S{L')t{2N)~1S(L)= oo by (5.4) and (5.5). Assume that S(L)+ oo
for all L in the following.

(d) Let A be a union of JV mutually disjoint boxes Lj such that
) ̂  v0 and L^ oc L for a fixed L.

From the subadditivity, we have

We also have

Hence
S(yl)/K(^)^2S(L)/i;0. (5.6)

(e) Let
, (5.7)

αβ)(α)=infα11(β). (5.8)

From (5.4),

α m n (α)^α n (α). (5.9)

(ί) Given ε > 0, there exists n such that

| α o o ( α ) - α π ( α ) | < ε / 3 . (5.10)

For this n, there exists / ̂  na such that

"(nα) f e- v<ε/3 . (5.11)

We then have the following estimates for b > I:
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Let m ̂  1 be an integer such that

Such an m exists. If (na)~ 1b>m, then Cb is a disjoint union of a translate
of Cmna and some A which, in turn, is a disjoint union of boxes Lj satisfying
LjθcCna and V(Lj) ̂  (na/2)v. If (na)~1b< m, then Cmna is a disjoint union
of Cb and some A which is a disjoint union of boxes Lj satisfying the
same relations.

By (3.1), we have
\S(Cmna)-S(Cb)\^S(A). (5.12)

From (5.6), we have

S(A) b~v^ 2S(Cna) (na/2)~v (b~vV(A)).
Since

b~vV(A)=:\(mna/b)v-l\ = Σ
fe=l

mna (na/bf,

we have from (5.12) and (5.11),

\S{Cmna)b-"-aί{b)\<εβ. (5.13)
Next,

\S(Cmna)b-*-amM\

= amn{a)V{Λ)b-v

^an{a)V{Λ)b-*

<ε/3.

Finally, from a^iμ) ̂  αmπ(α) ̂  απ(α), we have

\ax(a)-amn(a)\<Φ- (5.15)

Collecting (5.13), (5.14) and (5.15) together, we have

|cU«) - S(Cb)/V(Cb)\ < ε. (5.16)

Q.E.D.
Remark. From the above proof, it is clear that if A is restricted to a

disjoint union of boxes L-} whose volume is larger than a fixed υ0, then

lim

where A -+ oo in the sense of Van Hove.
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