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Abstract. We show how the theory of continuous tensor products can be used to
construct, for commutation relations, translation invariant but not quasi-free states as
continuous tensor products of states for systems with one degree of freedom.

Introduction

As was shown by R. T. Powers in [6] § 5.3 for the case of anticommuta-
tion relations, all translation invariant states which can be constructed
as infinite tensor products of states for systems with a finite number of
degrees of freedom are quasi-free and consequently not very interesting
for physical applications; in this paper we show how the theory of con-
tinuous tensor products allows us to construct, in the case of commuta-
tion relations, translation invariant but not quasi-free states as continuous
tensor products of states for systems with one degree of freedom; we
consider only the nonrelativistic case since, unfortunately, we are not
able to carry out the same construction in the relativistic case.

§ 1. The Algebras Associated with a Real Symplectic Space

We consider a real symplectic space (£, σ), i.e. a real vector space E
with a non-degenerate symplectic form σ; we call representation of (£, σ)
every mapping U of E into the unitary operators of a complex Hubert
space such that

(i) for each x in E the mapping IR9 h++U(hx) is strongly continuous
(ii) U(x + y) = eίσ(x>y} U(x) U(y).

With a real symplectic space one can associate several algebras:
1) The von Neumann algebra j / E ί ( T defined in [2], §1.3; when E

is finite dimensional s/E>σ is nothing but Z£(H) where H is the space
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of the Schrodinger representation of (E, σ); in the general case j3/£?σ

is the von Neumann inductive limit of the algebras j t f F t σ with E a finite
dimensional subspace of E. There is a representation W of (E, σ) into
J/E σ which has the following universal property: given a Hubert space H,
the mapping π π>π° Wis a bijection between the normal representations
of jtfEtff in H and the representations of (E, σ) in H.

2) The Banach *-algebra AEj(r (which is similar to the algebra con-
sidered in [5] AEttr is the Banach space l l ( E ) whose elements are complex
functions on E satisfying £ |/(x)| < oo, equipped with the norm

I I / II-Σ I/Ml,
the multiplication

(fθ) (z) — Σ e ~l σ(x'y) /M 9(y)

and the involution
/*(χ) = /(-χ);

we denote by δx the unitary element of AEt(f defined by

_ ίl ify = x

then

given a Hubert space H, the mapping π v+π°δ is a bijection between
the representations of AE^ in H such that h ^n(δhx) is strongly continuous
for each x e E and the representations of (E, σ) in H. In particular there
exists a unique morphism T:AEσ H>J/E^ such that the diagramm

E

is commutative; ImT is strongly dense in £/Et<r.
Concerning the states of sfE σ and AEttτ there are bijective correspon-

dences between
a) the complex functions ψ on E satisfying the following conditions

— Σ^V'^'^Vfe-^^O V c l f . . . c m ε C , x l f . . . x m 6 £
n,p

- for each x e E the mapping 1R h-^ψ(hx) is continuous; such a
function φ will be called a generating functional;

b) the normal states φ of s/Et<r',
c) the states χ ofAEί(T satisfying: for each x e E the mapping h

is continuous.
These correspondences are given by ψ = φ°W = χ°δ, χ = φ°T.
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§ 2. A Particular Case of Real Symplectic Space

From now on we suppose £ is a complex vector space of complex
functions on T = IR11 which are continuous and with compact support;
and we set

σ(x9 y) = Im(x\y) = Im J x(ί) W)dt V x, y e E

we also suppose E is invariant under all translations. For every t in T
we set

ΉKr = the canonical mapping Et->£/t,

At = Ap „ .ί fct,σt

((Et, σf) is the symplectic space corresponding to a system with one
degree of freedom.)

Proposition 1. AE σ is ίsomorphic to the continuous tensor product of
the algebras At; more precisely we have AE^~ &)rAt where Γ is the set

teT

of all families t h>λ(ί) δx(t) e At with λ e C$r\l} + 1 and xe E.

(We use the notations and definitions of [2], Ch. 3.)
First one must prove that ((At)t€T, Γ) is a continuous family of Banach

*-algebras in the sense of [2], § 3.4; the proof of the axiom (iii) of [2],
§ 3.2 is very similar to that of [3], prop. 12; the proof of the other axioms
is trivial. Now the construction of the isomorphism is similar to that
in [3], Prop. 12; we only emphasize the fact that this isomorphism F
carries each element δx 6 AEt(f with XE E, into the element (x) <5x(ί) e ®Γ At

we also recall that for each λ in ^^nL1 -h 1,

in particular if x, y e E:

® < ® δ = ® 5
(0

— 77 f>~— 1L e

= e-"^®δ

= e-ίa^δx+y = δxδy . QED.
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Another Algebra Associated with (E, σ)

As explained in [2], § 3.6 we can also construct the continuous tensor
product (X)Γ 'j/f where Γ is the set of all families t \-+λ(t) Wt(x(t)) with

f e T

λ E ^onL1 + 1 and x e £; we denote it by ̂  σ and set

W'(χ)=® Wt(x(t)) V x e E ;

we have

W'(x + y) = eίσ(x y) W'(x) W'(y]

moreover there is a morphism S\sίEίσ-+£0Ej<r such that the diagramm

is commutative.

Automorphisms of the Above Algebras Induced by Translations

Every element τ of T determines an automorphism of (E, σ) :

x \->xτ with xτ(t) = x(t — τ);

this automorphism determines in turn, as easily seen, automorphisms
ατ, βτ, yτ of J3/E>(7, AEt(r9 £#f

Et<T respectively, such that

aτ(W(x))=W(xτ)

βτ(δx) = δxτ

yτ(W'(x))=W'(xτ)'9

recalling that AE>σ and jtf'Et(T are continuous tensor products, βτ and yτ

take the simpler forms :

These automorphisms are compatible with the canonical mappings

§ 3. Continuous Tensor Products of States

Consider a generating functional ψ on (£, σ) of the form
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where each Ft is a continuous complex function on Et = C with the follow-
ing properties :

(ii) the function α ι->φf(α) = eFt(a] is a generating functional on (Et* σt);
(in) for every x £ E the function ί i^F^x^)) belongs to ^nL1.
The state χ of ^4£ σ associated with φ is the continuous tensor product

of the states χt (of At) associated with ψt in fact for x e E

ίeT teT

= ΓUOW;
ίeΓ

but as we know δx is identified with (x) (5x(ί) (cf. Prop. 1). (There is a similar
result for the state of stf'E^σ associated with φ). Moreover the represen-
tation associated with ψ is a continuous tensor product in the sense of [4].

If moreover Ft is equal to some function F independent of ί, the
state χ is obviously translation invariant, i.e. invariant under all the
automorphisms βr

Examples. Let F° be a complex continuous function on C verifying
a) F°(O) = 0,
b) expF° is positive definite,
c) the function φ° on E defined by φ°(x) = exp[JF°(x(ί))dί] is

positive definite;
set

F(α)=-i |α| 2 + F» V α e C ;

then conditions (i) and (iii) above are trivially satisfied as for condition
(ii), it is known and easily verified that α t->exp(— \ |α|2) is a generating
functional on (Et, σt) (the corresponding state is the Fock state; see also
[2], § 1.5); then for every α 1 ? ... αm in C, the matrix with coefficients

exp(iαπog - ιpt(an - ap) - exp(iαπάp - \ |αn - αp|
2) - exp(F°(αn - αp))

is positive since the coefficientwise product of two positive matrices is
positive. Finally the same arguments prove that the function

(x) - exp [J F(x(ί)) df]

is a generating functional on (£, σ); we can thus construct many continu-
ous tensor product states which are translation invariant.

In particular we can take F° of the following form:
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here u is real, v is complex, μ is a finite positive measure on <C — O, and

u α = ReuReα + Imi Imα

and similarly for w α; conversely if £ is sufficiently large, for instance
if it contains all infinitely differentiable functions with compact support,
every F° satisfying a), b), c) is of the form (1) (see for instance [1], Ch. III).

§ 4. Quasi-Free States

Definitions. Given two real vector spaces Fand W denote by <g (V, W)
the vector space of all linear mappings F-> W; if Wis a topological vector
space we endow &(V,W) with the topology of the simple convergence;
we say that a mapping / : F-> W is differentiable if for each x in V there
exists a linear mapping f f ( x ; . ) : V - + W such that for every y in F:

h-1(f(x + hy)-f(x))-+f'(x;y) when Jι, real, tends to O.

By the above procedure we can define inductively topologies on J2?(F,(C),
JS?(F, j£?(F,C)), etc.; as usual jSf(7, J^(F,<C)) shall be identified with the
set of all bilinear mappings F x F->C and so on; we thus can speak of
a mapping /: F->(C which is infinitely differentiable, and we have

Jj = 0

moreover for every x, yί9 ... yn the function

is infinitely differentiable and we have

Pi -times pM-times

Returning to our (£, σ) we denote by £° the set of all real functions in £;
let φ be a generating functional such that ιp\E° is infinitely differentiable;
denote by U and ξ the representation of (£, σ) and cyclic vector determined
by ψ such that φ(x) = (U(x) ζ(ζ] V x e E; let >l(x) be the self-adjoint gener-
ator of the one-parameter group h \-+U(hx).

Lemma 1. A(x1) ... A(xn) ξ exists for every xl9 ... xn in £°.

Proo/. a) The domain D of A(x) is the set of all η in H such that the
expression h~1(U(hx) — I)η has a strong limit when fι-»O; but one can
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replace strong by weak; in fact let D' be the set of all η such that
h~1(U(hx) — I) η has a weak limit; D' is a linear subspace containing D;
set

Aη = w-lim(ih)~1(U(hx)-I)η for each ηeD'\

A' is easily seen to be a symmetric operator which extends A(x); then
A = A(x) and D' = D.

b) We now prove that the expression

B = (h1...hJ-1(U(h1xi)-I)...(U(hnxJ-I)ξ

has a weak limit when hl9 ... hn tend to 0. Denoting by Tthe canonical
mapping AE σ-+H we have ξ= T(δ0) and

B = (h,...hnΓ
l Σ (-lΓpU(hilXiί)...U(hipxip).T(δ0)

iι< <ίp
p = 0 n

Let us prove first that (B\T(δy)) has a limit for every y in £; we have

ι + ... + hipXlp)

ίlxiι+ -+hίpxip)

• v - y + i i ^ i i +
= (fcι.. .ft nΓ 1Σ(-ιrMθ,-..Λ ί l,o,.. .Λ ί p,. . .o)

where we have set

it is known (and easily verified) that (3) converges to

dnφ

Now to prove b) it is sufficient, since the T(c)y)'s are total in H, to prove
that B is bounded; we have

||β|!2=(V.ΛΓ2 Σ (-
ίί< <ίp

jι< <jq

p,q = 0,. . .n

writing out an expansion of the Σ and using (2) one can see that the only
terms which really occur contain h^1 ... hα

n

n where α1 ? ... αn are non zero
even integers; this establishes our assertion.

10 Commun math Phys., Vol. 17
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c) By the part b) we know that A(xn) ξ exists; then

,xn_J-I) h^(U(hnx^-I} ξ

= w-lim w-lim (the same expression)

w-lim
hn- i —hn = 0

hn - i — ϋ

this proves that A(x M _ 1 ) A(xn) ξ exists; and so on inductively. QED.
By the above lemma we may consider the multilinear forms on £°

(xl,...xn)»(A(xl)...A(xn)ξ\ξ);

they are called Wightman distributions and denoted by 7^; we have

= (U(hίXl). ..U(hnxn)ξ\ξ)

whence, by (2)

V> ( I I )(0;xι, ... xn)= -̂  - -^-ψ(h1xί + '~+hnxn)\hl = ...=hn = 0

1 ' " n (4)
= i»irn(xί,...xn).

Then one defines the truncated Wightman distributions i^f by the follow-
ing recurrence formulae

where the sum is taken for all partitions 2P of the set {1,2, ... n} into
subsets

with n j H ----- \-nr = n.
The state associated with ψ is said quasi-free if ι̂ 2

Γ = 0 V H ̂  3 (cf. [7]).
Let us now suppose that ψ has the form ιp(x) = eω(x) where ω is an

infinitely differentiable mapping £-»<C, with ω(0) = 0; we have

and by induction

φ ( π )(x;y 1,...yJ = eω(x)Σω(πι^;3'Iχ1>...ΛχπΛ..ω^^
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it follows that, by (4)

Trn

r(x1,...xn) = iW l )(0;x1,...xn). (5)

Assume now that ω has the form ω(x) = $F((x(t))dt where F is a
complex function on C whose restriction to IR is infinitely differentiable
then, for x, y1 , . . . yn e E° we have

and by derivation under J :

ω'(x; J>ι) = ~^ ω(x + ̂ ι)L = o = 1 3>ι

then by induction

ω(π)(x;>;1,...^) = JFW(x(ί))^1(ί)...>'»(ί) dί;

by (5)

iT/ίx!, ... XΛ) = Γ" - F<«>(0) J X ΐ ( t ) ... xn(ί) - dί .

We have thus proved the following:

Proposition 2. 77ιe state associated with a generating functional ψ of
the form φ(x) = exp[JF(x(f))dί] with F|1R infinitely differentiable, is
quasi-free if and only if F(n}(O) = 0 V n ̂  3.

Examples. We take F(α)= — ̂  |α|2 + F°(α) where F° is given by (1),
and suppose that

JK ldμ(w)< + oo V n = l,2,. . . ;

if α is real we have, by setting ^i = Reu, W j = Rew:

,w- 2 * -. , >„!„., ,^ , 1 + l w j 2^ H

whence, for n ̂  3:

(n) _ n 1 + IW!2

1 w|2

we see that the corresponding state is not quasi-free unless μ is null.
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