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Abstract. The "already unified" field theory of Rainich, Misner, and Wheeler is
rederived in the spin-coefficient formalism of Newman and Penrose. Conditions equivalent
to the Rainich algebraic conditions are obtained by classifying the tracefree Ricci tensor
according to its principal null directions. The case of a null electromagnetic field is also
treated fully. Necessary and sufficient conditions are given for a Riemannian geometry to
have an electromagnetic field, null or non-null, as its source.

1. Introduction

Many attempts have been made to formulate a unified field theory,
that is, one which treats both gravitation and electromagnetism as
aspects of the geometry of space-time. These attempts usually take the
direction of changing the geometry used in Einstein's theory to accom-
modate the electromagnetic field as well as the gravitational one. How-
ever, Rainich, Misner and Wheeler [1-3] have shown that Einstein's
theory is "already unified". Given a Riemannian geometry (with metric
tensor gμv, Ricci tensor JRM V and Ricci scalar R) they have found the
following necessary and sufficient conditions for this geometry to have
a non-null electromagnetic field as its source:

jR = 0, (1.1)

RμΛR\=ί/4(RτβR*β)gμv, (1.2)

Rμv W
μ Wv ^ 0 for any time-like vector Wμ, (1.3)

RτβR
τβ*V, (1.4)

Vλ;τ-Vτιλ = 0, (1.5)
where

* Supported in part by the National Research Council of Canada.
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(Here the semicolon denotes covariant differentiation; ελvβy is the
Levi-Civita symbol.) Moreover, if these conditions are satisfied the (non-
null) electromagnetic field can be specified up to an arbitrary constant
from the given geometry.

In this paper we shall rederive this result, using the Newman-Penrose
formalism, and then proceed to investigate the case of a null electro-
magnetic field. The latter is fundamentally different from the non-null
case. Nevertheless, we can again find necessary and sufficient conditions
for a given geometry to have a null electromagnetic field as its source.
There arise two distinct situations. Only in one of these is the determina-
tion of the electromagnetic field essentially unique.

In the next section we explain the notation. Section 3 consists of a
brief summary of the Newman-Penrose formalism. In Section 4 we
classify the tracefree Ricci tensor, and in Section 5 we apply this classi-
fication to give conditions equivalent to Eqs. (!.!)-(1.4). In Section 6 we
rederive the differential condition Eq. (1.5) in its spin-coefficient form
and in the final section we find differential conditions for the null-field
case.

2. Notation

Let us briefly explain the notation used in this paper. Tensor indices
are given by small Greek letters and run from 1 to 4. Spinor indices are
given by capital Latin letters and run from 1 to 2. Small Latin suffices
refer to dyad components and also run from 1 to 2. The summation
convention applies throughout. Round brackets around suffices denote
symmetrization, square brackets denote antisymmetrization. * denotes
the dual of a tensor. A bar over a quantity denotes the complex conjugate
of that quantity. Complex conjugation of a spinor is indicated by a bar
over the letter and a dot over the spinor index. The correspondence
between a tensor and its spinor equivalent is denoted by <->.

The signature of space-time is taken to be — 2. The sign of the Riemann
tensor RΛβyδ is specified by the Ricci identity

The Ricci tensor is defined by

and the Ricci scalar by
R = ,Rα

α.

The Einstein field equations are taken to be

where TΆβ is the energy-momentum tensor.
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3. The Newman-Penrose Formalism

Our results are derived in the Newman-Penrose spin-coefficient
formalism [4, 5]. We give a short description of this formalism in the
present section.

With each point in space-time is associated a two-dimensional
complex space whose elements are called spinors. A basis {kA, mA}
in this space, normalized by kAm

A = 1, induces in the associated space
of vectors a null tetrad {fcα, mα, ία, ta} satisfying feαmα = - ίαFα = 1 with all
other inner products vanishing.

The spinor equivalent VD% of the covariant derivative Pα can be
written _ _ _

PDZ = mDmzD - mDkzδ- kDmzδ + kDkzΔ ,

where D, <5, δ, A are derivatives in the direction of fcα, fα, Fα, raα, respectively.
The twelve spin-coefficients K, σ, ρ, τ, ε, β, a, γ, π, μ, λ, v may be defined as
dyad components of the directional derivatives of kA and mA [6]. For
example,

DkA = εkA — κmA .

The spinor equivalent of the Riemann tensor is given by

RAWBXCYDZ ~

where ΨABCD characterizes the Weyl tensor, A = K/24, and

Λ . (3.1)

The dyad components of ΨABCD are, as usual, denoted by Ψ Q 9 . . . 9 Ψ4,
and those of ΦABwχ by Φ00, ^01^ •••> ^22. where, for example,

ψ — J.AL.B KC KD ψ
:r0 — /v /v /v /v r ABCD

The dyad components of a bivector Fμv, where

Fμv^εABΦwx + £wxΦAB , (3-2)

are denoted by 0 ,̂ φίf φ2.
A change of basis in the spin-space from one normalized basis to

another,

kA — αkA -f bmA (αd — bc = l ) ,

WA = ckA 4- dmA ,
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induces a change from one normalized null tetrad to another and a
transformation of the dyad components of the various objects. For
example, under a null rotation about kA :

ΛV A — — ΓV Λ .
Λ (3.3)

"I/ = cfc^ + mA .
f4 transforms as

Ψ4

f = c4 Ψ0 + 4c3 ψί + 6c2 Ψ2 + 4cΨ3 + Ψ4.

Many of the transformation laws required here can be found in the liter-
ature [7]. Some others are given below.

For a transformation Eq. (3.3) we find

K' = ft, σ' — CK + σ, ρ' = c/c -f £ ,

εf = cκ + ε, τ' — CCK + cσ + cρ -f τ ,

jS' = CCK: + cσ + cε + β ,

£' = /), 5' = cD + (5 ,

A' = ccD + cδ + cδ + A .

For a transformation
/c / = akA ,

(3.4)

which represents a Lorentz transformation in the fcα — mα plane and a
rotation in the ία — Γα plane, we find

τ' = aa~τ, π' = άa~n, μ' = a~a

, β' = aa'1 β + a~l

The spin-coefficient form of Maxwell's equations, the "Ricci identi-
ties", the full "Bianchi identities" (actually linear combinations thereof)
as well as the commutator relations for the differentiation operators are
easily found elsewhere [4, 5] and will not be repeated here due to their
length.

4. Classification of the Tracefree Ricci Tensor

In order to classify the tracefree Ricci tensor Sμv, defined by Eq. (3.1),
consider the expression

r _ φ . . lAiBJWJX
J = ΨABWX1 l l L
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and ask for what spinors 1A it vanishes. We shall call the corresponding
vectors ία principal null vectors of Sμv. These are clearly defined up to a
constant only. In terms of dyad components the expression J may be
written

τ _ φ . . /α ib 1 w Jx
J — ̂ abwx1 l l L

where

Sμv may belong to one of the following four types1.
Type I:
There exists no spinor which will make the expression J vanish.
Type II:
There is one non-repeated root nA. We find

) (C and E real)

ABWX

that is, ΦABwχ is of the form

ΦA

Taking nA as basis spinor kA we readily find that

Φ00 = Φ01 = Φ 0 2 = 0 . (4.1)

Conversely, given Sμv we can find a tetrad in which Eq. (4.1) holds,
if and only if the equation J = 0 has at least one root. This assertion is
easily verified by an examination of the transformation equations for
Φ00, Φ01, Φ02.

Type III:
Sμv has two different principal null directions which, after a suitable

normalization, we take as basis in spin-space. Then

ΦABWX = ^ΦH k(AmB)k(^mX) (4.2)

all dyad components of ΦABwx except Φn vanish. Again, it is easily
shown that it is possible to find a basis in which Φn is the only non-zero
component of ΦABwχ if and only if the equation J = 0 has two distinct
roots. It should be noted that the principal null directions determine the
spin-space basis only up to a transformation Eq. (3.4). However, Φu

remains invariant under such a transformation.
1 See note added in proof.
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We can distinguish further between Type III a and Type 1Kb. For
Type Ilia, Φn > 0 and ΦABwχ is of the form

ΦABWX = ΦABΦWX> (4-3)

for Type IΠb, Φn < 0 and ΦABwx nas tne f°rm

= -ΦABΦWX,

where φAB corresponds to a non-null bivector as in Eq. (3.2).
Type IV:
Sμv has one repeated principal null direction which we take to cor-

respond to the basis spinor kA. Then

®ABwx = $22kAkBkwkx\ (4.5)

all dyad components other than Φ22 vanish. Conversely, a basis in which
all components of ΦABwX except Φ22 vanish can be found if and only if
the equation J = 0 has a repeated root. The principal null direction does
not determine the basis uniquely. Transformations with Eqs. (3.3) and
(3.4) are still allowed. The former leave Φ22 unchanged, the latter leave
Φ22 real with its sign unchanged.

We distinguish between Types IV a and IV b. For the former, Φ22 > 0
and ΦABwx is of the form Eq. (4.3). For the latter, Φ22 <0 and ΦABwx
has the form Eq. (4.4), where, in both cases, φAB corresponds to a null
bivector.

5. The Algebraic Conditions

The energy-momentum tensor Taβ corresponding to an electro-
magnetic field FΛβ is given by

Since Tα

α = 0 the Einstein field equations reduce to

_ D _ r y p 4-1/4/7 F Fμv (^ 1ΪΛα/? ~ Γα Γγβ ^ L/^yaβΓμv-Γ (-) ί)

Translating Eq. (5.1) into spinor language we get Eq. (4.3) with φAB

related to Fα)3 by Eq. (3.2). Therefore, if a geometry has an electro-
magnetic field Fμv as its source its Ricci tensor is necessarily tracefree
and of Type Ilia or IVa (depending on whether Fμv is non-null or null).

Let us show that these conditions are also sufficient for the existence
of a bivector related to Rμv by Eq. (5.1). Suppose first that the Ricci
tensor is tracefree and of Type III a. Then

>-~R»v (5.2)
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and Eq. (4.2) holds with Φu >0. If we define

0ι' = l/Φ^
and

Φι = Φι'e-ίθ

then the non-null bivector Fμv corresponding to

ΦAB = -2φιk(AmB) (5 3)

satisfies Eq. (5.1) for any real value of θ, thus proving our assertion for
the non-null case.

θ is the complexion and Fμv' obtained from Eq. (5.3) with </>/ in place
of φ1 is called the extremal field. The bivectors Fμv and Fμv' are related
by a duality rotation :

Fμ* - - sinθFμ; + cosθFμ*' .

Next, suppose the Ricci tensor is tracefree and of Type IV a. Then
Eq. (5.2) holds and ΦABwx *s given by Eq. (4.5) with Φ22 > 0. Proceeding
as with the non-null case we define

and
φ2 = φ2 e~l° (θ real).

The null bivector corresponding to

satisfies Eq. (5.1) for any real value of θ, thus proving our assertion for
the null case as well.

The conditions we have just found are equivalent to Eqs. (1. !)-(!. 3)
(with Eq. (1.4) valid for the non-null case and RμvR

μv = Q for the null
case). It is easy to show that

where

ΨACWΫ = ΦABWX& c y

A straightforward but tedious calculation will then show that
vanishes if and only if ΦABwχ can be written as in Eq. (4.3) or Eq. (4.4).
In that case Sμv satisfies Eq. (1.2), which is, therefore, equivalent to the
statement that the traceface Ricci tensor belongs to Type III or IV.
Assuming now that Sμv belongs to Type III or IV, we can easily prove
that it is of Type III if and only if it obeys Eq. (1.4) and of Type IV
otherwise. With the same assumption it is equally straightforward to
show that Eq. (1.3) is satisfied if and only if Sμv is of Type Ilia or IVa.
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This proves that the algebraic conditions as stated in this section are
equivalent to the ones given usually.

6. Differential Conditions in the Non-null Case

The conditions found in the last section are purely algebraic, in the
sense that they do not involve the change in any quantities as one moves
from world-point to world-point. In the present section we shall derive
differential conditions equivalent to Eq. (1.5) (for the non-null case).

Let us first find a necessary condition on the geometry in order that
the bivector Fμv corresponding to φAB as given by Eq. (5.3) satisfy
Maxwell's source-free equations. With our choice of tetrad these equa-
tions become [4]

Dφ1 = 2ρφi9

(6.1)
,

Δφ1 = -2μφ1 .

Also, those "Bianchi identities" equivalent to Tμ

v;v = 0 are given by [5]

δΦ n =(2τ-2π)Φ n_ n (6.2)
δΦ11 = (2τ-2π)Φ 1 1

(In this formalism the well-known fact that Maxwell's equations imply
the vanishing of Tμ

vιv becomes quite obvious.)
Now,

DΦίl=D(φ1'φi')

= 2φ1'D(φie
ίθ).

Using Eqs. (6.1) and (6.2) we obtain

D0 = i(ρ-ρ). (6.3 a)

Continuing in this fashion we also find

<50 = i(τ + π), (6.3 b)

Jθ = i(-τ-π), (6.3 c)

Δθ = i(μ-μ). (6.3d)

Each of Eqs. (6.3) is unchanged (apart from a multiplicative factor) by
a transformation Eq. (3.4). The existence of a solution θ depends, there-
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fore, only on the geometry. A solution exists if and only if certain com-
patibility conditions are satisfied. For example, operating with δ on
Eq. (6.3 a), with D on Eq. (6.3 b), subtracting and using one of the
commutator relations we obtain an equation depending only on the
spin-coefficients and their derivatives. The same holds true for three
more conditions found in a similar way. Since these four conditions are
independent of the remaining freedom of choice in the tetrad they
clearly represent a restriction on the geometry. In fact, a straightforward
but tedious calculation shows that Eq. (1.6) and Eqs. (6.3) are equivalent.

Conversely, if the given geometry satisfies the algebraic conditions
and is such that Eqs. (6.3) are compatible we can find a solution Θ and
define

Reversing the argument given above we can show that the corresponding
non-null bivector satisfies not only Eq. (5.1) but also Maxwell's equations.
This bivector is almost uniquely determined. For if θ and Θ' are two
solutions of Eqs. (6.3), their difference θ" = θ - θ' must be such that
Dθ" = δθ" = δ0" = Δ θ" = 0, that is, it must be a constant.

In summary, the necessary and sufficient condition for a Riemannian
geometry to have as its source a non-null bivector which satisfies Max-
well's equations is that the Ricci tensor be tracefree and of Type Ilia and
that Eqs. (6.3) be compatible.

7. Differential Conditions in the Null Case

We now assume that the algebraic conditions for the null case are
satisfied and obtain differential conditions which are necessary and
sufficient for a Riemannian geometry to have as its source a null bivector
which is a solution of the source-free Maxwell's equations. We choose
a basis in spin-space for which

kAkBkwkχ . (7.1)

Again, this choice is not unique. Transformations of the type Eq. (3.3) or
Eq. (3.4) with a = eiφ (where φ is real) leave the form of Eq. (7.1) invariant.

The concepts of extremal field and complexion are no longer inde-
pendent of the remaining freedom in our choice of tetrad. Nevertheless,
for any given choice we define the complexion by

ΦAB = kAkBe-iθ. (7.2)

The corresponding bivector is null and related to the Ricci tensor by
Eq. (5.1). It is our aim to find conditions on the geometry making it
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possible to determine the complexion θ in such a way that the bivector
defined by Eq. (7.2) satisfies Maxwell's equations. The latter can be
written

K = σ = 0, (7.3)

Dθ = i(2ε-ρ), (7.4a)

. δθ = i(2j8-τ), (7.4 b)
and, since θ is real,

δθ = ί(τ-2β). (7.4 c)

According to Eq. (7.3) the null congruence defined by the principal null
direction of the Rίcci tensor is necessarily geodesic and shearfree.

A transformation Eq. (3.3) leaves kA, θ and hence φAB invariant. A
transformation Eq. (3.4) with a = eiφ changes

kA-*e>*kA.

If we demand that
θ-+θ + 2φ, (7.5)

φAB will again be invariant. Moreover, with the transformation law
Eq. (7.5), assuming Eq. (7.3) is valid, Eqs. (7.4) are covariant under the
remaining freedom we have in choosing the tetrad. (This can easily be
established with the aid of the transformation formulas listed in Section 3).
Therefore, whether θ can be determined so that φAB (which is independent
of the particular choice in tetrad we made) satisfies Maxwell's equations
depends solely on the geometry.

Let us consider the compatibility conditions on Eqs. (7.4) assuming
Eq. (7.3) to be valid. If the geodesic null congruence defined by the
principal null direction of the Ricci tensor is hypersurface orthogonal
(ρ = ρ), then these compatibility conditions involve only spin-coefficients
and their derivatives. If they are satisfied, Eqs. (7.4) can be integrated
and a bivector obeying Maxwell's equations can be found. However, the
complexion is far from unique; for if θ and θ' are two solutions their
difference θ" = 0 - θ' must satisfy only Dθ" = δθ" = δθ" = 0, with Δ θ"
completely arbitrary. An example of such a geometry is exhibited in
Ref. [3].

If the geodesic null congruence is not hypersurface orthogonal, then
the compatibility condition for Eqs. (7.4 b) and (7.4 c) takes on the form

Δθ= —!-= [A] , (7.6)
Q-Q

where [A] is an expression involving spin-coefficients and their deriva-
tives. The complexion must now satisfy Eqs. (7.4) and (7.6) and, if these
equations are compatible, will be unique (up to a constant) as in the
non-null case.

8 Commun math Phys, Vol. 17
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In summary, in order for a Riemannian geometry to have as its source
a null electromagnetic field satisfying Maxwell's source-free equations
the Ricci tensor must be tracefree and of Type IV a, and the null con-
gruence associated with its principal null direction must be geodesic and
shearfree. If this congruence is hypersurface orthogonal necessary and
sufficient conditions are given by the compatibility requirements on
Eqs. (7.4); if not, by the compatibility requirements on Eqs. (7.4) and (7.6).
Only in the latter case is the complexion determined up to an additive
constant.

Note added in proof. The classification of the tracefree Ricci tensor as given in Section 4
is incomplete. Moreover, what was considered to be a non-repeated root of J = 0 is actually
a two-fold root. This becomes clear from the following consideration. It is possible for J
to have the form _ _ _ _.

in which case J has four roots, namely nA, pA, qA and rA. If nA and qA coincide we get type II,
if nA = qA and pA = rA we get type III. More types than the ones listed in Section IV will
clearly arise.

This incompleteness of the classification in no way affects the remainder of the paper
since all that is required is that types III and IV be separate algebraic classes of the tracefree
Ricci tensor, which indeed they are.
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