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Abstract. Disjointness of (KMS)-states of different temperatures is proved.

Let 4 be a C*-algebra with a one parameter automorphism group o,.
A state ¢ of A is said to satisfy the Kubo-Martin-Schwinger (KMS)
boundary condition for >0 if for every pair x,y in A4 there exists a
function F(z) holomorphic in the strip: O <Imz< f with boundary
values:

F(t)=¢(o,(x)y) and F(t+i)=o¢(yo,(x)). (1)

If we assume the boundedness of the relevant function F on the
whole strip: 0 < Imz < f8, the condition (1) implies the o-invariance of
@ by Sturm’s Theorem, as is shown by Winnink [11].

In quantum thermodynamics, the above f§ is given by f=1/kT,
where k is the Boltzmann constant and T is the absolute temperature of
the system. Recently, a great deal of progress on the KMS boundary
condition has been done by several physicists, for example, [1, 2, 4, 6, 7,
and 11].

From the purely mathematical point of view, the author has shown
recently in [9] that to every faithful normal state ¢ of a von Neumann
algebra M there corresponds a unique one-parameter automorphism
group g of M with respect to which ¢ satisfies the KMS boundary con-
dition for f=1. The proof is based on Tomita’s theory [9, 10]. This
a? is called the modular automorphism group of M associated with ¢.

Therefore, the following question naturally comes into consideration:
How does the modular automorphism group o? depend on a normal faithful
state ¢? What changes will occur in the modular automorphism group
a? for different normal faithful states?

In this paper, we shall show the relation between ¢? and o) for
two normal faithful states ¢ and yw commuting in the sense of [9:
Definition 15.17, that is, when ¢ + iy and ¢ — iy have the same absolute
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value in the sense of the polar decomposition. As an application, it is
shown that if M is of type III, and v satisfies the KMS condition with
respect to the modular automorphism of associated with a faithful
normal state ¢ for some S, then f =1 and ¢ = o}.

The relation of ¢f and oy for general pair ¢, p will be discussed in a
separate paper.

Before going into the discussion, the author would like to express his
thanks to Professor H. A. Dye for his kind hospitality at UCLA.

Let ¢ be a fixed normal faithful state of a von Neumann algebra M.
Considering the cyclic representation of M induced by ¢, we assume
that M acts on a Hilbert space # with a cyclic vector &, with
Q(x) = (x| &), xe M. Put A=M¢E, and define a product and an
involution in U as follows:

(x&o) ¥€o) = xy&o, Xx,yEM;

(xEVf =x*&E,, xeM.

Then, with this structure U turns out to be a generalized Hilbert algebra
asin [9: Theorem 12.1]. Let 4 be the modular operator of 2. Then the
modular automorphism group o¢ is given by:

o6f(x)=A4"x4"", xeM, teR.

Let A, be the modular Hilbert algebra contained in U, which is con-
structed in [9: Theorem 10.1]. In this situation, we shall use the notations
and the terminology in [9].

Let M, denote the set of all x e M satisfying the equality: x¢ = @x,
that is,

@(xy)=@(yx) forevery yeM.

Then M, is exactly the algebra of all fixed elements of of by [9:
Lemma 15.8].

Lemma 1. If he M, is positive and invertible and v is defined by
Y(x) = @(xh), x e M, then a} is given by:

o¥(x)=c?(h'xh™"), xeM, teR.

Proof. Since h and 4 commute, h leaves 2, invariant; in particular
hé, is in A,. Take an x € M and an y in A, with y = n(y) € M. Define a
function F(x) by:

F(a) = (n(4~"n)h&y | hex*h~%Ey), aeC.
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Then F() is analytic on the whole plane C. For each t€ R, we have
F(O) = (r(4™ ") hEo | Hx*h™1E,)
= (K xh ™A™y ARE | &)
= (hitXh_uA_ityhéolA _”fo)
= (4" Hi*xh™ 147 4 phE, | Eo)
F(t+i)= (47 D) hEy |h1 ¢ Dx*h™IEDE )
— (R(A—it+1n)héolhit+1x*h~it—1€0)
= (A7 YA pE IR xR E )
= (A7 yhE W XTI E )
= (JHH xR R E | JATH T R )
= (ASh I x* T LE | AT T yhE )
= (43R Ixh ™I | AT A hy* &)
= (R IxhT T E AT hy*E )
= (YhA"h' ™ xh™ " hEo | Eo)
= (yA"h*xh™" 47" hEo| &)
Hence we have
F(t) = w(of(h"'xh™™)y);

F(t +i)=y(ya?(h xh")).

For an arbitrary element ye M, there exists a sequence {n,} in A,
such that

y&o =limn(n,) &, =limy,;

yhéo =limn(n,)héo;

)
y*&o = limn(n,)* &o = limnj;
)
y*h&o = limn(n,)*h&, .

Then we have a sequence {F,} of analytic functions defined by:

F (@) = (m(47"n,)h&o | HEx*h™EE)
= (47 n(n)ho | WEX*h™7E) .
Observing that
limA*r(n,)héo = limJ Sn(y,)hé,
= limJhn(n,)* &,
=Jhy*&,,

3%
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we have
lim(L + 4% n(y,)héy = yhég +Thy* &, .

Since || A1+ A4)"!| <1 for 0Lt <1, we have

limA'n(n,)héy = A'yhé,

uniformly for 0 <t < 3. Since 47 = A" A" where a =s+it, s,teR,
the sequence {F,(«)} converges uniformly to a function F'(a) in the
lower half strip: 0 < Ima < 1, which is defined by

F'(o) = (47"yh&o | WPx*h™%o),  0<Ima<3;

hence F!(a) is holomorphic in and continuous on the lower half strip.
Now, we shall consider the upper half strip: $ <Ima<1. If
1 <Ima <1, then we have

F,(0) = (47" n(n,)ho | Rx*h™1%E)
JHEX*h™ 8o | T A7 n(n,)ho)
JhOx*h™ %, | A7 m(n,)héo)
AFSHEX* ™78, | A7 AT S7(n,)hEo)
AR xR | A3 PR (n,)* &)
_ (hiacxh—iaéo | Al‘iihn(nn)* éo) )
By the same reason as for the lower half strip, F,(o) converges uniformly

to a function F?(x) on the upper half strip: + <Ima <1, which is
defined by:

F(0) = (*xh™i%¢o | 41 %hy*Eg), £ <Ima <1

PR

hence F?(«) is holomorphic in and continuous on the upper half strip.
The functions F'(«) and F?(x) coincide on the line: Ima = %; so they
define a function F holomorphic in and continuous on the strip:
0<Ima<l.
For cach t € R, we have
F(t)= (47" yh&o | h*x*h™" &)

— (hitxh—itA—ityhéO l A_“éo)

— (Aith“xhﬁitd_ityh«fo I 50)

=p(af(h"xh™")y);

F(t + l) — (hi(t+i)xh—i(t+i)<§0 | Al—i(t_i)hy*éo)
— (yA”h“xhﬁ“A_ithfo I 60)
=p(yo? (h'xh™").
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Thus, the one parameter automorphism group: x e M —a?(h'*xh™"),
te R, is actually the modular automorphism group associated with .
This completes the proof.

Remark. If ¢, is the modular automorphism group associated with
a normal faithful state ¢, then for each x,ye M, the function F(a) on
the strip: 0 < Ima <1 satisfying condition (1) is bounded.

In fact, as seen above, F(a) is given by:

Flo)= (47" | x*Ep) if 0=Ima<3;
= (x| AT FYy*E)) if F<Ima<1.

Hence we have, for se Rand 0 <t < 3,

[F(s+in) < 4"y &oll 1x*Eoll 5
for se R and $ <t <1, we have
IF(s+it)] < [Ix&oll 14~ y*&oll -
Since y&, and y*&, are both in 2(4%), we have
sup {[|4'y&o 0=t < 3} <400
sup {[[4' " y* &l 3=t <+o0,

so that F(x) is bounded.
Therefore, we can estimate the behavior of F(x) in the strip:
0 = Ima <1 by Phragmen-Lindeldf theorem.

Theorem 2. If vy is a o¢-invariant, normal, faithful state of M, then
there exists a non-singular positive self-adjoint operator h affiliated with

M, such that o
o?(x)=o,(h*xh™").

Proof. By [9: Theorem 15.2], there exists a positive self-adjoint
operator k affiliated with M, such that

p(x) = (xk& k), xeM.

Since the range projection of k is the support projection of y, k has
dense range; hence it is non-singular. Let

k = }0 Ade()
0

be the spectral decomposition of k. Then all projections {e(4)} are in
M,. Put »
k,=e(1/n)+ [ Ade(A)+(1—e(n);

1/n

Pu(x) = ok, xk,) = p(xkd), n=1,2,... .
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Since k,&, converges strongly to k&,, p, converges to y with respect to
the norm topology in M,.. Put h, = kZ. Then by Lemma 1, the modular
automorphism group o} of y, is given by:

d'(x) = a?(hi'xh]"), xeM, teR.

Put h = k? and a,(x) = ¢?(h"xh~ "), xe M, t € R. Take a pair x,y in M.
For each n, there exists a function F,(z) holomorphic in the strip:
0 <Imz <1 with boundary values:

(1) =p,(01(0);
F,(t+i)=yp,(yoi(x)) .
Consider functions f and g on R defined by:
O =w(oi(x)y) = (a? (W' xh ™) yk&o |kEo) 5
g9(t) = p(yoi(x)) = (yo (W' xh™")k&o [ ko).

Since hi' converges strongly to h'* as n— oo and the product operation
is strongly continuous on the bounded part of M as a function of two
variables, hi!xh, ' converges strongly to h''xh~"" as n— oo. Then we have

IFu(6) = f(O1 = (A" by, " A7 yk,Eo [k, o) — (A" B xh ™" A7  yk&o [kEo)|
= |(h/xhy A7 yky&olkn&o) — (' xh ™" A7 yk&o | kEo)|
S| xhy A7 vk, ol (ky — k) Eo)l
(I xhy AT yk, — W xh ™ ATk} Eo | k&)
< Dl Il kol (s = K)Eoll + by “ A7 ylk, — K)ol 1Kol
+ (k™ = xh™ ) A7 ykEo |l 1k&oll 5

hence F,(t) converges to f(t) for each t € R. Similarly F,(t + i) converges
to ¢(t) for each ¢ € R. The sequence {F,(z)} is uniformly bounded on the
boundary of the strip: 0 < Imz <1, so that it is uniformly bounded on
the strip. Let @ be a C*-function on R with compact support. Then it’s
Fourier transform &:

(1) = f exp(—ist) P(s)ds

—

is a C®-function of rapidly decreasing, which is extended to a entire
function on the whole plane C. Then we have

}Oéﬁ z)dz_}o B(t+i) F,(t +i)dt
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for n=1,2,.... Hence by Lebesgue’s convergence theorem, we have
5 (1) p(o,(x)y) f &t + i) p(yo,(x))dt,

which is equivalent to the KMS-boundary condition (1) for f =1, see
for example [1]. Therefore, o, is the modular automorphism group
associated with .

Corollary 3. If M is of type I, then there is no normal state of M
satisfying the KMS-boundary condition with respect to o? for f 1.

Proof. Suppose y is a normal state of M satisfying the KMS-
boundary condition with respect to ¢f for f=1. By [9: Theorem 13.3],
the support projection e of y is central. Considering eM, we may assume
that v is faithful. Since vy is o?-invariant, we can apply Theorem 2 to .
Namely, there exists a positive self-adjoint operator h affiliated with M|,
such that the modular automorphism group o} associated with p is
given by: 6¥(x) = ¢?(h''xh~""). On the other hand, by the assumption for
y, 6§, is the modular automorphism group associated with . Therefore,
by the unicity of the modular automorphism group [9: Theorem 13.2]
we have

of(h'xh™")=0f,(x), xeM, teR;
h'xh™" =068 _4,(x), xeM, teR.

Therefore, we have
G-;P(x) — hit/(ﬁ“‘l)xh”ii/(ﬁ“l)

hence the modular automorphism group ¢f is inner, which means by
[9: Theorem 14.1] that M is semi-finite. This is a contradiction.

Corollary 4. If a normal state v satisfies the KMS-boundary con-
dition with respect to a? for f =1, then there exists a positive self-adjoint
operator k affiliated with the center Z of M such that

p(x) = (xk&o ko), xeM.
In particular, if M is a factor, then ¢ = .

Proof. As in Corollary 3, we may assume that v is faithful. As in the
proof of Theorem 2, y has the form: p(x) = (xk&,|kéy), xe M; and the
modular automorphism group oY associated with y is given by
o¥(x) = a?(k*"*xk~2'). On the other hand, by the assumption on y and
by the unicity of the modular automorphism group [9: Theorem 13.2]
we have ¢?(x) = 0¢(k*''xk~?"); hence k*"* belongs to Z for every te R,
which completes the proof.
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Now, let 4 be a C*-algebra with a one parameter automorphism
group o,,t € R. In the following o, will be fixed and let a f-(KMS)-state
of 4 be a state of 4 satisfying the KMS-boundary condition with respect
to g, for B. Let K; denote the set of all B-(KMS)-states of A. Put
K = | K. Clearly each K, is convex. If we assume the continuity of

>0
the xrljap: t—0o,(x), x € 4, in the norm topology in A, then it is easily seen
that K is compact. Therefore, by Corollary 4, K is a Choquet simplex
in the sense of [8]. But if we do not assume the continuity for o,, then we
can not expect compactness for K;. In fact, K; has no extremal point
in many cases (see [5]).

Theorem 5. In the above situation, let ¢ and vy be a f-(KMS) state
and a y-(KMS) state of A respectively. Suppose one of the cyclic re-
presentations m, and m,, induced by @ and v is of type IIL. Then if f+7,
then n, and m,, are disjoint.

Proof. Let # and 4 be the representation spaces of n, and 7,
respectively. Let M and N be the von Neumann algebras generated by
n,(A) and =, (A) respectively. Suppose 7, and =, are not disjoint. Then
there exist a central projection p in M and a central projection g in N
and an isomorphism n of Mp onto Ngq such that n(n,(x)p) = 7,(x)q,
xeA. Let {,e # and {, e # denote the cyclic vectors corresponding
to ¢ and p respectively. Then it is not too hard to see that the states of 4
defined by

QI(X) = (nq:(x)pé(p'péqa),

b
Ip&,I*

¥1(x) (m,(x)as,lqs,), xe4d,

.

la&,I*
are f-(KMS) and y-(KMS) respectively and that the cyclic representations
n,, and m, induced by ¢; and y, are quasi-equivalent. Therefore, we
may assume that m, and =, are quasi-equivalent. Let © be an iso-
morphism of M onto N such that nen, =m,. By [9: Theorem 13.3],
there exist one parameter automorphism groups ¢ of M and ¢¥ of N
such that

7'[0,(0',()6)) = o'iwn(p(x) 5
T, (0,(x)) =o' m,(x), xeA.

(*)

Furthermore, the normal states ¢ of M and { of N defined by

P(x) = (xE,[C,), xe M Plx) = (x¢,[E,), XEN,

are both B-(KMS) and y-(KMS) with respect to ¢ and oY respectively.
Define a normal state {; of M by ¢, (x) = (n(x)¢,|£,), x€ M. Then {,



KMS-States of Different Temperatures 41

is a y-(KMS) state of M with respect to the one parameter automorphism
group 7~ ! ¢ 7. But equality (x) shows that 7' ¢ 1 = ¢. Hence the one
parameter automorphism group ¢ of M admits a B-(KMS) state @
and a y-(KMS) state {, simultaneously for different f and y. Then by
Corollary 3 M is not of type III. This completes the proof.

[ee)
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