
Commun. math. Phys. 17, 1—20(1970)

Continuity Properties of the Representations of the
Canonical Commutation Relations* **

E. J. WOODS
Department of Mathematics, Queen's University, Kingston, Ontario, Canada

Received July 21, 1969; in revised form January 9, 1970

Abstract. We prove that a given representation of the canonical commutation rela-
tions can be extended uniquely by continuity to larger test function spaces which are
maximal in the sense that no further extension is possible. For irreducible tensor product
representations of the canonical commutation relations we give a necessary and a sufficient
condition for the admissible test functions. We consider the problem of finding topologies
on the test function spaces such that this extension can be obtained by a topological comple-
tion. Various examples are discussed.

1. Introduction

There is a variety of literature on the representations of the canonical
commutation relations (hereafter referred to as CCRs) [1-3, 6-12,
14-22]. In the present paper we are concerned with the continuity
properties of representations of the CCRs, and with topologies for the
test function spaces. There is some discussion of this problem in the
literature. Lemma 2.3 of Araki and Woods [2] gives a criterion for the
continuity of the operators £/(/, g) and provides a method for extending
by continuity a given representation to a larger class of test functions.
However this lemma was stated somewhat ambiguously. In fact the
present paper is essentially a clarification of this lemma. Streit [22]
considered irreducible tensor product representations of the CCRs and
gave a numerical criterion for a class of admissable test functions.
Chaiken [6] constructed some representations of the CCRs which
exhibit rather pathological continuity properties. After the present work
was completed, the related results of Reid [18,19] came to our attention.
Recently Hegerfeldt and Klauder [12] have discussed the weakest vector
topologies on Vφ, Vπ such that the maps /-> [/(/), g-+V(g) are strongly
continuous. A detailed discussion of the associated topologies on the
test function spaces will be given in a paper with H. Araki [4].

* Supported in part by the National Research Council of Canada.
** An earlier version of the present work was distributed as a preprint entitled "Topo-

logies for Test Function Spaces for Representations of the Canonical Commutation
Relations".
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In Section 2 we give the definition of a representation of the CCRs
) = eίφ(f}eiπ(9\ fξVφ,geVπ over the test function spaces VΦ9 Vπ

relative to a bilinear form </, #> on Vφ x Vπ. In Section 3 we prove
some technical lemmas needed later (Lemma 3.5 seems to be a statement
of independent interest). In Section 4 we discuss the extension by con-
tinuity of a given representation of the CCRs to larger test function
spaces. The admissable test functions are given as appropriate equiv-
alence classes of nets from the original test function spaces. In Section 5
we consider irreducible tensor product representations of the CCRs.
We give a necessary condition and a sufficient condition for the ad-
missable test functions. We show that these admissable test function
spaces contain but in general do not coincide with the admissable test
function spaces determined by Streit [22]. In Section 6 we discuss the
problem of finding topologies τφ9 τπ on the test function spaces Vφ, Vπ

such that the spaces Vφ, Vπ of admissable test functions are the com-
pletions of Vφ, Vπ in the topologies τφ, τπ. In Section 7 we consider some
representations of the CCRs (some of which are due to Chaiken [6])
which exhibit undesirable continuity properties. Our results do not
provide a definitive treatment, and are probably best considered as a
reformulation of the problem. In Section 8 we discuss briefly the questions
considered above in the context of representations of topological groups
which are not locally compact.

We use the following notation. If A is a set of bounded operators in
a Hubert space H, then A' is the set of all bounded operators in H which
commute with every operator in the set A. The algebra of all bounded
operators in H is denoted by B(H). The set of all unitary operators in H
is denoted by U(H). If xβ, β e B is a set of elements in a linear space V,
their algebraic span is the subspace of all finite linear combinations

Σ c β j x β j - We use (x' y)»x e £' y e Fto denote the elements of the Cartesian
product E x F. We use <(x, y> to denote a bilinear form on E x F where
E, F are linear spaces. We call the bilinear form non-degenerate if E
distinguishes points in F and F distinguishes points in E. For such
paired spaces we denote the weak dual topology on E by w(£, F). If
the topology T is finer than the topology S we write Γ^ S. If Tβ9 β e B
is a collection of topologies for a space X, the supremum topology
\f Tβ is the topology generated by the open sets for the Tβ, β e J5.

βeB

2. Definition of a Representation of the CCRs

Definition 2.1. Let Vφ and Vπ be real vector spaces with a bilinear form
(/>#)-></>#) fr°m ^φ x Vπ i

nto tne fiεld of real numbers. A represen-
tation of the Weyl commutation relations over Vφ x Vπ is the structure
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consisting of a complex Hubert space H and a map (/, 0)-» [/(/, 0) from
Vφ x Vπ into U(H) such that

f(/ι,0ι) U(f2,g2)=U(fi +f2,g1+g2)ei<^> (2.1)

lϊVφ=Vπ=V we call £/(/, 0) a representation of the Weyl commutation
relations over F. If the map (s, f)— > l/(s/, f0) is continuous from the usual
topology for the real parameters s, t to the strong operator topology
for all /, g we call [/(/, 0) a continuous representation of the Weyl
commutation relations. If in addition the bilinear form </,0> is non-
degenerate we call [/(/, 0) a representation of the CCRs.

For some purposes the notation U(f, g) = U(f) V(g) where

E7(/)=E7(/,0), (2.2)

=17(0,0) (2.3)

is more convenient. For continuous representations it follows from
Stone's theorem that we can write U(f) = eiφ(f\ V(g) = eiπ(9} where
</>(/), π(0) are self adjoint. Definition 2.1 can be reformulated as a re-
presentation of the group of elements (/, g, σ) where /e Vφ, geVπ and σ
is a complex number of modulus one, with the multiplication law

(/I, 01, *l) (/2, 02, *2) = (/I + /2, 01 + 92> ̂ 2 e ί < / 2 ' f l l >)

It should be noted that some of our terminology in definition 2.1
is new. The extension by continuity of a given representation of the CCRs
can lead to degenerate bilinear forms [4], and it is therefor convenient
to introduce a notation which allows for this.

3. Some Technical Lemmas

Lemma 3.1. Let G be a group, let Ha be topologίcal groups, let /α

be a representation of G in Ha, and let τ be the weakest topology on G
such that the maps fa: G-^Ha are continuous for all α. Then (G, τ) is a
topological group.

Proof. Let τα be the weakest topology on G such that the map /α

is continuous. Then τ = V τα. Since the supremum of a family of topolo-
gies compatible with the group structure of G is compatible with this
structure ([5], Chapter III, page 102, problem 9), it is sufficient to prove
that (G, τα) is a topological group.

Given x, y e G and a neighbourhood N of xy~1 we must find neigh-
bourhoods Nx, Ny of x, y such that Nx(Ny)~1cN. Choose a neighbour-
hood M of f Λ ( x y ~ l ) such that /α~1(M)cΛΓ. Since HΛ is a topological
group there exist neighbourhoods Mx,My of /α(x), fΛ(y) such that
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Mx(MyΓ
lcM. It follows that Nx = f~l(Mx), Ny = f~l(My) are the

desired neighbourhoods. Q.E.D.

Lemma 3.2. The strong operator topology gives U(H) the structure
of a topologίcal group (the group operation is operator multiplication).

Proof. The sets N ( T , φ 9 s ) = {S:\\(S-T)φ\\<ε} for all φeH and
all ε > 0 are a basis for the neighbourhoods of T in the strong operator
topology. For Wί9W2,Uί,U2e U(H) we have

(3.9)

= 2{(lUΓlW1-llW2φ,U2φ) + (W2φ,lU2-W2]φ)}.

Now
/f 1 Wl ~ 1) ιp\\ = \\(W, - U,) ψ\\ . (3.10)

Thus Vl e N(Wί9 W2 φ^?2) and U2 e N(W2, φ, |ε2) implies that
[/! ϊ/2 e JV(WΊ FΓ2, φ, c||0|Γ2). Q.E.D.

Lemma 3.3. L<?£ {^«}5 {KJ be ̂ ίs °f unitary operators on a Hubert
space which converge to U, V in the strong operator topology. Then
(7αFα-» £/F in the strong operator topology.

Proof. This is Lemma 2.2 of [2] which was stated for sequences
but the proof given is valid without change for nets. Q.E.D.

Corollary 3.4. Let U = strong limUa, Ua unitary. If U~ * is convergent
then U is unitary.

The following lemma, which seems to be of independent interest,
will be used in Theorem 5.1. It was motivated by the following appli-

00

cation. Let (X)(#n, Ωn) be the complete tensor product space of von
w = l

Neumann [17] and let ® φn be weakly equivalent to ® Ωn (see Eq. (5.2)).
Then there exist real numbers xn such that (x) elXnφn is strongly equivalent
to (x) Ωn. In an earlier version of this paper we proved that given any
sequence xn of real numbers, there exist εk>0, Xε f c <oo, integers mk

and a partition of the positive integers into mutually disjoint finite sets
Jk such that

2π mk - Σ *n ^ εk -
neJk

GO 00

It follows that (x) / (x) φλ e (x) / (X) (Hn9 Ωn)\ which is canonically iso-
k- 1 \neJk I k=l \neJk }

oo

morphic to (x) (Hn, Ωn). H. Araki has provided a simplified proof, and
fc=l

an improvement of this result as follows.
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Lemma 3.5. Let xn, n= 1,2, ... be a sequence of real numbers. Then
there exist integers mk, Nk9 k = 1, 2, ... where Nk > N^^ for all k (where
N0 = 0) such that

Σ
k = l

1

-y
Proo/. Let

where [x] is the greatest integer q rg x. Let V be an accumulation point
of the VN. Then there exist integers Nk, fc = 1,2,... such that (i) Nk > Nk _ 1

for all k, (ii) VNk is either monotonically increasing or decreasing to V,
(iii) either VNk ^ \ or VNk ^ | for all k, and (iv) || - VNl\ ^ | £ - V\. Choose
an integer m1 so that

Wi —
«=ι

For k = 2, 3, ... choose an integer mfc so that

It follows that

Σ
k = l

- Σ

Nk

Σ V
2

Q.E.D.

4. The Extension of a Given Representation
to Larger Test Function Spaces

In this section we consider the extension by continuity of a given
representation of the CCRs to larger test function spaces. We identify
the admissable test functions as appropriate equivalence classes of nets
from the original test function spaces. Since the extension can lead to
degenerate bilinear forms [4], our definitions etc. are stated for conti-
nuous representations of the Weyl commutation relations (see Defini-
tion 2.1).

In considering the representations of infinite-dimensional Lie groups
such as the CCRs, the question of comparing representations of different
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groups also becomes a natural one. Let UF(f, g) be the Fock represen-
tation of the CCRs over a real Hubert space K Then the map /-> UF(f)
is continuous from the norm topology on V to the strong operator
topology [2]. Thus ||/α-/||->0 implies that UF(f) = strong limC/F(/α).
It follows that UF(f, g) is determined by continuity by its restriction to
any subspace W of V which is dense in the norm topology on V. More
generally, if [/(/, g) is a representation of the CCRs over Vφ x Vπ9 one
would expect that it is determined by continuity by its restriction to some
subspaces Wφ,Wπ. In order to state this situation in an abstract way,
we must be able to reconstruct the spaces VΦ9 Vπ from WΦ9 Wn. Actually
one would like to do a little more. Namely given a representation of the
CCRs, one would like to extend the representation by continuity to test
function spaces which are maximal in the sense that no further extension
by continuity is possible. The following definition will serve to charac-
terize the admissable test functions.

Definition 4.1. Let U(f9 g) be a continuous representation of the Weyl
commutation relations over Vφ x Vπ. An admissable test function for
the U(f) is an equivalence class of nets {/α}, /αe Vφ such that strong
lira U(λfa) exists for all real λ and is strongly continuous in λ, the equi-
valence relation being given by {/α} ~ {/α'} if and only if strong
lim U(λfΛ) = strong limU(λfά) for all real α. Vφ(U(.)) denotes the space
of all admissable test functions. Similarly one defines the admissable
test functions for the V(g) and Vn(V(.)). If no ambiguity is possible we
will write Vφ, Vπ for VΦ(U(.)), Vn(V(.)).

Clearly VΦ9 Vπ can be canonically imbedded in Vφ,Vπ. If {/α} e Vφ

(strictly speaking we should use the equivalence class of {/α}), it follows
immediately from definition 4.1 that { λ f Λ } e Vφ. If {/lα}, {/2α} e Vφ it
follows from Lemma 3.3 that {/ια + /2α} E Vφ Thus the equations

give Vφ the structure of a real linear space.

Theorem 4.2. Let U(f9 g) be a continuous representation of the Weyl
commutation relations over Vφ x Fπ, and let VΦ9 Vπ be the spaces of ad-
missable test functions. Then the bilinear form <(/, #> on Vφ x Vπ can be
extended uniquely by continuity to Vφx Vπ, and

U({f.}, {9.}) = strong lim [/(/., θx) (4.3)

is a continuous representation of the Weyl commutation relations over
Vφ x Vπ. This extension is maximal in the sense that Vφ(U(.)) = Vφ9
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Proof. We shall use the result that strong lim £/(/α) = 1 implies that
lim</β,0> = 0 for all geVπ [4], [12].

We extend first the operators U(.) to Vφ. Let {/J e Kφ, C7(Λ {/α})
- strong HmU(λfΛ). Since J7(-/α) = I/ί/J"1 it follows from Definition
4.1 and Lemma 3.3 that U(— {/α})= ^({/α})"1- A second application
of Lemma 3.3 gives strong HmU(fΛ — fβ)=l which implies that
lim</α — fβ,gy = 0 for all geVπ. Thus </α, g> is Cauchy and we can
define

<{/Λ,0> = lim</β,0> (4.4)

If {/«} ~ {/α} then strong lim l/(/α - /α') = 1 which implies that
> = lim</α', #>. Clearly Eq. (4.4) defines a bilinear form on

x Vπ. We have

- {strong lim t/(/lα)} K(0) {strong lim C7(/2α)}

= strong lim t/(/ lα) 7fo) l/(/2β) (4.5)

- strong lim ί/(/lβ + /2α) V(g) e'</2^>

and ί/({/α}) V(g) is a continuous representation of the Weyl commu-
tation relations (the continuity follows directly from Definition 4.1). By
a similar argument the operators V(.) can now be extended to Vπ.

To prove that this extension is maximal, let { f Λ β } , β E B be elements
of Vφ such that strong \imβU(λ{fΛβ}) exists for all real λ and is strongly
continuous in λ. It follows from the iterated limits theorem ([14], page 69)
that strong lim U(λfΛβ) exists (where we take the product order on (α, /?))
and is equal to strong HmU(λ{fΛβ}). Q.E.D.

Thus Definition 4. 1 gives a natural definition of the admissable test
functions, and Theorem 4.2 indicates that a given representation can be
extended uniquely by continuity in a straightforward way to the ad-
missable test functions. This situation occurs frequently in practise. For
example, in quantum field theory one may construct representations of
the CCRs where one takes Vφ = Vπ to be some convenient space of
functions /(x), x e Rn (such as the space £f of Schwartz). However, it
usually happens that the representation which one obtains can be ex-
tended to a larger class of test functions. In particular the Fock re-
presentation over an inner product space V of test functions f(x) is
continuous in the norm topology and can thus be defined for all square-
integrable test functions [2].

Lemma 4.3. Let [/(/, g) be a continuous representation of the Weyl
commutation relations over Vφ x Vπ on a separable Hilbert space H. If
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/„ is a sequence in Vφ such that U(λ) = strong lim U(λfn) exists for all real λ,
then U(λ) is strongly continuous in λ and {/„} e Vφ.

Proof. Since the limit of a sequence of measurable functions is
measurable, it follows that U(λ) is weakly measurable in λ. On a separable
Hubert space this implies that U(λ) is strongly continuous in λ.

Lemma 4.4. Let Ut(f, g\ i e I be continuous representations of the
Weyl commutation relations over Vφ x Fπ, and let F^ , Vπί be the spaces
of admissable test functions for £/;(/, g). Then

are the spaces of admissable test functions for the representation (P) Ut(f9 g).
iel

Proof. Follows immediately from the fact that for unitary operators
we have strong limφ Uia = (J) Ut if and only if strong lim 11^=11^ for

iel iel

e a c h z e / . Q.E.D.

5. Admissable Test Function Spaces for Tensor Product
Representations of the CCRs

As an illustration of the extension procedure given by Theorem 4.2
we consider irreducible tensor product representations of the CCRs
[14, 22].

Let V be an inner product space which is the algebraic span of an
orthonormal basis hn,n — 1, 2, ... for V. For each n let Un(s, ί) be a re-
presentation of the CCRs for one degree of freedom defined in the
Hubert space Hn. Let HΩ = ® (Hn9 Ωn), ΩneHn,\\Ωn\\ = l denote the
incomplete tensor product space of von Neumann [17]. We call Ω = ® Ωn

the reference vector. In the following we assume the reader is familiar
with the results of [14,22]. Two product vectors ®j8Π, ®7n such that
0<Π| |/JJ, ΠH^I^oo are called strongly equivalent, ®βn~®yn> ^

(5.1)

They are called weakly equivalent, ®/?,,~ ®7W 5 if

ΣJi- l (&,y«) l l<°o. (5.2)
For f.geVwQ have f = Σfnhn,g = ̂ gnhn where /„ = gn = 0 except for a
finite number of n. The equation

UΩ(f,g) = ®Un(fn9gJ (5.3)
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defines an irreducible tensor product representation of the CCRs over V
in the Hubert space HΩ. Two such Uβ(f, g\ Uγ(f, g) are unitarily equiv-
alent if and only if the reference vectors ® βn, ® yn are weakly equivalent
[14]. If no ambiguity is possible we write UΩ(f, g) = [/(/, g\ HΩ — H.

A product representation UΩ(f, g) can always be extended by con-
tinuity to larger test function spaces which depend on the weak equiv-
alence class of ® Ωn. According to Theorem 4.2 the spaces of admissable
test functions are the spaces Vφ(Ω), Vπ(Ω) obtained by considering all
nets /α e F, gα e F such that strong lim t/(λ/α), strong l i m V ( λ g Λ ) exist for
all real λ and are strongly continuous in λ. Since {/α} e Vφ(Ω) implies
that lim</α, 0> exists for all ge V, it follows that there is a canonical
map σ from Vφ(Ω) into the completion F* of F in the topology w(F, F)
(in general the map σ is many-to-one [4]). Thus if / = {/J e Vφ(Ω),
/α e Vb then / = σ/e F* and / = lim/α(w(F*, F). F* is also the algebraic
dual of F. We realize it as the linear space of all combinations / = Σfjhρ
fj real.

Theorem 5.1. Let V,UΩ(f9g), Ω = ® Ωn, Vφ(Ω\ Fπ(Ω) be as above.
A necessary condition that f = £/wΊw e σ(Vφ(Ω)\ g — ]Γ gnhn e σ(Fπ(Ω)) is
that ® Un(λfn) Ωn & ® Ωn, ® F^/l^) Ωn ̂  ® ΩJor all real λ. A sufficient
condition is that there exist constants φn, πn such that ® Un(λfn) Ωn

~ ® eiλφnΩn, ® Vn(λgn) Ωn ~ ® eίλrΐnΩn for all real λ.

Proof. It is sufficient to consider Vφ. Let f = Σfnhneσ(Vφ(Ω)). Then
there exists a net/(α) - X /Λ(α) fcn, /(α) e Fsuch that lim/(α) - /(w(F*, F))
and γ(λ) = lim l/(/l/(α))® Ωn exists and is not equal to zero for all real λ.
One can use Definition 2.3 and Lemma 3.2 of [3] to prove that γ(λ) is
a product vector ®γn(λ). Let Pn(λ), Qn(λ) be the orthogonal projections
onto Un(λfn)Ωn, yn(λ). By considering y(λ) as a state on B(HΩ) and
noting that lim/n(α) = /„ it is clear that we must have Qn(λ) = Pn(λ). Thus
\(Un(λfn) βn, yn(λ))\ = 1 and ® I7B(A/J Qn ̂  ® γn(λ) - ® Ωn.

Now let ® Un(λfn)Ωn~ ®eiλφnΩn. By Lemma 3.5 there exist εk>0,
X εk < oo, integers mk, and a partition of the positive integers into mutually
disjoint finite sets Jk such that

2πmk— y (j

Using the associative law for tensor products we have (X) (Hn, Ωn)

00

canonically isomorphic to (X) / (X) /f „, (X) Ωn). Now
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where

and thus

k \neJk ) k \neJk

which implies that

(X) ((X) Vn(λfn) Ωn\ ~ (X) / (X) Ωπ) (5.5)
/c \ n e j f c / /c \neJk /

Let K
/(«)= Σ (Σ/A)

k = l \«ejk /

We now prove that strong l i m U ( λ f ( K ) ) exists for all real λ. Let y EH,
N

and let ε > 0. By Lemma 3.1 of [3] there exists N < oo and yN e (X) Hn

n= 1

such that
(5.6)

Thus it is sufficient to prove that lim U(λf(K))®Ωn exists, and this
K -"GO

follows from Eq. (5.5). It then follows from lemma 4.3 that feσ(Vφ(Ω)).
Q.E.D.

Corollary 5.2. Given f = Σ/Λ e ̂  *» /£ ̂  ̂ n there exists Ω = ®ΩW

Proof. We have /„ Φ 0 for infinitely many n. Given fn φ 0 one can
easily construct Ωπ such that !([/„(/„) ΩM, Ωw)| ̂  1 - δ for any 0 < δ ̂  1.
Then® l/Λ(/Λ) Ω^φΩ,. Q.E.D.

It is also a direct consequence of Theorem 6.3 that for any Ω = ® Ωn,
VΦ(Ω), Vπ(Ω) are strictly larger than 7 (this was also proved by Streit [22]).

We now consider the spaces of admissable test functions given by
Streit [22]. Let H"° = ®Hn denote the complete tensor product space
of von Neumann [17]. For /, g E V* the equations

W">(f)®yn=®Un(fa)γa, (5.7)

®Vn(gn)γn, (5.8)

define unitary operators W™(f\ X™(g) in H™. In general the restrictions
WΩ(f\ XΩ(g) of W*(f\ Xco(g) to HΩ are not unitary. Streit [22] gave
the spaces of admissable test functions for the VΩ(f\ VΩ(g] to be

V%(Q) = {fεV* : WΩ(λf) is unitary for all real λ} , (5.9)

V*(Ω) = {g E V* : XΩ(λg) is unitary for all real λ} . (5.10)



Representations of Canonical Commutation Relations 11

It follows immediately that

Fφ

s(Ω) = {/ = X/Λ,: ® U,,(λfn) Ωn ~ ® Ωn for all real λ},

Vs

π(Ω) = {g=Σ9«hn ® Vn(λgJ Ωn ~ <g> Ωπ for all real A } .

Theorem 5.1 then gives F|(Ω)Cσ(Kφ(Ω)), Fπ

s(Ω) C σ(Fπ(Ω)). One can
easily show that /eF|(Ω) if and only if U(λf) = strong linιL/(A/(Π))

n

where /(w) is the truncated test function f(n} = £ /j^7 . Thus for some
j=ι

tensor product representations (e.g. the Fock representation) we have
V*(Ω) = σ(Vφ(Ω}) = Vφ(Ω), Vπ

s(Ω) = σ(Vπ(Ω)) = Vπ(Ω).

Lemma 5.3.There exists Ω=®Ωn such that V$(Ω)φσ(Vφ(Ω)).

Proof. Let

Ωn(x) = (σn/π)1/4e-σn(χ-ε(n)}2/2 (5.11)

where

l + l, n even
ΦHl 1 „ (5.12)

[ — I, n odd

and

σn = n 2. (5.13)

Then ||ί2n|| = l. Consider F = ̂ Fnhn where Fn=l for all n. We have

ϋ Ua(λ) Ωn - el^λΩn\\ = \ λ/σn + Q(λ2/σϊ). (5.14)

It follows from Eq. (5.1) that V ||βn- yn\\ < oo implies that ®βn~® yn.
Thus Eqs. (5.13), (5.14) imply that ® Un(λ) Ωn - ® eiε(n)λΩn ^ ® Ωn. Thus
Fφ V$(Ω). But it follows from Theorem 5.1 that F 6 σ(Vφ(Ω)). Q.E.D.

It might be remarked that the criterion of Streit is not a natural one.
Let F, Ω be as in the proof of Lemma 5.3. If one considers UΩ(f, g) as

00

the tensor product 0 (U2n(f2n, g2n) ® ί/ 2 w _ 1 (/ 2 l l _ 1 , g2n-ι)) then F
n = l

would be an admissable test function according to the criterion of Streit.

6. Topologies on the Test Function Spaces Induced by a
Representation of the CCRs

The extension procedure given by Theorem 4.2 is closely related to
the following well-known result ([5], Chap. Ill, Sec. 3, Proposition 5).
Let Gί be a topological group, G2 a complete Hausdorff topological
group, and let Hl9 H2 be everywhere dense subgroups of G l 5 G2. Then
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every continuous representation of H1 into H2 can be uniquely extended
to a continuous representation of G1 into G2. In this section we consider
the problem of finding, for a given representation of the CCRs, topo-
logies τφ, τπ for the test function spaces such that this completion proce-
dure gives the extension to the admissable test functions. Unfortunately
there are some difficulties associated with the requirement that U(sf, tg)
be strongly continuous in the real parameters s, t which have not yet
been resolved, so that we do not provide a definitive solution of this
problem.

We want a topology τφ on Vφ such that
(i) the map /-> U(f) is strongly continuous,

(ii) the completion Vφ(τφ] of V is a vector space (with Vφ as a dense
subspace),

(iii) Vφ(τφ) is canonically isomorphic to the space Vφ of admissable
test functions.

It follows from (ii) that /α is a Cauchy net in Vφ if and only if λ f Λ

is a Cauchy net for all real λ. Since a map is continuous if and only if it
carries convergent nets into convergent nets, it follows that the map
f-+λf must be continuous.

It now follows from (i) that the maps /-> U(λf) must be continuous
for all real λ. If we take τφ to be the weakest topology on Vφ such that
the maps f-^U(λf) are strongly continuous for all real λ, then Vφ can
be canonically imbedded in Vφ(τφ). However we have been unable to
prove that U(λf) is strongly continuous in λ for all fe Vφ(τφ). On the
other hand, let τφv be the weakest vector topology on Vφ such that the
map/-* U(f) is strongly continuous [4,12]. Clearly τφv ̂  τφ, and U(λf)
is strongly continuous in λ for all /e Vφ(τφv). However in general τφv

is strictly finer than τφ [4], and we have been unable to prove that Vφ(τφv)
contains all the admissable test functions. Now it is clear from the proof
of Theorem 4.2 that U(f, g\ f e Vφ(τφ), g eVπ satisfy the Weyl commu-
tation relations.

Note added in proof. H. Araki has given an example of the form U(f, g) = elT(J) UF(f, g]
where T(f) is a linear map into R (the real line) such that U(λf) is not strongly continuous
for some/6Fψ(τ^).

Definition 6.1. Let U(f,g) be a continuous representation of the
Weyl commutation relations over Vφx Vπ. The topologies τφ, τπ induced
on Vφ, Vκ by the representation U(f, g) are the weakest topologies on
Vφ, Vπ such that the maps /-» U(A/), g->V(λg) are strongly continuous
for all real λ.

Lemma 6.2. Let U(f, g) be a representation of the CCRs over Vφ x Vπ,
and let τφ be the induced topology on Vφ. Then (Vφ,τφ] is a topological
group under addition.
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Proof. Follows immediately from Lemma 3.2, Lemma 3.1, and
Definition 6.1. Q.E.D.

Lemma 6.3. Let £/(/, g) be a representation of the CCRs over Vφ x Fπ,
and let Vφ be the completion of Vφ in the induced topology τφ. Iff — lim/α,
feVφ,faeVφthen

λf=\imλfx (6.1)

gives Vφ the structure of a vector space.

Proof. Clearly Vφ is an abelian group under addition. It follows
from definition 6.1 that /α is a Cauchy net if and only if λfΛ is a Cauchy
net for all real λ. It follows immediately from Eq. (6.1) that the axioms
for scalar multiplication are satisfied. Q.E.D.

Theorem 6.4. Let U(f, g) be a representation of the CCRs over
Vφ x Vπ on a Hubert space H, and let Wφ, Wπ be sub spaces of Vφ, Vπ

which are dense in the topologies τφ,τπ induced by the representation
[/(/, g). Let (Wφ, T^), (Wπ, τπ) be the complete topological groups obtained
by completing (Wφ, τφ), (Wπ, τπ). Then the bilinear form </, #> on Wφ x Wπ

can be extended uniquely by continuity to a bilinear form on Wφ x Wπ,
and the representation U(f, g) can be extended uniquely by continuity to
a representation U(f, g) of the Weyl commutation relations over Wφ x Wπ

such that U(f,g) = l/(/, g), /e Vφ, gεVπ (where we identify Vφ, Vπ as
dense sub spaces of Wφ, Wπ). The topologies on Wφ, Wπ induced by the
representation U(f,g) coincide with the topologies ιφ,τκ.

Proof. The proof is virtually identical to the proof of Theorem 4.2
(except that the condition of strong continuity in λ is absent here). Q.E.D.

Lemma 6.5. Let U(f9 g) be a representation of the CCRs over Vφ x Vπ

which is a discrete direct sum of the representations t/z (/, g), i e I. Let
τφ,τ

l

φ and τ π ,τ^ be the topologies on Vφ and Vπ induced by the represen-
tations U(f,g\ Ui(f,g)9 IE I. Then

Proof. We have [/(/, g)=® U{(f, g). Clearly the maps f-* U(λf) are
strongly continuous if and only if the maps f-^U^λf) are strongly
continuous for all z e /. Q.E.D.

For some representations the continuity of f - * U ( λ f ) follows from
the continuity of f-*U(f\ but this is not true in general. In fact it is
not even sufficient to require that f - + U ( λ f ) be continuous for a coun-
table number of λ [4].
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7. Some Examples

The following example is a trivial modification of one given by
Chaiken [6]. Let U(f, g) be a representation of the CCRs over Vφx Vn.
Let )φ, Tπ be linear maps from Vφ, Vπ into .R (the real line). Then

is also a representation of the CCRs over Vφ x Vκ. That U i ( f , g ) satisfies
the Weyl commutation relation follows immediately from the linearity
of 7φ and Γπ, and the fact that [/(/, g) satisfies the Weyl commutation
relation. Since Tφ(sf) = sTφ(f), Tπ(tg) = tTn(g)9 it follows that U^sfitg)
is strongly continuous in the real variables s and ί for all feVφ,ge Vπ.
Now let Wφ, Wπ be proper subspaces of Vφ, Vπ which are dense in the
topologies w(Kφ, Fπ), w(Kπ, Fφ) respectively. The essential point is that
there exist Tφ, Tπ which are zero on Wφ, Wπ but do not vanish identically.
In fact, as the following construction shows, there is a vast number of
such Tφ, Tπ (provided Vφ-Wφ and Vπ-Wπ are not too small). Let
{h$ , α e .4φ}, {/ι£, α e ,4π} be algebraic bases for Wφ, Wπ and extend them
to algebraic bases {/if, α e Aφ',e$,βeBφ}9{tζ,<* e Aπ',e*β9βeBn} for Fφ, Fπ.
Let {Xβ,βeBφ}, {yβ,βEBπ} be arbitrary sets of real numbers (not all
zero). Define

Then [/! (/, #) is a representation of the CCRs which coincides with
U(f, g) for / e %, gf e H/π but not for all / e Vφ, g e V π .

The following theorem is a straightforward generalization of Pro-
positions 5.1 and 5.2 of [6].

Theorem 7.1. Lei (/(/, g) be a representation of the CCRs over Vφ x Vπ.
Let Wφ, Wπ be subspaces of Vφ, Vπ such that {C/(/,gf);/e Wφ,g<Ξ Wu}"
= {[/(/, 0);/e Fφ, ^ E Fπ}". Then U,(f9 g) = X(f, g} U(f, g) is a represen-
tation of the CCRs over Vφ x Vπ such that U^ (/, g) = [/(/, g), fεWφ,gεWπ

if and only if

(i) X(f, g) is unitary,
(ii) X(f,g)=l9feWφ,gεWπ,

(iii) X(sf, tg) is strongly continuous in the real variables s and t for
allfeVφ,geVπ,

(iv) X(f,g)e{U(f,g);feVφ,geV,}',
(v)



Representations of Canonical Commutation Relations 15

Furthermore, U1(f,g) is unίtarίly equivalent to U(f,g) if and only if
X(f,g)=lforallfeVφ.geVπ.

Proof. If X(f, g) satisfies (i) - (v) then X(f, g) U(f, g) is clearly a
representation of the CCRs which coincides with U(f,g) on Wφ x Wπ.
Conversely, assume that Uί(f,g) = X(f,g)U(f,g) is such a represen-
tation. Clearly X(f, g} must satisfy (i)-(iii). We have

If /o G W^, #o e FPς this gives

[/(/o, 00) *(/, 0) f (/, 0) = *(/, fif) ί/(/> 9)

and thus

U(/o, ^o) ̂ (/, sf) = X(f, g} U(f, g) l/(/0, g0)

= X ( f , g ) U ( f Q , g Q ) .

Thus

X(/, 0) 6 {{/(/, 3); /e W;, 0 e W,}' = {l/(/, </); fe Vφ,g e Kπ}'

which proves (iv). The Weyl commutation relation

gives

(v) now follows from (iv) and the Weyl commutation relation for [/(/,
If l/j(/, 3) is unitarily equivalent to U(f,g) we have

for some K It follows that

U ( f , g ) = V U ( f , g ) V - 1 , feWφ, geWπ

and thus

which implies that U^f, g) = U(f, g) for all fe Vφ,g e Kπ. Q.E.D.
If in the above theorem we drop the hypothesis that

then condition (iv) becomes X ( f , g ) e { U ( f , g ) , f e W φ , g e W π } ' , (v) becomes

X(fl,gί)U(fl,gl)X(f2,g2)U(fl,g1Γ
1=X(fl+f2,gl
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and [/] (f, g) unitarily equivalent to [/(/, g) need not imply that X(f,g) = 1.
It should be noted that this hypothesis is implied by but is not equivalent
to the condition that Wφ, Wπ are dense in VΦ9 Vπ in the topologies τφ, τπ

induced by the representation £/(/, g).
In order to illustrate more clearly the pathological behaviour of

representations like the U^f, g) constructed above, let Vφ=Vπ = V where
F is a real Hubert space and let [/(/, g) be the Fock representation
UF(f, g). Let Wφ = Wπ = W be the algebraic span of an orthonormal
basis for V, and consider the irreducible representations of the CCRs
over V given by

where TΦ9 Tπ are linear maps from V into R satisfying Tφ = Tπ — 0 when
restricted to W. Since {UF(f,g)ι f,geW}" = B(H) it follows from
Theorem 6.1 that U(f,g'9 SΦ9 Sπ) is unitarily equivalent to U(f9gι Tφ, Tπ)
if and only if Sφ = Tφ and Sπ=Tπ. If F is countably infinite dimensional
as a Hubert space, then the algebraic dimension of V is c, and there are
cc different linear maps Tφ, Tn which vanish on W. Thus we have cc

many inequivalent irreducible representations of the CCRs over the real
Hubert space V which coincide with the Fock representation when
restricted to the algebraic span W of an orthonormal basis for V (clearly
this statement holds for any subspace W whose algebraic codimension
is c). As a further illustration of the undesirable behaviour of these re-
presentations, we give an alternate proof that U(f,g; TΦ9 Tπ) unitarily
equivalent to UF(f, g) implies that Tφ=Tπ = 0. Since UF(f, g) is strongly
continuous in / and g in the norm topology, we have for all /, g e F,
UF(f9g) = strong lim t/F(/?, 0J where f^g^W and || fΛ- J\\9\\gΛ-g\\-*Q.
But U(f,g; Tφ, Tπ) unitarily equivalent to UF(f,g) implies that U(f,g\
TΦ9 Tπ) = strong lim [7(/β, ga* TΦ9 Tπ). Since U(fa9 g«; TΦ9 Tπ) = UF(fΛ9 ga]
if /α, ga e W9 it follows that U(f9g; TΦ9 Tπ) = UF(f, g) for all f 9 g e V 9 and
thus Tφ = Tπ = 0. It follows from this argument that if we take the re-
presentation U(f9g; Tφ, Tπ), restrict it to W7 and then extend it by con-
tinuity according to Theorem 6.1, we obtain the Fock representation
rather than the original representation [/(/, g\ Tφ, Tπ). Another undesira-
ble property of these representations is the behaviour of the total number
operator which exists for some orthonormal bases but not for others
(see [6] for a detailed discussion of this).

We now construct some more examples.

Lemma 7.2. Let U(f, g) be a representation of the CCRs over Vφ x Fπ.
Let Wφ be a subspace of Vφ. Then there exists a representation U^f.g)
of the CCRs over Vφ x Vπ such that Wφ is closed in the topology τφ in-
duced on Vφ by
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Proof. Let H be the Hubert space on which the representation £/(/, g)
is defined. Let

geVπ.

Let {/zα, α e A} be an algebraic basis for Wφ and extend it to an alge-
braic basis {/ια, aeA h'β, β e B} for Vφ. We extend the definition of
U1(f)toVφby

U1(sh'β)=U(sh'β)®U(sh'β)9 βeB.

If fφ Wφ we have f = f' + f" where /' e W^, f" ε V - Wφ and /" Φ 0.
Then U ί ( f ) = t/(/' + /")® U(f")φB(H)®L Thus /<£ Wφ implies that
[/!(/) can not be the strong limit of a net C/^/J, /α e W^. But if / is in
the closure of Wφ, it follows from the definition of the topology τφ that
there exist faeWφ such that Ul (/) = strong limt/^/J. Thus Wφ is
closed. Q.E.D.

Lemma 7.3. Let U(f, g) be a representation of the CCRs over Vφ x Fπ,
and let Wφ be a proper subspace ofVφ. Then there exists a representation
Uι(f, g) of the CCRs over Vφ x Vn such that

Proof. Repeat the construction in the proof of Lemma 7.2.

Then ^(/JeJ^JΪ)® 1 if and only if /e Wφ. Q.E.D.
The undesirable behaviour of the above examples seems to be

essentially the fact that, given Vφ, Vπ and proper subspaces Wφ, Wπ which
are "sufficiently large" in the sense that some representations of the CCRs
over Vφ x Vπ are determined by continuity by their restriction to Wφ x Wπ

(see Theorem 4.2), there exist representations which are not determined
by their restriction to Wφ x Wπ. Now one might be inclined to consider
a representation of the CCRs pathological if it differed from the Fock
representation but coincided with the Fock representation on some sub-
space W which is dense in Fin the norm topology on V. However consider
the following example. Let V = L2(R*)πl}(R3). Let ί/F(/, g) be the Fock
representation of the CCRs over V on the Hubert space HF. Let

Then the irreducible representation of the CCRs defined by

(7.1)
2 Commun. math Phys , Vol. 17
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describes the ground state of an infinite nonrelativistic free Bose gas at
a finite density [2]. Now, as was pointed out to us by H. Araki, this
representation coincides with the Fock representation when restricted
to the subspace

W={feV:f(0) = 0}

which is obviously dense in V in the norm topology. (Incidentally,
Theorem 7.1 now provides an alternate proof that the parameters α, β
label unitarily inequivalent representations UΛίβ(f,g).)

We now propose a somewhat milder restriction which seems reason-
able from the viewpoint of physical applications. In quantum field theory
one typically constructs a representation of the CCRs over some suitably
restricted space of test functions (e.g. the Schwartz space 3) of C°° func-
tions on Rn with compact support). One can then extend the represen-
tation by continuity to a larger space V of test functions according to
Theorem 6.4. For example, the representation UΛtβ(f, g) given by Eq. (7.1)
can obviously be extended by continuity from ώ to L1(K3)nL2(^3) [2].
We propose

Definition 7.4. Let Cφ, Cπ be classes of subspaces of Vφ, Vn. We
say that a representation U(f, g) of the CCRs over Vφ x Vπ is smooth
relative to the classes Cφ,Cπ if WφeCφ, WπeCπ implies that Wφ, Wπ

are dense in the topologies τφ, τπ induced by the representation £/(/, g).
For physical applications, consider the situation where Q) C V C L2(Rn)

where 3) is the Schwartz space of C°° functions on Rn with compact
support. We would then take Cφ = Cπ to be the set of all subspaces WcV
such that W c\$) is dense in 3) in the Schwartz topology τs on Q). Since
/« -* /(τs), /, fa e 2 implies that />) -> /(O) and || /α - / 1| 2 -> 0 it follows
that the representations UΛβ(f, g) are smooth in this sense.

The following two lemmas are completely trivial, but they illustrate
to what extent the above condition eliminates the pathologies discussed
above.

Lemma 7.5. Let t/i (/,#), U2(f,g) be representations of the CCRs
over V which are smooth relative to the class C, Then Uv(f, g)= U2(f, g),
feWφ,geWπ where WΦ9 WπeC implies that U^f, g) = U 2 ( f , g} for all

Proof. Follows immediately from Theorem 6.4. Q.E.D.

Lemma 7.6. Let U(f, g) be a representation of the CCRs over V
which is smooth relative to the class C. Then Wφ, Wπ E C implies that

{U(f, g), /e Wφ, g e Wπ}" = {U(f, g), fe Vφ, g e Vπ}" .
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Proof. By assumption WΦ9 Wn are dense in VΦ9 Vπ in the topologies
τφ,τ π induced by the representation U(f,g). It then follows from the
definition of τφ,τπ that we have U(/, g) = strong lim(7(/α, #α) where
fΛeWφ9gΛ€WκfoτaΆfeVφ9geVn. Q.E.D.

It is not clear to us whether or not the concept of a smooth represen-
tation will turn out to be useful.

Note added in proof. H. Araki has provided an example of representations I7t(/, g\
i = 1,2 and a subspace W which is dense relative to the induced topologies τ^, but which is
not dense relative to the topology τφ induced by U^(ft g)@ U2(f, g).

8. Representations of Topological Groups

It seems likely that the above discussion of the continuity properties
of the representations of the CCRs is relevant to the representations of
topological groups which are not locally compact. By a continuous
representation of a topological group (G, τ) we mean a representation
of G by operators T(g) in a Hubert space H such that the map g -> T(g)
is strongly continuous. However in general a given representation T(g)
will also be continuous in strictly coarser topologies for G. One could
define the topology τ r induced on G by the representation T(g) to be
the weakest topology such that the map g -* T(g) is continuous. Whether
or not (G, τr) is the desired topological group depends on the situation
(this definition is not suitable for the CCRs). In Section 7 we constructed
some representations of the CCRs which exhibited "undesirable" con-
tinuity properties. Similarly if G is a topological group which is not locally
compact (e.g. an infinite dimensional Lie group) then in general there
will exist representations of G which are not determined by continuity
by their restriction to a subgroup G0 which is "sufficiently large" in the
sense that some representations of G are determined by their restriction
to G0. By analogy with Definition 7.4 one could define a representation
of G to be smooth relative to the class C of subgroups of G if the represen-
tation is determined by its restriction to every G0 e C.
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