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Abstract. In this paper we prove the existence of translation invariant ground states in
an infinite classical lattice system with hard core and give a characterization of their
support. Some examples are discussed.

1. Introduction

In the last years a great deal of effort has been spent on the investiga-
tion of equilibrium states of infinite systems in statistical mechanics,
classical and quantum lattice systems, and continuous systems of
particles with hard cores have been considered; their equilibrium states
at temperature TΦO have been investigated1. In a recent paper [2]
Ruelle has started the investigation of the zero temperature states, i.e.
the ground states, of the same systems. In this paper we shall study the
zero temperature case in a classical lattice system with hard core.

2. Definition of a Classical Lattice System with Hard Core

Consider the lattice Zv, v being a natural number and Έ denoting the
set of all integers. Usually the configuration space for a classical lattice
system is taken to be K = {0,1}ZV which is compact, if we equip {0,1}
with the discrete topology (Tychonov's theorem). Each XeK may be
interpreted as the characteristic function of a unique set X Q Έv. Con-
versely each X QΈ defines a unique XeK, its characteristic function.
Henceforth we will therefore identify the elements of K with the subsets
of Έ. If x e X, we will say that the site x is occupied in the configuration X.
In a natural way Zv acts as a transformation group T on K:

X QΈ\ aeΈv.
1 For an account of this, see Ruelle [1] and the literature quoted therein.
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Now the Banachspace $ of interactions is defined to consist of all real
functions Φ on the finite subsets of Έv such that Φ(0) = 0 and

= Φ{X) for all aeΈv and all X ς Έv (X finite). (2.1)

Σ (2.2)

Given Φ, we associate to each finite XeK the interaction energy

UΦ(X):= Σ W (2-3)

Due to (2.1) we have ' "

Uφ(X + a)=Uφ(X) for all α e Z \ (2.4)

Let N(X) denote the number of points in X Then

\UΦ(X)\SN(X)\\Φ\\. (2.5)
The linear subspace

J>0: = {Φem13X(Φ)finite, Φ(7) = 0 for OeFgX(Φ)}

of J* is called the space of finite range interactions. If 0 Φ Φo e έ%0 we
define its range to be

Ao= U x-
X:Φo(X)ΦOJsO

Obviously J o is finite and OieA0 = —A0 ([1], Page 16). From now on
Φo will be arbitrary but fixed. We shall give a definition of a hard core
determined by Φo. This will amount to a specification of configurations
which are allowed in the theory:

Definition2.1. A configuration XeK is called allowed, if Φo(Y) = 0
for all finite YQX.

Note that X is not supposed to be finite. Also the empty set is an
allowed configuration. Denote by Xo the set of all allowed configurations.
Due to (2.1) and the definition we have the implications

for all aeΈ\ (2.6)

(2.7)

Furthermore we have the

Proposition 2.2. The set Ko of all allowed configurations is compact.

Proof. Since K is metrizable and compact, it is sufficient to prove
sequential closedness. Now by definition XZ->X for /->oo if and only
if to each finite A Q Έv there exists l(A) such that

for / §
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Suppose in particular that Xx e Ko for all /. We have to show that X eK0.
Let Y Q X be finite. Then we have

Xι2XιnY=YnX=Y for l^l(Y)

and hence Φ0(Y) = 0, because Xt e Ko.
Since YQX was arbitrary we have XeKo, q.e.d.
The following remark will become important in the sequel: Let A and

A be disjoint sets {An A) = θ) and let Xl9 X2 e Ko, Xx QA, X2Q A be
given. Then in general X1κjX2φ Ko but we have

X1v(Λ'+nX2)eK0[ ΎCΛΎCΛ>Λ^Λ< a n z\
<Λ+ v\ v v ί l f Xι,X2eK0,XίQA,X2QA,AnA = θ . (2.8)
(/I Π Λ J U G Λ J

Here the map A-^A+ is defined as follows

A+ := {xeA\(Ao-\-a)nAή=0 and (A0 + a)%A=>x$(A0 + a)}.

Also we set

A~ \— {xeΛ\3a,xe{Δo + a)%A}
so that

Λ~ =Λ\Λ+ .

Roughly speaking A+ consists of all points in A which have at least the
distance Δo from the boundary of A It is easy to prove that (2.8) holds.

3. Infinite Volume Limit of the Ground State Energy

The local minimum energy density for a given interaction Φ is
obviously given by

E(Φ,Λ):= inf ^
X'.XQΛ N(A)

for finite A> therefore °

)^0. (3.1)

E(Φ, A) + E(^, A) ^ E(Φ +Ψ,A). (3.2)

E(Φ,A + a) = E(Φ,A); aeΈv. (3.3)

If we combine (3.1) and (3.2) we get

\E(Φ9Λ)-E(Ψ9Λ)\£\\Φ-Ψ\\. (3.4)

We want to prove the existence of the thermodynamic limit of E(Φ, A)
if A tends to infinity in the sense of van Hove 2.

2 We say that a sequence {Λ} tends to infinity in the sense of van Hove (and we write
A ->oo) if for every finite X QΈV N({x | x + XQ A}) Λ Γ 1 ^ ) tends to 1.
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Let Φ be in ^ 0 having range A and let An A = θ. Then we have

\N{AKJΛ') E(Φ, AKJA')- N(A) £(Φ, A) - N(Af) E{Φ, A')\

VII

+

inf UΦ{X1
Xι QA,X2QA'

X\ Q A, X2 Q A'
Xί U X2 6 Ko

inf f{Uφ(X,
X\ Q A, X2 £ A'

X1uX2<=Ko

uX2)- inf {UΦ(X
XiζA;X2gA'

XίQ A,X2ζA'
Xi u X2 e Ko

L) + UΦ{X2)} - inf
Xι QA,X2Q A'

Xi, X2 € Ko

\)+Uφ(X2)}

{U9(X1)+U9{X2)}

The first term may obviously be estimated by ([1], Prop. 2.3.1):

sup \UΦ{X1 u X2) - UΦ{XX) - UΦ(X2)\
X1QA,X2QA'

^ sup N(Xl9 X2) \\Φ\\ ^ N(A A') \\Φ\\.
X1gA,X2QA'

Here N(X9 X') is defined to be the number of points aeΈv such that

Xn(Λ + a)φθ + X'n(zl 4- α).

N(X9 X') is obviously symmetric and monotone in both variables.
We turn to the estimate of the second term.

Due to (2.7) we have

inf {UΦ{XX) + UΦ(X2)} <t inf {U^XJ + UΦ(X2)}.
XχQΛ,X2QA XiζA,X2QA
XiuX2eK0 XuX2eK0

Now choose Xl9X2(Xl9X2 eKo,Xγ QA,X2QAf) such that

inf {UΦ{X1)+UΦ{X2)} =
Λi Q A,X2 S A

X\, X2 ε Ko

We have according to (2.8)

and hence

inf Wφ{Xύ+υφ(X2)}- inf {U^
QAX2&A XχQAX2hA

X\ u X2 e -Ko 1 > X~2 ε

^ \VΦ{XX\Λ+) \Λ+, X,nΛ+) \\Φ\\

Analogously we get the estimate

Put

(3.5)
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We have therefore proved the

Proposition 3.1. Let Φ have finite range (Φ e J*o) and let N(Λ, Ά) be
defined by (3.5) with ΛnΛf = <d. Then

E{Φ, ΛuΛ')- N(Λ) E(Φ, A) - N(Λ') E(Φ, Λ')\

Since N(A, A') has properties similar to N(A,A')3, this gives, using
standard arguments ([1], Theorem 2.4.1)

Theorem 3.2. If ΦG&9 the following limit exists

E{Φ) = lim E(Φ, A)
Λ-+ oo

for any sequence {A} which goes to infinity in the sense of van Hove.
Furthermore

(α) - | |Φ| |gJ5(Φ)gO; E(λΦ) = λE(Φ);

(β) \E(Φ)-E(Ψ)\^\\Φ-Ψ\l
(γ) The function E( ) is concave on @: E(Φ) + E{Ψ) ̂  E(Φ -f Ψ) ̂  0.

4. Ground States

Let ^(Ko) be the Banach space of continuous functions on Ko. A
probability measure ρ on Ko is defined to be a linear form on
such that

ρ ( / ) ^ 0 for f^0;

ρ(t) = 1.

Such a linear form is automatically continuous. For fe^(K0) set
fa(X)=f(X-a)(aeΈv) so that faeV(K0). Furthermore define the
translate ρa of ρ by ρa{f) = ρ(/α). Evidently ρa is a probability measure
if ρ is.

Definition 4.1. Given Φ e J , a probability measure ρ on Ko is defined
to be a ground state, if for all sequences {A} which tend to infinity in the
sense of van Hove

ρ(Uφ>Λ+a} = E(Φ) (4.1)

where UΦM(X) = Uφ(XnΛ\Λ finite.
3 Note that lim
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Notice that UΦtAe<g(K0).

Obviously ρa(a e Έv) is a ground state if ρ is one. More generally the
convex hull K(ρ) of the translates of a ground state ρ consists of ground
states. Finally we have the

Lemma 4.2. The weakly closed convex hull K(ρ) of the translates of a
ground state ρ consists of ground states.

Proof. Let ρeK(ρ). Since

E(Φ, A) = E(Φ, Λ + a)^ - ~ - Uφ>Λ+a(X) (4.2)

for all X eK0 and all aeΈv and since ρ is a probability measure we have

± (4.3)

Therefore due to Theorem 3.2 we only have to show the following: Given
ε > 0 then for all sufficiently large A (i.e. for Λ->oo) and all aeΈv

(4.4)
N(Λ)

We know indeed that for all sufficiently large A and all a e Έ" we have

Therefore if ρ' = £ λt ρb. e K(ρ) we have
ί

*i ΛΎSΛ\

This yields (4.4) when ρ' -»ρ weakly and Lemma 4.2 is proved.
Obviously the set K(ρ) is invariant under translations, so once the

existence of a ground state is established, Lemma 4.2 and a standard
fixed point theorem (see e.g. [3], Page 645) show the existence of a
translation invariant ground state.

We turn to the existence proof of a ground state and a characterization
of translation invariant ground states. We will find that configurations
belonging to the support of a translation invariant ground state are
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contained in a set which may be obtained from a local variational
principle applied to a certain interaction energy density. More precisely
define for finite A Q Έv and X e Ko

GA(X):= Σ ΦO0> ( 4 5 )
Y : Y Q X
YnΛ*Q

HΛ(X):=r, jrή GΛ(X')= ψ GΛ{Yκj{X\Λ)). (4.6)
X : X \Λ = X\Λ Y:YQΛ

Yu(X\Λ)eK0

FΛ(X)-=GΛ(X)-HΛ(X)^0, (4.7)

&Λ:={XeK0\FΛ{X) = 0}. (4-8)

We may write

GΛ(X)= Σ nffl (4-9)
y: y ς z v

where

Ψγ[X)-\0 if FJX.

Since Ψy e^(K0) and the r.h.s. of (4.9) is uniformly convergent (by (2.1)
and (2.2)), we have GΛ e ^(Ko). Indeed, if we write the norm on ̂ {Ko) as

HI/HI = sup \f(X)\
XeKo

we have

IIIGJI^ Σ i r a ^ Σ
v

g,N(Λ)\\Φ\\<ao.

Also HΛe^(K0). This is a consequence of the following remarks: If
X->X0 then Yv{X\Λ)-*Yv{X0\Λ) for all YQΛ and if X is so close
to Xo that

then the conditions

Γu (X\Λ) e Ko and 7 u (Xo \Λ) e Ko

are equivalent if 7 g A HΛ(X) is therefore continuous at Xo as the lower
envelope of a finite family of continuous functions at Xo.

Thus also FΛ = GΛ-HΛe^{Ko) and J ^ is a closed and hence
compact set.
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Obviously J ^ is not empty:

LetXQΛ,Xe Ko be such th

Remark now that iϊΛ'2Λ and X'\A = X\Λ

LetXQΛ,Xe Ko be such that E(Φ, A) = — ί — UΦ(X\then Xe&A.
N(Λ)

Σ W - Σ φ(Y)

Σ *(Y)- Σ
Y: YQX,YnΛ*<d Y: Yg X',YnΛ * θ

Since X V = X\Λ implies J f V = X\Λ' we immediately get

FAX)*FΛ(X)*0
and hence

^Λ>Q^Λ for Λ ' 2 Λ . (4.10)
This proves

Lemma 4.3. Let ^A be defined by (4.8). Then {^Lfmitegzv is α
decreasίngly filtered system of nonempty compact sets.

Theorem 4.4. The set@r= f] 3FA is nonempty and compact. J^ is
A finite g Έv

translation invariant.

Proof The first part of the theorem is a consequence of Lemma 4.3
and a general theorem in topology (see e.g. [4]). The second part is a
consequence of the following equalities

HΛ(X) = HΛ+a(X + a) for all

since Φ(X + a) = Φ(X). This gives

FΛ + a^&Λ + a
and therefore

^ = Π ^ i = Π ^ i + α = Π PΛ+a
ylfinitegZv ylfinitegZv * ylfinitegZv

q.e.d.

Definition 4.5. A probability measure with support in 2F is called a
strict ground state.

The following theorem shows that this definition is meaningful.

Theorem 4.6. Every strict ground state is a ground state.

Before we turn to the proof of this theorem let us first remark that

Uφ(XnA) = GA(XnA), XeK0.
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Therefore due to the continuity of GΛ we expect the following chain of
approximate equalities for Xe !F:

N(A)
Uφ(XnA) = 1

N(A)

1
N(A)

GΛ{XCΛΛ)',
1

N(Λ)
GΛ(X)

N(Λ)
HΛ(XnΛ) = E(Φ,Λ)

which should hold for large A.
The following lemma will therefore be useful:

Lemma 4.7. Given ε > 0 for all sufficiently large A

N(A)
HΛ(X)-E(Φ,A)

uniformly for all X e Ko.

Proof of Lemma 4.7. Choose A such that

Σ \*(W)\<ηr
W .WsO δ

w%λ

Also for arbitrary finite sets /ί, A' define the following sets

Λ-(Λ'):={xeΛ\3aeΈ\xe(Λ'

Λ+{Λ'):=Λ\Λ-(Λf).Note that we have

Λ+=Λ+(A0\ Λ~=Λ-(A0).

Λ+ and Λ~ where defined in Section 2.
Now

\GΛ(X)-Uφ(XnΛ)\ =
Y-.YnΛΦQ, YQX

Φ(Y)

(4.11)

(4.12)

ύ Σ Σ \φ(γ)\+ Σ Σ \φ(Y)\
xeΛ-(Λ)Y:Yex xeΛ+ (Λ) Y : Ys x

Λ

The first term may be estimated by

N(Λ-(Λ))\\Φ\\
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and if A is sufficiently large we have

In the second term by definition Y is not contained in any translate of A.

Therefore the second term may be estimated by N(A+(A))— which is
8

smaller than N(A)-^-. Combining all estimates, (4.11) is proved.
8

To prove (4.12), suppose first

then due to the definitions and (4.11)

E(Φ,Λ)~
1

N(Λ)
HΛ(X) ^ sup

1

N(Λ)

for all sufficiently large Λ.
Next suppose

E(Φ, Λ) ^

Choose YQΛ, YeK0 such that

N(Λ)
HΛ(X).

N(Λ)
UΦ(Y) = E(Φ, Λ). Since

N(Λ)
\Uφ(Y)-Uφ(YnΛ+)\ =

N(Λ)

^ WΛ-)
N(Λ)

for all sufficiently large Λ, (4.11) and (4.13) give

V-.VQY
VnΛ-φβ (4.13)

E{Φ,Λ)S
N(Λ)

HΛ{X)ύ
N(Λ)

proving (4.12) and hence Lemma 4.7.
Proof of Theorem4.6.lϊXe^ we have GΛ{X) = HΛ(X) for all A and
hence combination of (4.11) and (4.12) gives

1

N(A)
Uφ,Λ+a(X)-E(Φ,A)

3_
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for all sufficiently large A uniformly for all I e « f and aeTLV. Here we
used the translation invariance of SF. Choosing A so large that

yields

N(Λ)
Uφ>Λ+a(X)-E(Φ) : 8.

If ρ has support in J^ this gives in particular

for all sufficiently large A uniformly for all a e Z\ i.e. ρ is a ground state
and Theorem 4.6 is proved.

Conversely we have

Theorem 4.8. Every translation invariant ground state is a strict ground
state.

Proof. First we assume Φ to have finite range A in order to make the
essential argument more transparent. The extension of the proof to the
general case is easy.

Define for any natural number n

An={xeΈv\-n<xi^n;i = l ... v}

= 0 for all neΈ+}

so that

Since

we have

n,me Έ+

Now assume that the translation invariant ground state ρ is not a strict
ground state.

Then ρ(K0\^) > 0 and there exist p and q such that

£ = {xeK0\FΛp(X) ^ H.

Roughly speaking our aim is to change sufficiently many Xesuppρ in
such a way that we obtain configurations X' which have a strictly lower
energy density. Now choose reΈ+ so large that
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and let Tr be the following subgroup of the translation group

Tr={T(a)eT\a = 2r τ, τeΈv}.

Put

Λr{a) = Άa)Λr =Λr + a; T(a) e Tr,

Λp(a) = T(a)Λp = Λp + a; T(a) e Tr.

Then Λp(a) Q Λr(a) and {Λr(a)}T(a)eTr is a covering of Έ by disjoint
subsets.
Let χg be the characteristic function of & and set

i-a)X); T{a)eTr.

Consider χgta(X) for fixed XeKoasa function of a. Assume cij (/ = 1 ... t)
are such that Xs,aj(

χ) = l Then by definition of δ there exist

YiQAp{aj)QA,(aj)

such that Y£v(X\Λp(aj))eK0 and

GΛpiaj)(X)^ — + GΛi

In particular

G (X) > —

Moreover if we put

Λp({a})=(jΛp(aj); Λr({a}) =

ϊi({fl})= U Y

it is easy to see that

and that

GΛrm)(X) ^ i -

More generally set ^

such that

r

w) = N(Λr) N(Λn) = (2rγ N(Λn).
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Then for all XeK0

1

259

(4.14)
HΛP(X).

Now due to (4.11) we have

1

for all sufficiently large n. Since ρ is a ground state we therefore have

1

Also (4.12) implies

1

-ρ(GΛp)-E(Φ,Λΐ)

ρ(HΛίi)-E(Φ,Λΐ)

= 2 '

<
= 2

If we combine (4.14), (4.15) and (4.16) we get

0 g ρ ( Z

for n ̂  n(ε). We have put

(4.15)

(4.16)

(4.17)

Now we use the translation invariance of ρ which gives

This, however, contradicts (4.17) if we choose ε<α(2r)~ v q'1 and
Theorem 4.8 is proved, if Φ e &0. Now let Φ e $ be arbitrary.

With the notations as above choose r so large that
(i) Λr2Λp + A0,

(ϋ) Σ \$(n<c,

where c>0 will be fixed in a moment. Since Φe J*, it is always possible
to satisfy these conditions. Repeating the above arguments it is easy to
see that (4.14) is replaced by

{7 " 4 c ) .H χ

(4.140
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Taking c = (8q)~1, we obtain (4.14) with q replaced by qf = 2q. Thus the
arguments proceed as before.

Corollary 4.9. The translation invariant ground states form a weakly
closed convex set.

5. Examples

In this section we want to discuss some examples which may be of
interest. By definition Ko depends on the hard core potential Φ o and &*
depends in addition on Φ. We have 2F Q Ko Q K. Ko = K if Φo = 0,
J* = Ko if Φ = 0. Let us denote by 0 the set of all invariant ground
states. <8 is a weakly closed, nonempty convex set. We will be concerned
with the following points:

α) The number of elements in J*
β) The number of linearly independent elements in <3.
γ) Existence of elements in ^ with nontrivial mean entropy.
The mean entropy of a translation invariant probability measure ρ

is defined to be

x ς Λ

where {^( )}yifiniteszv *s ^ e system of density distributions associated
with ρ (see e.g. [1], Page 169). We always have 0 ^ s(ρ) ^ Iog2.

Now quite generally we may say the following. If X e ^ and X φ θ,
Xή=Έv then #" consists of at least two elements, for if x e X, y φ X then
X^X'^X + y-xe^. The simplest case is of course Φ = Φo = 0
such that 3F = Ko = K. Clearly the number of linearly independent
elements in ^ is infinite. Also there exist invariant ground states with
nonzero mean entropy. Indeed

defines a system of density distributions such that the corresponding
ρ (1) G <S satisfies s(ρ(1)) = l o g ! If we put ρ ( 0 )(/) = /(Z v), then ρ ( 0 ) is also
in 0 and s(ρ(0)) = 0. Since s{ ) is affine on ^ ([1], Page 183), the linear
combination

has mean entropy s(ρ(α)) = αlog2, i.e. s(-) maps ^ onto the interval
[0, Iog2]. Let us turn to more complicated examples. If Φ0({x})
= λ + 0(x e Έv), then clearly Ko consists only of the empty set, so we will
assume λ = 0 henceforth. Also we will assume Φ{X) = 0 if N(X) ^ 2. Set
Φ({*}) = μ (= chemical potential). If μ > 0 then & consists only of the
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empty set. If μ = 0, then 3F = Ko as remarked above. In case μ < 0 the
problem of finding $F will be called the problem of close packing. Now
take

if X = {x, y}, x,y nearest neighbours .

else

Put

Σ Xi evenL
i = ί J

Σ*i o d d l>
so that

or X Q Xo} ,

For μ < 0 clearly ^ consists of only one element

i.e.

This is the ground state of the classical antiferromagnet and s(ρ(2)) = 0.
ρ ( 2 ) also gives an example of spontaneous breakdown of symmetry4: If
we consider the subgroup Te of T consisting of all even translations

= \T(a)eT a{ even

then ρ ( 2 ) decomposes into two extremal Te-invariant probability
measures, whereas ρ ( 2 ) itself is an extremal T-invariant probability
measure. If μ = 0 define ρ ( 3 ) by

N(XenΛ) 1 iC v r . .

N(Λ)

N(XonΛ)

0 else

such that suppρ ( 3 ) C^(μ = 0) and s(ρ(3)) = ̂ Iog2. Again it is easy to see
that &(μ = 0) is mapped onto [0, £log2] by s{ ).

4 For an account of this cf. again Ruelle [1] and the literature quoted therein.
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More generally let
if χ=^ -iixi-yii=ί

θ else

(1 ^ τ ^ v, τ fixed).
For τ = v we have the example just discussed, so we will assume τ < v.

Then

and

so configurations belonging to J Γ ( μ < 0 ) show antiferromagnetic be-
haviour in direction of the first τ axes, whereas we have statistical be-
haviour in the remaining v — τ directions. Therefore s(ρ) = 0 for all
ρ e y{μ < 0). Indeed it is easy to see that for any ρ e @(μ < 0)

since we have randomness only in v — τ directions. Also

for arbitrary
t

at ^ 0 with Σ Oi = 1,

so we get

ί = l

Letting n tend to infinity proves the statement.
As a last example we will show that there exists a nontrivial hard core

potential such that the corresponding problem of close packing gives
invariant ground states with nonzero mean entropy. Indeed such an
example is provided by the dimer problem: To fill a checker-board
completely with dominos. This problem has been solved exactly [5]. Since
the nonoverlap of the dominos becomes a hard-core condition, it is
tempting to look whether this problem falls into the the general category
of problems that have been considered here. With a slight modification
this is indeed possible. We have to find a hard-core potential Φo which
imitates the hard-core condition of the dimer problem. Of course we
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have v = 2. Φo is a combination of a two-body potential and a four-
body potential:

I 2 4

10 else. 2 ί=1J>k=1

Then J ^ μ < 0) contains a translation invariant set ̂ ( μ < 0) where each
configuration is a union of bits containing three sites linearly ordered.
Locally each X e β(μ < 0) is of the form

X

X

X

X

X

X

Jin

X

X X

X X

X

X

X

ce by

X X

x
X

. X |

X X

X X

definition

x •

x .
x .

x >

x

x

x .
x
x

x
X

X X

combinations

x .
X •

X

X

X

X

X

X

X

such as

X X

shape of a domino
( x denotes an occupied site)

e.g.

X

are not permitted for X e # ( μ < 0 ) , it is easy to see that # ( μ < 0 ) is
properly contained in J Γ (μ<0). Apart from the translation group,
which is larger in this formulation, # ( μ < 0) just gives all solutions of
the problem of close packing for the infinite dimer problem. Put

NΛ = number of X Q Λ, such that X=YnΛ for some Ye # ( μ < 0).

Now for a rectangular n xm checker-board the number of ways of

filling it with —n-m dimers is asymptotically equal to α^mn, with

9 C
α = exp = 1.791... (G = 0.915... = Catalans number). Therefore it

π
is easy to see that for large

N(Λ)

NΛ~a 9

if X=YnΛ for some Ye&(μ<0)
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2
we get s(ρ(4)) = —— G. Again it is easy to see that s( ) maps the set of

all invariant probability measures with support in # ( μ < 0 ) onto the
2

interval 0,
9π
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