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Abstract. For a v-dimensional system of particles with the two-body potential
q(r) + γvK(γr) and density ρ, it is proved under fairly weak conditions on q and K that the
canonical pressure π(ρ, γ) and chemical potential μ(ρ, γ) tend to definite limits when y->0.
The limiting functions are absolutely continuous and are given in terms of the derivative
of the limiting free energy density α(ρ, 0 + ) = limα(ρ, γ) which was found in Part I.

y^O

I. Introduction

In Part I of these papers [1] we considered the free energy density
α(ρ, γ) of a v-dimensional system of particles with the two-body potential

(1.1)

and density ρ. (We assume there is no external field in the present paper).
Under fairly weak conditions on q and K we proved that the van der Waals
limit a(ρ, 0 + ) = limα(ρ, γ) exists and is given by a variational formula.

y->0

In the present paper we consider the canonical chemical potential

Mρ'7)Ξ~|rfl(ρ'7) (L2)

and the canonical pressure
o \

ρ - - l α f o y ) (1.3)

for the same system. The existence of these functions was proved by
Dobrushin and Minlos [2] (see also [3]). We prove that their van der
Waals limits

μ(ρ,0 + )=limμ(ρ,y), (1.4)
y-»0

π(ρ,0 + )=limπ(ρ,y) (1.5)



232 D. J. Gates and O. Penrose:

exist, are absolutely continuous functions of ρ (and hence differentiable
almost everywhere [4]j, and are given by

(1.6)

(1.7)

The results (1.6 and 7) mean that the limit y->0 and the derivative
d/d ρ of α(ρ, y) can be interchanged, and that μ(ρ, 0 + ) can be calculated
in principle from the variational formula for α(ρ, 0 + ) given in Parti.

Our method consists of proving firstly that α(ρ, 0 + ) is differentiable.
To prove this we note that α(ρ, 0 + ) is convex, as shown in Part I, and
hence its left and right hand derivatives, denoted by 3_α(ρ, 0 + ) and
δ+α(ρ, 0 + ) respectively, exist and satisfy [4]

δ_α(ρ, 0 + ) ̂  d+a(ρ, 0 + ). (1.8)

In Section III we complete the proof by showing that d+a(ρ, 0 + )
^<3_α(ρ, 0 + ), using an inequality obtained in Section II. Secondly, we
prove in Section IV that (1.6 and 7) hold.

The conditions to be satisfied by q and K are, as in Part I,

(1.9)

(1.10)

q(r)= oo for \r\ < r0 (hard core condition),

for |r| ̂  r
0 ,

q is measurable,

\K(s)\ < k(\s\) < K for all 5, where k(t) is a positive
non-increasing function such that J ds k(\s\) < oo, and
K is Riemann integrable on any bounded region of
v-dimensional space.

Here A, K, r0 and ε are positive constants.

II. Inequality for a(ρ, y)

To obtain a suitable inequality for α(ρ, y) we use the result (3.23) of
Dobrushin and Minlos [2]. Let Z(N, Ω, y) be the partition function (for
details see [1]) for N particles in a cube Ω with the two-body potential
(1.1), and let N^ and AΓ2 be positive integers that do not exceed the
maximum value of N for which Z(N9 Ω, y) is defined. Then, with a slight
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modification \ their result states that for JVi < N2

where

(2.2)

with q+(r) = max(g(r), 0) and K+(s) = max(K(s), 0). The dependence of
Z on Ω and y, and of C on y in (2.1) is omitted from the notation. Here
A is the thermal wavelength [1], while — 2Φ' and —2 ίP' are lower bounds
on the contributions to the potential energy, due to q(r) and yvK(yr)
respectively, of a single particle interacting with any number of other
particles. The existence of these lower bounds is a consequence of the
conditions (1.9 to 11) (compare [5]).

From (2.1) we shall deduce the new inequality

\ι/(N2-N) (2 3)

for N! < N < N2. To prove this we firstly use (2.1), with N' replacing
and N replacing N2, to obtain

Z(N1) N^N\ +

~ N,l^ί+lw(z(NN-l) + C')-C] ^

< [JL / z(jv) + C') - cf ~Nl

This gives

(2.5)

Secondly, we use (2.1) again to obtain for N <N' ̂

Z(N') N I Z(N)

N2 \Z(N-ΐ) (2 6)

Suppose, for a given N, that JV2 is so small that the right side of (2.6) is
non-negative. We then have, as in (2.4),

Z(N2) ?i Z(N') \ N I Z(N) \ l*-w

 m ^' +c')-c'\ (2.7)
Z(N'-l)=[N2\Z(N-ί)

1 Replace |v?jy-ι - ΨN\ ^y maxίφ^-i - φN, 0) in Eq. (3.16) of Dobrushin and Minlos.
See also [3].
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which gives

/ 7ΎΛΠ \ U 7(N \\1/(N2-W (2 8)

On the other hand, if N2 is such that the right side of (2.6) is negative
then (2.8) still holds because [_Z(N2)/Z(N)~\1/(N2~N) is positive. Combining
(2.5) and (2.8) gives the desired inequality (2.3).

To obtain an inequality for the free energy density

a(Q9 y) = - lim -i- logZ(ρ|Ω|, Ω, y) (2.9)
|Ω|^OO p\U\

where \Ω\ is the volume of Ω, we divide both sides of (2.3) by \Ω\ and take
the thermodynamic limit |Ω|-»oo, with ΛΓ/|Ω|-»ρ and N^Ωl-^ρ^ This
immediately gives

10)•

for all y and all ρ, ρx and ρ2 that satisfy 0 ̂  ρ1 < ρ < ρ2 < ρc, where ρc is
the maximum density permitted by q.

Before proceeding with the main part of the proof, we note that since
α(ρ, y) is convex [3] in ρ, it satisfies an inequality like (1.8). Also, taking
the limits ρ^ρ and ρ2-»ρ of (2.10) gives δ_α(ρ, y)^ 3+α(ρ, 7), which
proves that α(ρ, y) is differentiable. The same result was obtained in [2]
by a slightly different method.

III. Differentiability of a (ρ, 0+ )

In this section we prove that α(ρ, 0 + ) is differentiable by considering
the limit y -»0 of (2.10). We note that (2.10) still holds if C is replaced by
an upper bound, C say, on C. To find a suitable upper bound we note
that q+ ^ 0, K+ ^ 0 and 1 — e~x ̂  x for all x, which gives

1 _ e-β(q++yvκ+) = (i _ e-
β*+) + e~βq+ (1 - e~βγVK+)

It follows that

(3.2)
where

B = Jdr(l-exp[-/?g+(r)]) (3.3)
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and
(s). (3.4)

Also, let us choose

y'(y)=-l inf ΣfK(yra) (3.5)

the infimum being over rα's that are subject to |rα — rb\ ^ r0 for all α.Φ 6,
where r0 is the hard core diameter of q. To obtain an upper bound on
Ψ' we consider, as in Part I, an infinite lattice of identical cubes ω1? ω2, . . .
of volume ω filling v-dimensional space. Putting

Kt = m f K _ ( γ r ) (3.6)
recoi

where K_(s) = min(K(s), 0), we obtain

(3.7)

where Nt is the number of particles whose centres are contained in ωt for
a given (rί9r29 •••)• As shown in [6], Nt cannot exceed ρc(α>1/v

Hence, from (3.5) and (3.7), we have for all y and ω

TO ^ Ψ(7, ω) = - - ρc(l + 2r0ω-1/T Σ (7vω)X, - (3.8)
z i=ι

Together with (3.2) and (2.2) this gives for all y and ω

C(y) g C(y, ω) = /L-v(β + jSα+)e2/?[φ'+lp(y'ω)] . (3.9)

Now consider the limit operations y->0 followed by ω->oo applied to
C(γ, ω). The conditions (1.11) imply [7] that

lim lim Ψ(γ, ω) = - -ί QCK- (3.10)
ω->oo y->0 2

where
α _ = J d s K _ ( * ) (3.11)

This, together with (3.9) implies that

ΞΞ lim limC(γ,ω) = Λ-v(B + βot+)eβ(2φ'-βc«-). (3.12)

The expression on the right side simplifies in an obvious way if K is
either non-positive or non-negative.

Since the limit (3.12) exists, we can replace C'(y) by C(y, ω) in (2.10),
and take the limits y-»0 followed by ω->oo in the resulting inequality.
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This yields 2

< , , , „ , . , (βa(Q,0 + )-βa(ρ2,0 + r1 (3Λ3)

= ρ2 C(U + ) + exp
\ Q2-Q

for all ρ, ρt and ρ2 Λat satisfy Q^ρί<ρ<ρ2<ρc.
Finally, taking the limits Qι~->ρ and ρ2-»ρ gives

(3.14)

which together with (1.8) implies that α(ρ, 0 + ) is differentiable.

IV. Existence and Continuity of μ(ρ, 0+) and π(ρ, 0+)

The existence of μ(ρ, 0 + ) and the statement (1.6) follow from the
differentiability of α(ρ, 0 + ) and the inequality

3_α(ρ, 0 + ) ̂  liminfμ(ρ, γ) ̂  limsupμ(ρ, γ) ̂  3+α(ρ, 0+) (4.1)
y->0 y-^0

which in turn follows from the convexity of α(ρ, y), (see Eq. (6.5) of Ref. [7]).
The existence of π(ρ, 0 + ), and also the statement (1.7), follow from (1.3),
(1.5), and (1.6).

The prove the absolute continuity of μ(ρ, 0 + ) and π(ρ, 0 + ) we use
the Lipschitz condition

0 ̂  π(ρ2, γ) - π(ρl5 γ) ̂  (ρ2 - ρj Γ1 [1 + C(y)ef^^ (4.2)

for all γ and all ρ1? ρ2 and ρ that satisfy 0 ̂  ρx < ρ < ρ2 < ρc. The first
inequality in (4.2) states that π(ρ, y) is non-decreasing [3] in ρ, while the
second inequality is due to Penrose [3] and can be deduced from (2.1).
Again we can replace C'(γ) by C(y, ω) in (4.2) and take the limits γ ->0 and
ω-xx). This gives a Lipschitz condition on π(ρ, 0 + ) which proves [4]
that it, and hence μ(ρ, 0-f), are absolutely continuous.

As a corollary, we note that when dπ(ρ, 0 + )/<3ρ exists it satisfies

0 ̂  -j- π(ρ, 0 + ) ̂  β'1 [1 + C(0 + )β^(ρ'0+)] (4.3)
dρ

where C(0 + ) is given by (3.12). This derivative does not always exist: for
example, it has discontinuities in the special case K ^ 0 considered by
Lebowitz and Penrose [7, 1].

Using the methods of Dobrushin and Minlos [2], it may be possible
to extend our results to cover the case where q does not have a hard

2 We have tried, without success, to deduce (3.13) directly from the variational formula
for a(ρ, 0+) given in Part I.
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core, provided that the existence of α(ρ, 0 +) can also be proved in this
case.

Our results can be extended to include an external potential ψ(yx)9

as in [1], where ψ(y) is periodic, Riemann integrable, and satisfies
\ιp(y)\ <ϊβ,a constant, for all y. To do this we need only replace C every-
where by C'eP*.
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