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Abstract. The non-linear realizations of compact connected Lie groups are considered
mainly from the point of view of algebraic topology. In particular, all homogeneous spaces
of the group S (7(2) are listed, the construction of a few non-linear realizations of S 17(2)
is given and the orbit structure of linear and non-linear realizations are discussed.

I. Introduction

Recently the method of effective Lagrangians was used to fit the ex-
perimental data [1]. The effective Lagrangians have been considered
partially invariant under non-linear realizations of some chiral group.
Consequently the problem of non-linear realizations of Lie groups has
arisen and has begun to be studied by physicists [2]. In contradistinction
to them, we deal with the problem globally by means of the theory of
homogeneous spaces. In particular, non-linear realizations of the
group S (7(2) are treated in detail from the point of view of algebraic
topology.

First, in Section II, we formulate the problem and define basic notions.
Realizations and transitive realizations as well as two concepts of equiv-
alence of realizations are introduced. Any realization of a given group
can be written as a union of transitive realizations and therefore, in
order to find all realizations of the group, we have to answer the following
questions. How many transitive realizations exist for a given group?
What is their structure and dimension? How to construct other realiza-
tions of the group from the transitive realizations.

Since these questions are, in general, difficult, we restrict ourselves
to the group SU(2). However, the method used for constructing its
non-linear realizations can be applied to the other compact Lie groups
as well. In Section III we find all transitive realizations of 5(7(2), that is,
all homogeneous spaces of S (7(2), by listing all subgroups of the group
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S U(2). Section IV is devoted to the study of orbit structure of linear
realizations of SU(2). Section V deals with non-linear realizations of
SU(2) and with an example of their construction on spheres and on
Euclidean spaces. Since the homotopy theory - a subject less familiar
to physicists - is used in the paper, a review of some definitions from this
theory is given in the Appendix.

II. Realizations of a Topological Group

Let G be a locally compact group with a countable basis and X a
locally compact Hausdorff space.

Definition 1. A realization of a group G in X is a homomorphism of G
into the topological transformation group G of the space X, i.e., a homo-
morphism ~

g-*fg, geG,fgeG,

where fg is a homeomorphism 1 of X into itself.

Definition 2. Let us recall that G is a topological transformation
group of X if each element fg of G is a homeomorphism of X into itself, i.e.,

fg:x-*x' = fg(x), x,xΈX,fgeG,
such that

(i) /„/«(*) = /„(/„(*)) fσrxeX and fβl, fneG and
(ii) the mapping ( f g , x ) ^ f g ( x ) is a continuous (even simultaneously

in xeX andfge G) mapping ofGxX into X.

In connection with these definitions let us remark that:
1. From (i) and the fact that fg is a homeomorphism of X it follows

that fe(x) = x and that fg_^ (x) = f~ί (x) for all x e X.
2.lΐg = eeGis the only element in G for which fg leaves all x of X

fixed G is said to act effectively on X or, simply, G is effective.
3. In many cases G is a Lie group and its elements are special homeo-

morphisms, namely, diffeomorphisms 2 or even analytic homeomorphisms.
In these cases the group G is said to be a Lie transformation group of X.

After specifying what we mean by realization of G in X we may define
when two realizations are equivalent. We introduce two concepts of
equivalence - continuous and differentiable equivalence.

Definitions. Two realizations of the group G, g-+fg1} and g-+fg

2)

in X^ and X(2\ respectively, are said to be continuously (differentiably)
equivalent if a homeomorphism (diffeomorphism) φ:X(1)^X(2) exists
such that

fW(φ(x)) = φ(/,(1)M) far every xeX(1) andgeG.
1 / is a homeomorphism iff / and /-1 are one-to-one continuous transformations.
2 / is a diffeomorphism i f f / and f~l are one-to-one differentiable transformations.
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In other words, the diagram

is commutative.
Since any diffeoftiorphism is a homeomorphism, differentiable

equivalence is finer that the continuous one. For example, let us considere
the carrier spaces X(1) and X(2) of two trivial representations g-^fe\
i= 1, 2, of a group G to be two 11 -dimensional spheres S11. Since every
two spheres S11 are topologically equivalent, i.e., homeomorphic, the
realizations 0->/e

(1) and #-»/e

(2) are continuously equivalent. On the
other hand, it is known [3] that there are 992 spheres SjJ, ί = 1, 2, . . . , 992,
which are not diffeomorphic! Therefore, if we take S^ and Sj}, iφj,
as the spaces X(ί} and X(2\ respectively, the representations 0->/β

(1)

and #-»/j2) are not differentiably equivalent.
Among realizations of G there are so-called transitive ones which

have particular properties.

Definition 4. The realization of the group G in X is transitive if for
every two points xί,x2eX there exists geG such that fgeG maps x^

(in other words, if, for any x0eX, the orbit Gx0, i.e., the set consisting
of all fg(xo\ is exactly the space X).

Since the transitive realization of a locally compact group G with
a countable basis in a locally compact Hausdorff space X is a homo-
morphism of G into the transformation group G of X and since G

Theorem 1. Acts on X transitively, the space X is homeomorphic to
a coset space G/H, where H is a closed subgroup of G3. For the proof
of this theorem see Ref. [4], p. Hi, Theorem 3.2.

Moreover, it can be easily shown that two homogeneous spaces
G/H and G/H', where Hf = gHg~1, g fixed element of G, are homeo-
morphic. If G acts on X as a Lie transformation group, then in fact
G/H & X if X is a transitive manifold.

Hence, in order to classify all transitive realizations of the group
G we must find all inequivalent homogeneous spaces, that is, all possible
conjugacy classes of closed subgroups of G.

3 The subgroup H is closed if, considered as a set, it is closed. For this it is sufficient
that H be an isotropy group of some point of X.
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However, to classify more general realizations of G on some

Theorem 2. space X turns out to be very difficult. It is true that any
carrier space X of the realization of G can be written as a union of orbits,
each being a carrier space of a transitive realization of G in X 4, but due
to possible different action of G on the same space this union is not unique.

Thus, even if we take as G the group SU(2) and as a space X some
conventional manifold, as for example the Euclidean space Rn, the
sphere Sn or the unit disc Dn, the result is far from complete. Only in
some special cases, e.g. when the dimension of the principal orbit or the
fixed point set is almost thfc same as the dimension of the considered
manifold on which the group acts, are there fairly good results for com-
pact groups G (see, for example, Ref. [5]).

In general, it has been shown [6] that there are at most a countable
number of differentiable inequivalent realizations of a compact Lie
group on a compact differentiable manifold. Both the compactness
of the manifold and the differentiability of the action are necessary
assumptions. If one of them is broken we obtain an uncountable number
of realizations [6]. The non-compact case is much more difficult and there-
fore only a few theorems concerning the actions of non-compact groups
are available.

III. Subgroups and Homogeneous Spaces of 517(2)

As we have already mentioned, all homogeneous spaces for the group
S £7(2) can be obtained by finding the conjugacy classes of closed sub-
groups of S U (2). This can be done, for instance, by using a method of
Murnaghan [7]. We have, eventually, the following list of conjugacy
classes of the proper closed subgroups of SU(2):

(i) The unitary subgroup (7(1).
(ii) The subgroup ΛΓ[L7(1)] - the normalizer of the group ί7(l).

(iii) The cyclic subgroups CM, n = 1,2,..., of order n.
(iv) The subgroups D2n> w = l , 2,..., whose factor groups D2JZ2

are isomorphic to the dihedral group Dn of order 2π, w = l,2,..., re-
spectively.

4 The proof is trivial. We can form the set [XX\XX = Gx,xeX} such that X = \J Xx.

Now if q and x2 are elements of X, the orbits G xί and G x2 either coincide or have no
element in common. Therefore we may consider a subset A of X for which the sets Xx,
xeA, are disjoint that is, if xltx2eAcX and x 1 Φx 2 » Xx^X^^φ. Then, obviously,
X=\JXχ. Q.e.d.

xeA

The decomposition of any realization into transitive realizations does not mean that
any realization of G in X is "completely reducible" since one has a union of transitive realiza-
tions rather than a direct sum of "irreducible representations".
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(v) The subgroup f whose factor group f/Z2 is isomorphic to the
tetrahedral group T of order 12.

(vi) The subgroup O whose factor group 0/Z2 is isomorphic to the
octahedral group O of order 24.

(vii) The subgroup Ϋ whose factor group Ϋ/Z2 is isomorphic to the
icosahedral group of order 60.

Here, Z2 = {e, -e] denotes the centre of the group SU(2). We see
that we have at our disposal two proper continuous subgroups and five
types of discrete (crystalographic or molecular) subgroups of S £7(2).

Let us discuss now the corresponding homogeneous spaces.
1. First let us give those which are three-dimensional manifolds.

They are:

SU(2)*S3; SU(2)/CnκL(n,l)9 n=l,2, . . . ;

S U(2)/D2n = L2n, n = 1,2,... S U(2)/T = M,

SU(2)/0 = M2 and SU(2)/Ϋ = M3.

SU(2\ as is well known, is homeomorphic to the three-dimensional
sphere S3, and SU(2)/Cn is homeomorphic to the Lens space L(n, 1)
(for the definition of L(n, 1) see, e.g., Ref. [8]). The homogeneous space
M3 is sometimes called the Poincare space. To the best of our knowledge,
the other three-dimensional homogeneous spaces are not homeo-
morphic to some known manifolds and thus L2n, n = 1,2, ...,M1?M2

and M3 are their abbreviated denotation.
It follows easily from Ref. [9] that the fundamental group of any of

our homogeneous spaces with discrete stability subgroup is isomorphic
to this stability subgroup. Therefore the above-mentioned spaces are
homotopically, hence also topologically, non-equivalent.

2. Then we have two two-dimensional homogeneous spaces:

S l/(2)/l/(l)« S2 and S 17(2)/N[17(1)] w RP2 .

Here S2 is the two-dimensional sphere and jRP2 is the two-dimensional
real projective plane.

3. Finally, there is a zero-dimensional homogeneous space homeo-
morphic to the point p,

Sl7(2)/Sl/(2)«p.

IV. Orbit Structure
of Linear Unitary Irreducible Representations of 517(2)

In order to construct and better understand the non-linear realiza-
tions it is useful to be a little familiar with the orbit structure of linear
representations. Although this is well known to specialists, no compre-
hensive study is available to the best of our knowledge. So let us give a
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brief study of orbit structure of linear unitary irreducible representations
(UIR) here.

First we shall prove a simple theorem.

Theorem 3. The orbit G/K, where K is a closed subgroup of the group G,
is contained in the linear representation g-*Tg of the group G in the n-
dimensional vector space Vn over the field F iff :

(i) g-*Tg when reduced with respect to K contains at least one one-
dimensional trivial representation of K;

(ii) among the one-dimensional trivial representations of K there is
at least one, say J£-» Tl9 operating on V± C Vn such that no other subgroup
K, KCK'CG, K + K' operates trivially on Vγ.

Proof. To prove the necessity, assume G/K C Vn. Then z0 e Vn, z0 φ 0
exists5 such that KZO = ZO and the subspace V1 = {z\z = λzθ9 λeF}
forms a basis for a trivial representation of K. No other subgroup
K' Φ K, K C K' C G can operate trivially on Vt because otherwise the
stability subgroup at z0 would be larger than K.

To prove the sufficiency let us suppose that there is a trivial represen-
tation T! of K in V1C Vn with the above-mentioned properties. Then
there is a point z0 e Vί such that Kz0 = z0. But there is no larger subgroup
K' of G such that K' 'z0 = z0 because otherwise K' would operate trivially
on the space V^ = {z \ z = λ z0, λ e F}. Hence K is the stability subgroup at z0 .

Let us return to the case G = SU(2).

Theorem 4. In the spin half -integer case (I = \, f , . . .) only the orbit
types S3,L(p, 1) where p = 3,5, ...,2/, and the fixed point (in the origin)
occur.

Proof. The group C2 is represented by the matrices {1, —1} and
the only fixed point is the origin. Therefore, we need only to study
subgroups of SU(2) which do not contain C2; these are the Cp's with p

. 2π

odd. The group Cp is generated by the element cp = e p . In an UIR
4π

ofSU(2)wQhaveCplm> =e im p lm>. From this one can conclude that
|/m> is invariant under C2m but not invariant under Cp, p>2m. It
follows that only the stability subgroups Cp, p = 1, 3, 5, . . ., 2/, are present.

Remark. In connection with the linear representations of 5(7(2) there
exists also fϊbrations of Sn which contain only spheres S3; these are
associated with reducible representations. Compare to the Hopf-fibration
{S4"-1, QPn-ί,SU(2\S3}9 [10].

The orbit structure of integer-spin representation is much more
complicated. Besides a fixed point, the following orbits are contained:

5 The case z0 = 0 is trivial because the stability group K is then G itself.
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Theorem 5. // integer spin I is even, the two-dimensional orbits are real
projectiυe planes R P2 and if I is odd the two-dimensional orbits are spheres S2.

Proof. The subspace in which 17(1) acts trivially is spanned by

|/0>. The subgroup ΛΓ [£/(!)] contains an element e Dn which is

represented by matrix A acting on a basis vector |/0> in the following way:

Thus in the / = even case the vector |/0> carries a trivial representation
of ./V[C/(1)] and in the / = odd case U(l) is the "maximal trivial group"
on |/0>. Then Theorem 5 follows from Theorem 3.

Theorem 6. (i) /// ̂  30 the orbits M1? M2, and M3 are always contained
in the carrier space of unitary irreducible representation Q)(V) of S (7(2).

(ii) // ί<30 the orbits M1?M2, and M3 are contained in Q)(l) in the
cases listed in Table i.

Proof. Let n\9 i = 1, 2, 3, denote the number of trivial representations
of T, O, Ϋ respectively in @(l\ The numbers n\9 ί= 1, 2, 3, can easily be
calculated by using the orthogonality property of characters [11].
We obtain

„, =_

The results are listed in Table 2. The rest of the proof is elementary and
is left to the reader. Note that in the cases / = 4, 8 the only trivial re-
presentation of T is trivial also with respect to 0 because of T C 0
this is the reason why the orbits M1 are not included in these cases.

Theorem 7. The orbit L(k, 1) is contained in @(l} iff k = 2, 4, 6, . . . , 21
The orbit Lk is contained in @(l) iff k = 296, 10, ...,2/ for I odd and iff
k = 4, 8,12, ...,2//or / even.

Proof. The proof is straightforward. First we note that the vector
|/m> is invariant under C2 m

6 but it is not invariant under Ck, k>2m.

ίeiφ 0 \6 Note that I 1 corresponds to a rotation about an angle 2φ round the 3-axis.
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Table 1. The orbit Mi( = SU(2)/f, SU(2)/O, SU(2)/Ϋ) is contained in the representation
<2ι(l) ofSU(2) in the crossed cases. M1 is not contained in @(4) or @(8) because n± =n2 when

I = 4, 8 (see Table 2). // / ̂  30 then Mtί i = 1,2, 3, is always contained in 2(l}

I

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

M,

x

X

X

X

X

X

X

x

X

X

M
2
 M

3

X

X X

X

x

X X

X X

x

x

X X

/

16
17
18
19
20
21
22

23
24
25

26
27
28
29
30

M,

x

x

x

X

x

X

X

X

X

X

X

X

X

X

X

M
2

x

X

x

x

x

x

X

x

X

X

X

X

X

X

X

M
3

X

X

x

x

x

X

X

X

X

X

X

Under the element
0 1

of D2m the vector |/m> is transformed to

± I /- m>. If m is sufficiently small, C2m can be a subgroup of T, O or Ϋ.
But, using the explicit form

Table 2. nf gives the number of trivial representations of Kt (=f,'0,Ϋ) contained in the re-
presentation @(l) of 517(2). // / ̂  30 then nt φ 0 and nί>n2,n1>n3

/

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

"1

0
0
1
1

0
2
1
1
2
2
1

3
2

2
3

"2

0
0
0
1

0
1

0
1

1
1
0
2
1
1
1

»3

0
0
0
0
0
1

0
0
0
1

0
1

0
0
1

'
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30

"i

3
2
4
3
3
4
4
3
5
4
4
5
5
4
6

"2

2
1

2

1
2
2
2
1

3
2
2
2

3
2
3

"3

1

0
1

0
1

1
1

0
1
1

1
1
1

0
2
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Table 3. The orbits contained in &l\ /= 1, 2, ..., 10. p is the fixed point (in origin), S2 and S3

the 2- and 3-spheres, P2 and P3 the real projectίve spaces in dimensions 2 and 3, respectively.
The others are: L(k, 1) « S U(2)/Ckί L2k w SU(2)[D2k, M, » SU(2)/f, M2 « SU(2)/δ,

I Orbits

!

2
3
4
5
6
7
8
9

10

P,
P.
P>
P>
P>
P,
P,
P,
P>
P,

S2 L(2 1) ~ P3

P2',
s2,
P2,
S2

P2,
s2,
P2,
s2,
P2,

P3,
P3,
P3,
P3,
P3,
P3,

P3,
P3,
P3,

£(4, 1),
L(4, 1),
£(4, 1),
L(4,l)..
L(4, 1) .
L(4, 1) .
L(4, 1) .
£(4, 1) .
L(4, 1) .

,£2
£4
£(6, 1),
£(6, 1),

,.L(10,
..L(12,
..Z(14,
..L(16,
..L(18,
..L(20,

L
I

1),
1),
1),
1),
1),
1),

2, L6

(8, 1),X
^2, Lβ,

L4,
L2,
L4,
L2,
L4,

£8,
L6,

Is,

L*>

r

!.ϊβ
^10

ΐlϊ,

•̂  ΊO»

Ϊ12,

• 1̂0>

in,

M2

M!, M2, M3

L14, M!

£l6> ^2
T T M
M4> ^Ί8> JW1»

^16, ^20, Mi,

M2

M2, M3

for the matrix elements of S U(2\ one can show by direct calculation that
a kt eKi (Ki=f, 0, Ϋ) exists such that T kJ/m> φ |/m>. The rest of the
proof goes along similar lines and is left to the reader. Theorems 4-7
give a complete characterization of orbit types of linear unitary irreducible
representations of S (7(2). The list of orbit types of integer-spin representa-
tions is given in Table 3 up to / = 10.

V. Examples of Non-Linear Realizations of S 17(2)
on Spheres and Euclidean Spaces

Even if we choose only the modest goal of constructing some examples
of non-linear realizations of S 17(2), the problem is not trivial. In order to
get non-linear realizations of S V(2) on some manifold M, e.g., M = Rn,
we must "fill up" M using the homogeneous spaces listed in Section III
in a tricky way. For example, R3 can be filled up by spheres S2 and a
fixed point in the origin R4 « C2 can be filled by S3's and a fixed point,
and so on, but then, without a remarkable imagination the resulting
action of S (7(2) will be linear (and very simple), Thus, more sophisticated
topological methods are needed.

By topological methods it is possible to construct non-linear realiza-
tions starting from the linear ones (see Refs. [12-16]). That the constructed
realizations are really non-equivalent to linear representations and to
each other can be seen by comparing the orbit structure of the con-
structed actions with the known orbit structure of linear representations.
Usually it is enough to show that the homology groups7 of the fixed
point sets are different.

7 See Appendix.
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New non-linear actions can be obtained again by standard topo-
logical methods from those already constructed.

In the following we shall build a series of actions of S 17(2) on spheres
starting from an example of W. C. Hsiang and W. Y. Hsiang [14],
which in turn is based on an example of Bredon [13]). All actions in this
section will be differentiable if not stated otherwise (in many cases they
are even analytic).

Note that if we have a differentiable action of any group G on a
sphere S", we can also construct a differentiable action of G in Rn+1

by just filling RQ+I in the usual way with spheres S" and putting a fixed
point in the origin.

First we briefly sketch Bredon's construction. For more details
see Ref. [13].

Take the diagonal, orthogonal linear action of S0(2rc+l) in
R2n + lχR2n + l . fl^ ^ g (X, y) = (g X, g y), geSO(2n+l\ (x,y)εR2" + 1

x R2n+ί. First, Bredon forms a set of equivariant, norm-preserving
analytic diffeomorphisms ψk9 k = 0,1,2,...

(5.1)
ψk(χ>y) = (χ'>y')> 11*11 = II*ΊI and \\y\\ = ||/||,

that is, % carries S2n x S2n into itself.
Then take the unit sphere S4n+1 in R2n+1xR2n+1. For each integer k

let Xk

4n+1 be a copy of {(x,y)eS4n+ί\y*Q} and Γfc

4w+1 a copy of
{(x,j;)eS4π+1|:xφO}. Let

ψk induces an analytic diffeomorphism Uk^> Vk9 say fk.
Denote by M4n+1 the analytic (4n + l)-manifold obtained from

Xfn+1 and 7fe

4M+1 by identifying L7fe with Vk via fk:Uk^Vk. The ortho-
gonal action of 50(2n+ 1) in R2n+1 x #2w+1 induces an analytic action
on M4π+1 without fixed points.

It can be shown that M4n+1 is a closed, connected, simply connected
manifold with integral homology groups the same as those of the (4n + 1)-
sphere:

ί = °'4M + 1 (5.2)

It then follows from a result by S. Smale [17] that Mk

n+i is homeo-
morphic to the (4n + l)-sρhere.

In the same way, starting from R2nx R2n instead of jR2M+1 x R2n+1,
it is possible to obtain analytic actions of 50(2 n) on an analytic manifold
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M4n+1 with the following integral homology groups:

Z, q = Q,4n-l

Z2k+ί, q = 2n-l (5.3)

0, otherwise.

Let us explain now our methode of constructing non-linear realizations.
Let 2 be a real, linear and orthogonal representation of S (7(2) in R2p+1,
p=l,2, 3,..., such that 2 does not contain the trivial representation.
Take the direct sum of ® and (2n + 1) — (2p+ l) = 2(n — p) copies of
trivial representations in R2P+1 x R2(»-p) = #2n+1. By the previous
construction this induces an analytic action of 5 (7(2) on M4n+1 one only
needs to make the embedding

@ θ Σ (2(π " P) trivial representation) C S0(2n + 1) (5.4)

in the natural way. In R2n+ί x R2n+1 the fixed point set of SU(2) is
R2(n-p) χ R2(n-p)t Thus ̂  fiχed point set ̂  [,£); A£n + 1] W M^ (""J>)"1.

Let n>p. Then the fixed point set on M4n+1 is not empty. Let x0

be a fixed point. Then the action of Sl/(2) in some neighbourhood
around x0 *s equivalent to a linear orthogonal action8. Thus we can
form the connected sum M£n+ί Φ Mfc

4/l+1 (see Appendix) without destroy-
ing the action of the group. From Ref. [3] it follows that Mfc

4π+1 # M4w+1

is diffeomorphic to the standard sphere S4n + 1 . Now we have a differentiable
action of SU(2) on S4n+1 with fixed point set M^n-p)ΦM^n~p\ In
general, if we take the connected sum

MΪn+1ΦMΪn+ίΦ'''ΦM4n+1=Mfn+ί(2j) = MπS4n+^ (5.5)

with an even number, say 2j9 of terms we get a differentiable action of
SU(2) on S4n+ί with fixed set

We denote this action by (α) = (n, k, pj). Next we show that these actions
are all non-equivalent if n>p+ 1 9, i.e., (α)«(α)/=>w = n/, k = k', p = p',
j = j f . From the dimension of M and M' (F and F' respectively) it is clear
that (α) w (α)'=>n = ri (p = p' respectively). jffg(F; Z), 4(n - p) - 1 > q > 1,
can be calculated using the Mayer-Vietoris sequence [19]. For example

)= Σ ΘZ2fc+1. (5.7)
2 j terms

From (5.7) it follows that in order to have same homology groups of
the fixed set we must also put j=f and k = kf.

8 See: Bochner (Ref. [18], 1945) the simple proof can also be found in Ref. [2] by
Coleman et al

9 This requirement is only for technical convenience.
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Another method of obtaining new differentiable actions of SU(2)
on spheres is to take some differentiable, connected and simply connected
contractible w-manifold Y 10 and the unit disc Dn and form the action
on Y x Dn induced by the trivial action on Y and some action on S"1"1.
(This is the simplest case; in general we can also have non-trivial actions
on Y) If n + m is even and φ4, it follows from Ref. [17] that Y x Dn

is diffeomorphic to Dn+m. If we take the boundary, we get a differentiable
action on (S

M+m~1 with fixed point set Y x F ( S U ( 2 ) ; Dn).
We are not going to dwell on any more details; we only note that the

constructions represented in this section are also applicable to compact
groups other than SU(2).
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Appendix

1. Homotopy Groups

Let X and Y be two topological spaces,^ C X, and /, g two maps
from X into Y such that f(x) = g(x) for all x e A. We say that the map /
is homotopίc to g relative to A, denoted f~g reM, if a map

F : X x /-> Y (I is the unit interval)

exists such that
(i) F(x,Q) = f(x) for V x e J Γ ,

(ii) F ( x 9 ί ) = g(x) for V x e X ,
(in) F(x, t) = f(χ) = g(x) for V x e A , V ί e / .
Roughly speaking, / can be deformed to g. It is easy to show that

homotopy is an equivalence relation.
Let us now define the homotopy group πn. Let /" be the unit cube in n

dimensions with co-ordinates x = (xί9x29 ...,*„), 0^x f ^l. An (n—1)-
face of /" is a submanifold with some xt equal to 0 or 1. The union of
(n - l)-faces is the boundary dln of In.

Denote by Fn = Fn(X, p0) the set of maps

where X is some topological space and p0 a point of X. We shall denote
by πn(X, XQ) the set of homotopy equivalence classes of these maps.
We Can define the addition in πn in the following way. Let / and g be the
maps representing the classes [/] and [#]. First define the sum of /

10 For example, the manifolds Yt in Ref. [12] are useful.
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and g:

Then define the class [/] H- [0] by

It can be shown that the addition depends only upon the classes [/]
and [0]. The constant map is defined by f(x) = po for all xe/ n . Denote
by [0] the corresponding homotopy class. Consider the map θ :/"->/",
θ(χ) = (l- x1? x2, . . . , xn). It can be shown that the maps/ + fθ and/0 + /
are homotopic to the identity map 0, so that we can define the inverse
of [/] by E/]"1 = [/0]. Then πn(X9 x0) is a group with respect to the
operation of addition introduced above called the n-th homotopy group
of the manifold X with respect to the base point x0. If n = 1, this is just
the fundamental group of the manifold X with respect to the base point x0.

2. The H ontology Modules

Consider the submanifolds Aq of R™, defined by

Thus ZJ! is the unit interval, A2 is the triangle including its interior, A3 is
a tetrahedron, etc. In general, Δq is called ίAe standard q simplex.

Given a space X, a singular q-simplex in X is a map Aq-*X. For
g = 0 it can be identified with a point in X, for q = 1 with a path in X, etc.

Let R be a commutative ring (usually the ring of real numbers or
integers). Define Sq(X) to be the free jR-module generated by the singular
g-simplexes. That is, every element of Sq(X) is a formal sum £vσσ,

σ

where σ runs through singular g-simplexes and vσ e R. The elements of
Sq(x) are called singular q-chains.

For q > 0 define Fl

q : Δ^^Δ^ O^i^q, as follows:

If σ is a singular ^-simplex in X, then the i-ίft /αce σ(0 of σ is by de-
finition the singular (q— l)-simplex σ ° Fq.

The boundary of a singular ^-simplex, σ, is by definition the singular
(q — l)-chain

i = 0
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Then d can be extended to a module homomorphism Sq(X)^Sq-1(X)
by writing

It can be shown that the boundary of the boundary of any singular
g-chain vanishes, i.e., δδ = 0.

A singular g-chain c such that d(c) = 0 is called a cycle. The cycles
form a submodule Zq of Sq(X). Denote by Bq the module of boundaries

Bq = {c I c = d(c') , c' is a singular (q + l)-chain} .

From dd = 0 follows that BqcZq. Now the g-the singular homology
module is by definition

If no confusion can arise we simply write Hq(X). Let us remark that if .R
is the ring of integers, Hq(X; R) are in fact homology groups.

3. Some Constructions of Spaces

In this paragraph we list some standard topological constructions
used to derive non-linear actions of groups.

a) Suspension. Let X be a Hausdorff space. Take the product space
X x /, where / is the unit interval, and identify the subspace X x 0 to
one point and the subspace X x 1 to another. The resulting space,
denoted by SX, is called the suspension of X. For example S(Sn)& Sn+1.
The following is true:

Hq(SX;R)>,

0,

b) Join. Let X and Y be Hausdorff spaces, x e X, y E Y such that x, y
have contractible11 open neighbourhoods. The space obtained by
identifying x and y is called the join X v Y of X and Y at (x, y). For join
it is true that

*.(*vy)«{$?_®H (y) ^o

where c(d) is the number of disconnected parts of X(Y\ respectively.
c) Connected Sum. Let X and Y be two connected rc-manifolds and

Dn the unit disc {xeK n | ||x|| ̂  1}. Choose the embeddings

ί:Dn-+X, j:Dn-+Y

11 If M is a space such that the identity map on M is homotopic to a constant map on
some point in M5 we say M is contractible.
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so that i preserves orientation and j reverses orientation. By definition,
Y is obtained from the disjoint sum

by identifying i(tu) with 7'((1 — t)u) for every 0<ί<l and every unit
vector weS""1. Because the correspondence i(tu)-^j((l — t)u) preserves
orientation, it is possible to choose the orientation for X # Y so that it is
compatible with that of X and Y. The following lemma has been used
in the text:

Lemma. The connected sum operation is well defined, associative and
commutative up to orientation-preserving diffeomorphism. The sphere S"
serves as identity element (see Ref. [3] for proof).
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